
1/9

September 12, 2022

Security Breaks: TeamTNT’s DockerHub Credentials Leak
trendmicro.com/en_us/research/22/i/security-breaks-teamtnts-dockerhub-credentials-leak.html

Content added to Folio

Cloud

One of our honeypots based on exposed Docker REST APIs showed cybercriminal group
TeamTNT’s potential attack scenario and leak of container registry credentials for docker-
abuse malware. The full version of this research will be presented at the c0c0n XV Hacking
and Cyber Security Conference in September 2022.

By: Nitesh Surana
September 12, 2022
Read time: (words)

We constantly deploy and study our honeypots to get a view of actively exploited
vulnerabilities and misconfigurations on platforms and services that pose cloud security risks.
One of these honeypots is based on exposed Docker REST API for analysis from cloud

https://www.trendmicro.com/en_us/research/22/i/security-breaks-teamtnts-dockerhub-credentials-leak.html
https://www.trendmicro.com/vinfo/tmr/?/us/security/news/virtualization-and-cloud/cloud-security-key-concepts-threats-and-solutions
https://www.trendmicro.com/vinfo/tmr/?/us/security/news/cybercrime-and-digital-threats/teamtnt-activities-probed

2/9

services providers’ and users’ perspectives. Upon analyzing the samples, we realized and
were able to understand the threat actors’ use of container registry features for Docker
malware and tactics, techniques, and procedures (TTPs).

Our honeypots showed threat actor TeamTNT were leaking credentials from at least two of
their attacker-controlled DockerHub accounts, namely alpineos (with over 150,000 pulls) and
sandeep078 (with 200 pulls). We have notified Docker about these accounts.

The account alpineos was used in exploitation attempts on our honeypots three times, from
mid-September to early October 2021, and we tracked the deployments’ IP addresses to
their location in Germany. The threat actors were logged in to their accounts on the
DockerHub registry and probably forgot to log out. Unless a user is not logged out manually,
the header “X-Registry-Auth" stores the credentials.

These DockerHub profiles were actively used to deploy malicious images containing the
following:

1. Rootkits
2. Docker escape kits
3. XMRig Monero miners
4. Credential stealers
5. Kinsing malware
6. Kubernetes exploit kits

In July 2021, we published our research on TeamTNT’s malicious activities and found
evidence of the group infiltrating via the Docker API. As a result, we found 26 unique
DockerHub accounts that are either compromised or malicious. Of the two we identified here,
the most interesting account for study was the alpineos account, which hosted malicious
container images with over 150,000 pulls.

Container registries and Docker daemon

Docker is a container services platform that helps developers follow a write-once-run-
anywhere (WORA) practice. It’s simple to use and is favored by developers, as a user can
write services and deploy applications at great speed. Most importantly, Docker works with
any platform.

Container registries are storage and distribution platforms for container images, similar to
how codes or programs are hosted on repositories like GitHub. With the right authorization
context, one can simply “pull” an image, create a container based on it, and deploy
applications. Many container registries such as DockerHub, Amazon Elastic Container
Registry (ECR), and Alibaba Container Registry, to name a few, host container images.

https://www.trendmicro.com/vinfo/tmr/?/us/security/definition/container
https://www.trendmicro.com/vinfo/tmr/?/us/security/news/cybercrime-and-digital-threats/teamtnt-activities-probed
https://documents.trendmicro.com/assets/white_papers/wp-tracking-the-activities-of-teamTNT.pdf#page=15
https://www.trendmicro.com/en_us/research/21/k/compromised-docker-hub-accounts-abused-for-cryptomining-linked-t.html
https://www.docker.com/blog/key-insights-from-stack-overflows-2022-developer-survey/#:~:text=Docker%20is%20the%20%231%20most%20loved%20development%20tool%2C%20and%20remains%20the%20%231%20most%2Dwanted%20tool.

3/9

When you create a container, the container daemon looks up the image from the container
registry by default. In our analysis, we use DockerHub as an example.

Figure 1. A “Hello World”

example of the Docker daemon (dockerd) pulling the image from Docker Hub
If we don’t specify the registry, DockerHub is considered by default. Docker provides a
feature for developers to create containers on a remote host when the Docker daemon (on
the server) is configured to listen over the TCP port, which is port 2375 by default. This
makes remote development and deployment easy for developers as it provides an interface
to various Docker services like images, containers, networks, and volumes using tools like
curl, wget, and docker-cli.

Docker REST API for container creation

Consider a scenario where a new container with an alpine image base (Alpine Linux, a
distribution based on musl libc library and BusyBox utilities) is created on remote server
172[.]31[.]42[.]11 via docker REST API. The remote server has the dockerd exposed over
TCP port 2375.

Figure 2. Container created based on alpine image on a remote host

4/9

Figure 3. Network server traffic
Looking at the server network traffic log, we can see that when a new container is requested
for creation on a remote server, this is the sequence that follows:

1. The client pings the target server (packet 2298) to test if the server is accessible.
2. The server responds with the status code 200 and that it is accessible (packet 2300).
3. The client requests that the server create a container from an image named “alpine”

(packet 2302).
4. If the server cannot find the “alpine” image locally, it replies with the status code 404

(packet 2304).
5. The client requests for the server information from </<version>/info endpoint> (packet

2306).
6. The server responds to the request with system-wide information (packet 2308).

Figure 4. Showing 404 status code as alpine image is locally unavailable

5/9

Figure 5. Returning system-wide information
7. The client requests the server to create a container from the alpine image. The “latest”
tag is chosen when no tags are specified.

8. The server responds with the download progress of the alpine image from DockerHub.

Figure 6. Creating a container from

the alpine image
9. The client requests the server to create a container from the now-downloaded alpine
image.

Figure 7. Request to create a container; the server responds with the ID of the newly created
container

6/9

Notice the value in the X-Registry-Auth header from Figure 6, where the header is with a
Base64-encoded string {}. The Docker documentation in Figure 8 enumerates the
authentication details:

Figure 8. Docker documentation on registries’ authentication
In the said scenario, the client who initiated the creation of the alpine-based container on the
server did not log in to the DockerHub registry. Hence, the value of the X-Registry-Auth
header is {} encoded in Base64. Using “docker login”, one can authenticate to container
registries and securely work on their repository.

Should an authorized user repeat the procedure wherein a legitimate user with a profile of
“satoshiav0cad0” is logged in using “docker login” and looks at the same header value, the
header X-Registry-Auth would now contain the credentials encoded in Base64.

Figure 9. Credentials encoded in Base64

Figure 10. Decoding the credentials from Base64
These are the DockerHub credentials of user “satoshiav0cad0”. Upon analysis, the
credentials can be seen in the aforementioned header X-Registry-Auth only because the
client initiating the request to create a container on a target server had authenticated it to
their DockerHub container registry.

https://docs.docker.com/engine/api/v1.41/#section/Authentication

7/9

As a legitimate use case, a user might want to authenticate their DockerHub repository to
create containers based on the images in their private repository. But if the user forgets to
log out from DockerHub using “docker logout” and creates containers on untrusted hosts with
dockerd exposed over TCP, the user becomes at risk since their usernames and passwords
are hard-coded and non-encrypted, not to mention only encoded in Base64.

Credential leak scenarios

In the first scenario, the victim is logged in to their DockerHub registry. An attacker gains
access to the victim’s virtual machine (VM) and tries to create a container on a remote server
with the dockerd exposed over TCP. If the image that the container attempts for creation
does not exist, the image is pulled from DockerHub and the header X-Registry-Auth is
populated with the Base64-encoded credentials.

Figure 11. Scenario 1: The image pulled from DockerHub contains the Base64-encoded
credentials.
Once abused, these compromised accounts can be used to view the following information
and even pivot in the following ways:

1. Associated email and reused credentials. Cybercriminals can check for passwords
being reused across different platforms and check for password leaks.

2. Private repositories and images. These might contain credentials like API keys and
modify private images with backdoors.

3. Access tokens. These can be used to maintain persistent access to the account.
4. Developers’ tools. Pro features (like Teams, Organization, and Build pipelines) can be

used to contaminate the build pipelines based on Docker and lead to supply-chain
attacks.

8/9

From a different perspective, another attack scenario could involve the attacker’s account
itself, where the cybercriminals are logged in to their own DockerHub registry and their
accounts leak credentials. While legitimate users might not be concerned about stealing
threat actors’ credentials, we analyzed that the procedure in creating a new container is also
applicable to catching threat actors who might have left their respective accounts logged in.
They might then attempt to create a container in the honeypot with an exposed dockerd over
TCP. Since our honeypot has tcpdump running and captures network traffic as packet
capture (PCAP), we can fetch the credentials of the attacker encoded in Base64.

Figure 12. Scenario 2: Attackers’ credentials leaked
Conclusion

Developers use containers to aid them in their development and deployments, optimize their
workflows, and increase their productivity. Likewise, small gaps such as component
misconfigurations have been known to be abused by cybercriminals. Malicious actors can
perform damaging activities from these openings, like compromising the host for
unauthorized cryptocurrency mining, exfiltrating sensitive information such as keys and
credentials, or — at its worst— controlling victim servers to expand botnet malware usage,
among other illicit activities. Indeed, cybercriminal groups such as TeamTNT will not stop
anytime soon for as long as there are components and accounts that can be abused.

Based on our observations, we were able to identify TeamTNT’s accounts because of one of
the members’ mistake on three occasions. There are three possible scenarios in which the
user could have made this error:

1. The threat actors logged in to their DockerHub account using the credentials of
alpineos.

2. The threat actors’ machines were self-infected and were not using credential helpers.

9/9

3. The threat actors didn’t log out from their DockerHub account while attacking exposed
Docker REST API servers.

We found a total of 30 such accounts that were compromised, the credentials for which were
being leaked. The registries for these were DockerHub and Alibaba Cloud Container
Registry. While we have acquired this information and have access to the aforementioned
credentials that might have been abused by TeamTNT, we did not access these credentials
unauthorized. We have also informed Docker about these accounts and are working with
them to resolve the matter.

Organizations’ security teams need to be aware that developer security is critical considering
this type of compromise around developer-centric tools like Docker have been observed
being abused by threat actors. We advise that teams create policies for access and
credential use, as well as generate threat models of their environments. Security teams can
use these to educate developers about what can go wrong. Here are some mitigation
practices for organizations and developers:

While creating containers on a remote host via the Docker daemon REST API,
developers should be aware that DockerHub credentials will also be shared if they are
creating images from the specified container registry. They should proceed to do so
only when the remote host is trusted.
With the rising number of malicious open-source packages targeting user credentials,
users should avoid storing credentials in other components such as environment
variables. Instead, they must choose tools such as credential stores and helpers.
If users need to use the Docker Daemon over REST API via internet, it is
recommended that they configure the exposed REST API with TLS (Transport Layer
Security) protocol to avoid man-in-the-middle (MiTM) attacks sniffing for credentials.

The full details of this research will be presented at the c0c0n XV Hacking and Cyber
Security Conference scheduled on Sept. 21 to 24, 2022.

Indicators of Compromise (IOCs)

For a full list of IOCs, you can visit our blog entries on previous incidents we documented
here and here.

sXpIBdPeKzI9PC2p0SWMpUSM2NSxWzPyXTMLlbXmYa0R20xk

https://github.com/docker/docker-credential-helpers
https://docs.docker.com/engine/security/protect-access/
https://www.trendmicro.com/vinfo/tmr/?/us/security/news/cybercrime-and-digital-threats/infosec-guide-defending-against-man-in-the-middle-attacks
https://india.c0c0n.org/2022/about
https://www.trendmicro.com/en_us/research/21/k/compromised-docker-hub-accounts-abused-for-cryptomining-linked-t.html
https://www.trendmicro.com/en_us/research/21/l/more-tools-in-the-arsenal-how-teamtnt-used-compromised-docker-hu.html

