
1/14

Aaron Stratton September 29, 2022

Raccoon Stealer v2 Malware Analysis
infosecwriteups.com/raccoon-stealer-v2-malware-analysis-55cc33774ac8

Image credit: Bleepingcomputer.com ()

Introduction

Raccoon Stealer is an infostealer sold on underground hacker/cybercriminal forums, first
observed in early 2019. Raccoon Stealer v2 first appeared in June of 2022, after the
developers returned from a supposed “retirement” which they had announced in early 2022.
[1] Just as with Raccoon Stealer v1, v2 is capable of stealing information to include cookies
and other browser data, credit card data, usernames, and passwords.

Technical Analysis

Raccoon Stealer v2 is written in C/C++, and coming in at only ~57kb, it is fairly lightweight.
Below are the hashes for the packed sample, and the unpacked sample. Based on my
research, Raccoon Stealer is not sold packed by default, rather, any packing must be done
by the customer who will deploy the malware.

Packed SHA256:
40daa898f98206806ad3ff78f63409d509922e0c482684cf4f180faac8cac273
Unpacked SHA256:
0123b26df3c79bac0a3fda79072e36c159cfd1824ae3fd4b7f9dea9bda9c7909

Unpacking

https://infosecwriteups.com/raccoon-stealer-v2-malware-analysis-55cc33774ac8
https://medium.com/@aaron_199?source=post_page-----55cc33774ac8--------------------------------


2/14

Unpacking this sample is pretty straightforward. All I did was place breakpoints on a few API
calls of interest such as VirtualProtect, WriteProcessMemory, CreateProcessInternalW, and
VirtualAlloc. Once the VirtualProtect breakpoint is hit, I followed the address in the EAX
register in the memory dump, then ran the program again until the next breakpoint. After that,
I was able to dump the payload from memory and continue my analysis.

Figure 1. Dumping the second stage payload from memory.

Resolving Imports

To start off, I opened the payload in PEstudio to perform some basic static analysis, which
will guide how I carry out the rest of the analysis. Opening the binary in PEstudio, the small
number of imported functions (only 8) leads me to believe that the malware probably
resolves its imports dynamically.



3/14

Figure 2. Imported functions displayed in PEstudio.
Disassembling the binary in Ghidra, I found the import resolver function early on in the
binary, as expected. This function simply uses the GetProcAddress API function to load the
address of the functions it will need. A few of these functions immediately catch my eye,
those being the internet related functions highlighted below in figure 3.



4/14

Figure 3. Internet-related functions in the import resolver function.

Decrypting Strings and C2 IP Address

The malware also obfuscates its strings using Base64 encoding and RC4 encryption. The
RC4 encrypted strings are stored in the Base64 encoded form. These strings are Base64
decoded, then decrypted using the RC4 key “edinayarossiya”, which means “United Russia”
in Russian. Once the strings are decrypted, the malware then performs the same decryption
routine for the C2 IP address, but using a different RC4 key.



5/14

Figure 4. Decoding and decrypting the C2 IP address.
With this RC4 key and Base64 encoded data, I could use cyberchef to get the IP address of
the C2 node.



6/14

Figure 5. Extracting the C2 IP address in cyberchef.

Checking Mutex

Next, the malware checks to see if another instance of it is already running on the infected
machine by opening a mutex with the value of 8724643052. If the OpenMutexW function fails
and returns a 0, the malware creates a mutex with the value, then continues execution. If the
function succeeds and returns 1 (true), the malware exits.



7/14

Figure 6. Checking for open mutex.

SYSTEM Check and Process Enumeration

The malware also checks if it is running as SYSTEM by comparing the current process’s
token to the SYSTEM SID, S-1–5–18.



8/14

Figure 7. Malware checking if it is running with SYSTEM privileges.
If the malware is running as SYSTEM, it then calls a process enumeration function using
CreateToolHelpSnapshot32, Process32First, and Process32Next.



9/14

Figure 8. Enumerating the functions on the infected machine.
If the malware is not running with SYSTEM privileges, it simply skips over the process
enumeration function and continues with its execution.

Host GUID and Username

Before connecting to the C2 node, the malware will retrieve the host’s GUID by querying the
SOFTWARE\Microsoft\Cryptography registry key.



10/14

Figure 9. Retrieving the host GUID from the registry.
The malware also retrieves the current user’s username, and moves it, along with the
machine ID onto the heap before contacting the C2 node.

C2 Communication

First the malware uses the WideCharToMultiByte API function to form all of the parameters it
needs in order to connect to the C2 node, including the machineID, username, and configID
parameters which will be sent to the C2 node via POST request. Of note, the configID
parameter is just the RC4 key that was used to decrypt the C2 IP address earlier in the
execution.



11/14

Figure 10. POST request to the C2 node containing the machineID, username, and configID
parameters.
The malware then checks to see if the response from the C2 node is larger than 0x3f (63 in
decimal) characters long. If it is, the malware continues execution. If not, the malware breaks
out of the loop and exits.

Figure 11. Checking the length of the C2 node’s response.
Unfortunately, at the time I performed my analysis, the C2 IP address did not appear to be up
anymore, as Shodan showed that port 3389 (RDP) was the only listening port. Assuming that
the C2 node was still operational and able to communicate with the infected host, the C2
node would return several different DLL’s for download to the infected host. Those DLL’s
would then be placed in the “C:\Documents and Settings\Administrator\Local
Settings\Application Data” folder.



12/14

Figure 12. Note the function setting the folder path before moving the downloaded DLL’s to
that path (C:\Documents and Settings\Administrator\Local Settings\Application Data)



13/14

Figure 13. Setting the folder path for the DLL’s to be placed into.
It is at this point that the malware would perform the bulk of it’s stealing functionality,
including cookies, passwords, credit card data, passwords, browser history, etc. [2] Some of
this functionality would automatically be executed, and some would require a command from
an operator in control of the C2 node.

Conclusion

In conclusion, Raccoon Stealer v2 is a relatively simple, yet very capable info stealer just like
v1. Both versions of this stealer pose a threat to organizations of all types, as well as
individuals. The information stolen by this malware can be used to take over accounts of all
types, financial, social media, corporate, etc.

I hope you enjoyed this post, and that you’ll come back again! A follow and share would be
super appreciated. Feedback is certainly welcome as well.



14/14

References

[1] https://www.bleepingcomputer.com/news/security/raccoon-stealer-is-back-with-a-new-
version-to-steal-your-passwords/

[2] https://blog.sekoia.io/raccoon-stealer-v2-part-2-in-depth-analysis/#h-mutex

From Infosec Writeups: A lot is coming up in the Infosec every day
that it’s hard to keep up with. Join our weekly newsletter to get all
the latest Infosec trends in the form of 5 articles, 4 Threads, 3 videos,
2 Github Repos and tools, and 1 job alert for FREE!

https://www.cybereason.com/blog/research/hunting-raccoon-stealer-the-new-masked-bandit-on-the-block
https://blog.sekoia.io/raccoon-stealer-v2-part-2-in-depth-analysis/#h-mutex
https://weekly.infosecwriteups.com/

