
1/30

BUGHATCH Malware Analysis
elastic.co/security-labs/bughatch-malware-analysis

Malware analysis of the BUGHATCH downloader.

By

Salim Bitam

09 September 2022

Key takeaways

Elastic Security Labs is releasing a BUGHATCH malware analysis report from a recent
campaign
This report covers detailed code analysis, network communication protocols, command
handling, and observed TTPs
From this research we produced a YARA rule to detect the BUGHATCH downloader

Preamble

https://www.elastic.co/security-labs/bughatch-malware-analysis
https://www.elastic.co/blog/author/salim-bitam
https://www.elastic.co/security-labs/cuba-ransomware-campaign-analysis
https://github.com/elastic/protections-artifacts/blob/main/yara/rules/Windows_Trojan_Bughatch.yar

2/30

BUGHATCH is an implant of a custom C2 deployed during the CUBA ransomware campaigns
we observed in February of 2022, this tool was most likely built by the threat actor themselves
as it was not used previously.

BUGHATCH is capable of downloading and executing commands and arbitrary code, it gives
the operator the freedom to execute payloads with different techniques like reflection,
shellcode execution, system command execution, and so on. The samples we have seen
were not obfuscated and were deployed using a custom obfuscated in-memory dropper
written in PowerShell and referred to as TERMITE by Mandiant.

In this document, we will go through the execution flow of BUGHATCH highlighting its
functionalities and code execution techniques, a YARA rule and the MITRE ATT&CK mapping
can be found in the appendix.

In this analysis we will describe the following:

Token adjustment
Information collection
Threading and thread synchronization
Network communication protocol
Command handling

Additional BUGHATCH resources

For information on the CUBA ransomware campaign and associated malware analysis, check
out our blog posts detailing this:

Static analysis

SHA256 F1325F8A55164E904A4B183186F44F815693A008A9445D2606215A232658C3CF

File Size 35840 bytes

File
Type:

Win32 executable

Signed? No

Packer? No

Compiler Visual Studio 2017 - 15.5.0 preview 2

https://www.mandiant.com/resources/unc2596-cuba-ransomware

3/30

Compile
Time

Sun Feb 06 21:05:18 2022 | UTC

Entropy 6.109

Sections

Name Virtual

Address

Virtual
Size

Raw
Size

Entropy MD5

.text 0x1000 0x6000 0x5400 5.933 A6E30CCF838569781703C943F18DC3F5

.rdata 0x7000 0x3000 0x2A00 6.217 9D9AD1251943ECACE81644A7AC320B3C

.data 0xA000 0x1000 0x400 1.163 B983B8EB258220628BE2A88CA44286B4

.reloc 0xB000 0x424 0x600 5.235 39324A58D79FC5B8910CBD9AFBF1A6CB

Code analysis

BUGHATCH is an in-memory implant loaded by an obfuscated PowerShell script that decodes
and executes an embedded shellcode blob in its allocated memory space using common
Windows APIs (VirtualAlloc, CreateThread, WaitForSingleObject).

The PowerShell loader uses inline C# to load APIs needed for shellcode injection as seen in
the following pseudocode.

4/30

Pseudocode PowerShell inline C#
The PowerShell script is obfuscated with random functions and variable names and contains
the shellcode in a reverse-Base64 format.

Pseudocode embedded shellcode in Base64 format
The script first decodes the reverse-Base64 encoded data, then allocates a memory region
with VirtualAlloc before copying the shellcode into it. Finally, the script executes the
shellcode by creating a new thread with the CreateThread API.

Pseudocode PowerShell creates a new thread to execute the shellcode
The shellcode downloads another shellcode blob and the encrypted PE implant from the C2
server, this second shellcode decrypts and reflectively loads the PE malware.

This section dives deeper into the BUGHATCH execution flow, threading and encryption
implementation, communication protocol with C2, and finally supported commands and
payload execution techniques implemented.

The following is a diagram summarizing the execution flow of the implant:

5/30

Execution flow diagram of BUGHATCH

6/30

Pseudocode of the main function

Token adjustment

The implant starts by elevating permissions using the SeDebugPrivilege method, enabling
the malware to access and read the memory of other processes. It leverages common
Windows APIs to achieve this as shown in the pseudocode below:

7/30

Information collection

The malware collects host-based information used to fingerprint the infected system, this
information will be stored in a custom structure that will be 2-byte XOR encrypted and sent to
the C2 server in an HTTP POST request.

The following lists the collected information:

Current value of the performance counter
Network information
System information
Token information
Domain and Username of the current process
Current process path

Current value of the performance counter

Using the QueryPerformanceCounter API, it collects the amount of time since the system
was last booted. This value will be used to compute the 2-byte XOR encryption key to encrypt
communications between the implant and the C2 server, a detailed analysis of the encryption
implementation will follow.

8/30

Pseudocode QueryPerformanceCounter function

Network information

It collects the addresses of network interfaces connected to the infected machine by using the
GetIpAddrTable Windows API.

Pseudocode collecting interface addresses

System information

BUGHATCH collects key system information which includes:

Windows major release, minor release, and build number
Processor architecture (either 32-bit or 64-bit)
Computer name

9/30

Pseudocode collecting system information

Token information

The agent proceeds to collect the current process token group membership, it invokes the
AllocateAndInitializeSid API followed by the CheckTokenMembership API, concatenating
the SDDL SID strings for every group the process token is part of. While not unique to
BUGHATCH, this is detected by Elastic's Enumeration of Privileged Local Groups
Membership detection rule.

Pseudocode collecting token group membership information

https://docs.microsoft.com/en-us/windows/win32/secauthz/sid-strings
https://www.elastic.co/guide/en/security/current/enumeration-of-privileged-local-groups-membership.html

10/30

Domain and username of the current process

The malware opens a handle to the current process with OpenProcessToken and gets the
structure that contains the user account of the token with GetTokenInformation. It then
retrieves the username and domain of the user account with the LookupAccountSidW API
and concatenates the 2 strings in the following format: DOMAIN\USERNAME.

Current process path

Finally, it collects the current process path with GetModuleFileNameW. The malware then
encrypts the entire populated structure with a simple 2-byte XOR algorithm, this encryption
implementation is detailed later in the report.

Threading and thread synchronization

The implant is multithreaded; it uses two different linked lists, one is filled with the commands
received from the C2 server and the other is filled with the output of the commands executed.

It spawns 5 worker threads, each handling a command received from the C2 server by
accessing the appropriate linked list using the CriticalSection object. The main process’
thread also retrieves the command's output from the second linked list using the

11/30

CriticalSection object for synchronization purposes, to avoid any race conditions.

Pseudocode of the thread creation function

Network communication protocol

In this section we will detail:

Base communication protocol
Encryption implementation

The implant we analyzed uses HTTP(S) for communications. On top of the SSL encryption of
the protocol, the malware and C2 encrypt the data with a 2-byte XOR key computed by the
malware for each new session. The values to compute the 2-byte XOR key are prepended at
the beginning of the base protocol packet which the server extracts to decrypt/encrypt
commands.

When launched, the malware will first send an HTTP POST request to the C2 server
containing all the collected information extracted from the victim’s machine, the C2 then
responds with the operator’s command if available, or else the agent sleeps for 60 seconds.
After executing the command and only if the output of the executed command is available, the
malware will send a POST request containing both the collected information and the
command’s output, otherwise, it sends the collected information and waits for new commands.

12/30

Example of an implant HTTP POST request to an emulated C2 server

Base communication protocol

The author(s) of BUGHATCH implemented a custom network protocol, the following is the
syntax that the agent and server use for their communication:

BUGHATCH agent and server communications
XOR key values: The values to compute the 2-byte XOR encryption key used to
encrypt the rest of the data
Separator: A static value (0x389D3AB7) that separates Msg chunks, example: the
server can send different instructions in the same HTTP request separated by the
Separator
Chunk length: Is the length of the Msg, Separator and Chunk length
Msg: Is the message to be sent, the message differs from the agent to the server.

We will dive deeper into the encapsulation of the Msg for both the agent and the server.

Pseudocode extracting commands according to the separator value

Encryption implementation

The malware uses 2-byte XOR encryption when communicating with the C&C server; a 2-byte
XOR key is generated and computed by the implant for every session with the C2 server.

13/30

The agent uses two DWORD values returned by QueryPerformanceCounter API as stated
earlier, it then computes a 2-byte XOR key by XOR-encoding the DWORD values and then
multiplying and adding hardcoded values. The following is a Python pseudocode of how the
KEY is computed:

tmp = (PerformanceCount[0] ^ PerformanceCount[1]) & 0xFFFFFFFF

XorKey = (0x343FD * tmp + 0x269EC3)& 0xFFFFFFFF

XorKey = p16(XorKey >> 16).ljust(2, b'\x00')

Pseudocode of the encryption implementation

Command handling

In this section, we will dive deeper into the functionalities implemented in the agent and their
respective Msg structure that will be encapsulated in the base communication protocol
structure as mentioned previously.

Once the working threads are started, the main thread will continue beaconing to the C2
server to retrieve commands. The main loop is made up of the following:

Send POST request
Decrypt the received command and add it to the linked list
Sleep for 60 seconds

14/30

A working thread will first execute the RemoveEntryRecvLinkedList function that accesses
and retrieves the data sent by the C2 server from the linked list.

Pseudocode retrieves data sent by the C2
The thread will then de-encapsulate the data received from the C2 and extract the
Msg(Command). The malware implements different functionalities according to a command
flag, the table below illustrates the functionalities of each command:

Command FLAG Description

1 Group functions related to code and command execution

2 Group functions related to utilities like impersonation and migration

3 Process injection of a PE file in a suspended child process

Command 1

This command gives access to functionalities related to payload execution, from DLL to PE
executable to PowerShell and cmd scripts.

Some of the sub-commands use pipes to redirect the standard input/output of the child
process, which enables the attacker to execute payloads and retrieve its output, for example,
PowerShell or Mimikatz, etc…

The following is the list of sub commands:

15/30

Sub
Command
Flag

Function Name Functionality description

2 ReflectivelyExecutePERemote Reflectively loads PE files in a child process
and redirects its standard input output, the
output will be sent to the operator C2 server

3 DropPEDiskExecute Drops a PE file to disk and executes it, the
execution output is then sent to the
operator’s C2 server

4 SelfShellcodeExecute Executes a shellcode in the same process

5 RemoteShellcodeExecute Executes a shellcode in a suspended
spawned child process

6 ExecuteCmd Executes a CMD script/command

7 ExecutePowershell Executes a Powershell script/command

9 ReflectivelyLoadDllRemote Executes a DLL reflectively in a remote
process using CreateRemoteThread API

The following is the structure that is used by the above commands:

struct ExecutePayloadCommandStruct

{

 DWORD commandFlag;

 DWORD field_0;

 DWORD subCommandFlag_1;

 DWORD readPipeTimeOut_2;

 DWORD payloadSize_3;

 DWORD commandLineArgumentSize_4;

 DWORD STDINDataSize_5;

 CHAR payload_cmdline_stdin[n];

};Read more

commandFlag: Indicates the command
subCommandFlag: Indicates the subcommand
readPipeTimeOut: Indicates the timeout for reading the output of child processes from
a pipe
payloadSize: Indicates the payload size

16/30

commandLineArgumentSize: Indicates length of the command line arguments when
executing the payload, example a PE binary
STDINDataSize: Indicates the length of the standard input data that will be sent to the
child process
Payload_cmdline_stdin: Can contain the payload PE file for example, its command
line arguments and the standard input data that will be forwarded to the child process,
the malware knows the beginning and end of each of these using their respective length.

ReflectivelyExecutePERemote

The agent reflectively loads PE binaries in the memory space of a created process in a
suspended state (either cmd.exe or svchost.exe). The agent leverages anonymous
(unnamed) pipes within Windows to redirect the created child process's standard input and
output handles. It first creates an anonymous pipe that will be used to retrieve the output of
the created process, then the pipe handles are specified in the STARTUPINFO structure of
the child process.

Pseudocode for anonymous pipe creation
After creating the suspended process, the malware allocates a large memory block to write
shellcode and a XOR encrypted PE file.

The shellcode will 2-byte XOR decrypt and load the embedded PE similar to (Command 3).
This command can load 64bit and 32bit binaries, each architecture has its own shellcode PE
loader, after injecting the shellcode it will point the instruction pointer of the child process’s
thread to the shellcode and resume the thread.

https://docs.microsoft.com/en-us/windows/win32/ipc/anonymous-pipes

17/30

Pseudocode of Reflective Loading PE into child processes
The following is an example of a packet captured from our custom emulated C2 server, we
can see the structure discussed earlier on the left side and the packet bytes on the right side,
for each command implemented in the malware, a packet example will be given.

Example of a ReflectivelyExecutePERemote command received from an emulated C2

DropPEDiskExecute

With this subcommand, the operator can drop a PE file on disk and execute it. The agent has
3 different implementations depending on the PE file type, GUI Application, CUI (Console
Application), or a DLL.

For CUI binaries, the malware first generates a random path in the temporary folder and
writes the PE file to it using CreateFileA and WriteFile API.

18/30

Pseudocode

writing payload to disk
It then creates a process of the dropped binary file as a child process by redirecting its
standard input and output handles; after execution of the payload the output is sent to the
operator’s C2 server.

For GUI PE binaries, the agent simply writes it to disk and executes it directly with
CreateProcessA API.

And lastly, for DLL PE files, the malware first writes the DLL to a randomly generated path in
the temporary folder, then uses c:\windows\system32\rundll32.exe or
c:\windows\syswow64\rundll32.exe (depending on the architecture of the DLL) to run either
an exported function specified by the operator or the function start if no export functions were
specified.

Pseudocode running the payload dropped by DropPEDiskExecute function

19/30

Example of a SelfShellcodeExecute command received from an emulated C2

SelfShellcodeExecute

This subcommand tasks the agent to execute shellcode in its own memory space by
allocating a memory region using VirtualAlloc API and then copying the shellcode to it, the
shellcode is executed by creating a thread using CreateThread API.

Pseudocode of SelfShellcodeExecute command

Example of a SelfShellcodeExecute command received from an emulated C2

RemoteShellcodeExecute

This sub-command can be used to execute a 32-bit or a 64-bit position independent shellcode
in another process memory space.

Similarly to the SpawnAgent subcommand, the malware creates a suspended svchost.exe
process with CreateProcessA API, allocates a memory region for the shellcode sent by the
C2 server with VirtualAllocEx, and writes to it with WriteProcessMemory, it then sets the
suspended thread instruction pointer to point to the injected shellcode with
SetThreadContext and finally it will resume the thread with ResumeThread to execute the
payload.

20/30

Pseudocode writes

shellcode to remote process

Pseudocode set EIP of child process using SetThreadContext

Example of a RemoteShellcodeExecute command received from an emulated C2

ExecuteCmd and ExecutePowershell

An operator can execute PowerShell scripts or CMD scripts in the infected machine, the
malware can either write the script to a file in the temporary folder with a randomly generated
name as follow: TEMP<digits>.PS1 for PowerShell or TEMP<digits>.CMD for a Command
shell. The malware then passes parameters to it if specified by the malicious actor and
executes it, the malware uses named pipes to retrieve the output of the PowerShell process.

21/30

Pseudocode of ExecuteCmd command

Example of an ExecutePowershell command received from an emulated C2

ReflectivelyLoadDllRemote

Execute reflectively a 32-bit or 64-bit DLL in a process created in a suspended state, the
following summarizes the execution flow:

Check if the PE file is a 32 or 64-bit DLL
Create a suspended svchost.exe process
Allocate memory for the DLL and the parameter for the DLL if specified by the C2
command with the VirtualAllocEx API
Write to the remotely allocated memory withthe WriteProcessMemory API the DLL and
the parameter if specified
Create a remote thread to execute the injected DLL with the CreateRemoteThread API

22/30

Pseudocode of a ReflectivelyLoadDllRemote command

Example of a ReflectivelyLoadDllRemote command received from an emulated C2

Command 2

The command 2 has multiple sub functionalities as shown in the command table above,
according to a subCommandFlag the malware can do 6 different operations as follows:

Sub Command Flag Function Name Functionality description

1 ExitProcess Exit process

2 SelfDeleteExitProcess Self delete and exit process

3 SpawnAgent64 Spawn 64-bit agent

23/30

4 SpawnAgent32 Spawn 32-bit agent

0x1001 ImpersonateToken Impersonate explorer

0x1002 MigrateC2 Change C2 config

The following is the structure that is used by the above commands:

struct ImpersonateReplicateStruct

{

 int subCommandFlag;

 int impersonateExplorerToken;

 char padding[16];

 __int16 isParameterSet;

 WCHAR w_parameters[n];

};

ExitProcess

Calls the ExitProcess(0) API to terminate.

Example of an ExitProcess command received from an emulated C2

SelfDeleteExitProcess

The agent gets the PATH of the current process with GetModuleFileNameA and then
executes the following command to self-delete: cmd.exe /c del FILEPATH >> NUL using
CreateProcessA then simply exit the process with ExitProcess(0).

Example of a SelfDeleteExitProcess command received from an emulated C2

SpawnAgent64 and SpawnAgent32

When subcommands 3 or 4 are specified, the malware will spawn another agent on the same
machine depending on the subcommand sent by the C2, as shown in the table above.

The malware first retrieves the C2 IP address embedded in it, it will then do an HTTP GET
request to download a packed agent in shellcode format, in the sample we analyzed
/Agent32.bin URI is for the 32-bit agent, and /Agent64.bin is for 64-bit the agent.

24/30

Pseudocode spawning another agent
The malware then creates a suspended svchost.exe process with CreateProcessA API,
writes the agent shellcode to the process, sets its instruction pointer to point to the injected
shellcode with SetThreadContext, and finally it will resume the thread with ResumeThread
to execute the injected payload.

Example of a SpawnAgent32 command received from an emulated C2

ImpersonateToken

This subcommand is specific to process tokens; an attacker can either impersonate the
explorer.exe token or create a token from credentials (Domain\Username, Password) sent by
the C2 to spawn another instance of the current process.

Pseudocode ImpersonateToken command
It will first check if the current process is a local system account or local service account or
network service account by testing whether the given process token is a member of the group
with the specified RID (SECURITY_LOCAL_SYSTEM_RID,

25/30

SECURITY_LOCAL_SERVICE_RID, SECURITY_NETWORK_SERVICE_RID) respectively.

Pseudocode check token group membership
Then depending if the operator specified credentials or not, the malware will first call
LogonUserW with the Domain\User and password to create a token then it will spawn
another instance of the current process with this token.

Pseudocode LogonUserW to create a token
If not, the implant will impersonate the explore.exe process by duplicating its token with
DuplicateTokenEx and then spawn the current process with the duplicated token if no
credentials are specified.

Example of an ImpersonateToken command received from an emulated C2

MigrateC2

The operator can migrate the implant to another C2 server by specifying the subcommand
0x1001 with the IP address of the new C2.

Pseudocode migrating the implant

26/30

Example of a MigrateC2 command received from an emulated C2

Command 3

When command 3 is received the malware will reflectively load a PE file embedded as
payload in the C&C request in another process's memory space, the following is an overview
of the execution:

Determine the type and architecture of the PE file
Create a suspended process
Allocate a large memory in the suspended process
Write a shellcode in the allocated memory that will locate, decrypt and reflectively load
the PE file
2-byte XOR encrypt the PE file and append it after the shellcode
Set the EIP context of the suspended process to execute the shellcode

The shellcode will then reflectively load the PE file

Pseudocode for Command 3's main logic
The agent first parses the PE file received from the C2 server to determine the type and
architecture of the PE file.

27/30

Pseudocode determines the PE file architecture
And according to this information, a Windows signed executable will be chosen to inject into.

If the PE file is CUI (Console User Interface), the malware will choose cmd.exe, however, if it
is GUI (Graphical User Interface) or a DLL PE file it will choose svchost.exe.

28/30

Options for malware to inject into
The malware will then create a suspended process with CreateProcessA API (either
cmd.exe or svchost.exe) and allocate a large amount of memory with VirtualAllocEx in the
created process, it will then copy a position independent shellcode stored in the .rdata section
to the newly allocated memory that is responsible for locating according to a specific tag the
appended PE file, decrypt it and reflectively load it in memory.

Then it appends after the shellcode a 12 bytes structure composed of a tag, the size of the PE
file, and a 2-byte XOR key.

It will then 2-byte XOR encrypt the PE file and append it after the structure, the following is an
overview of the written data to the allocated memory:

SHELLCODE TAG PE SIZE 2-byte XOR KEY 2-byte XOR encrypted PE file

29/30

Pseudocode write shellcode and PE to child process
The agent will then set the thread context with SetThreadContext and point the instruction
pointer of the suspended process to the shellcode then it will simply resume the execution
with ResumeThread.

The shellcode will first locate the 2-byte XOR encrypted PE file according to the tag value
(0x80706050), it will then 2-byte XOR decrypt it and load it reflectively on the same process
memory.

Observed adversary tactics and techniques

Elastic uses the MITRE ATT&CK framework to document common tactics, techniques, and
procedures that advanced persistent threats use against enterprise networks.

Detections

Detection rules

The following detection rule was observed during the analysis of the BUGHATCH sample.
This rule is not exclusive to BUGHATCH activity.

Enumeration of Privileged Local Groups Membership

YARA rule

Elastic Security has created a YARA rule to identify this activity.

https://www.elastic.co/guide/en/security/current/enumeration-of-privileged-local-groups-membership.html#enumeration-of-privileged-local-groups-membership
https://github.com/elastic/protections-artifacts/blob/main/yara/rules/Windows_Trojan_Bughatch.yar

30/30

rule Windows_Trojan_BUGHATCH {

 meta:

 author = “Elastic Security”

 creation_date = "2022-05-09"

 last_modified = "2022-06-09"

 license = “Elastic License v2”

 os = "Windows"

 arch = "x86"

 category_type = "Trojan"

 family = "BUGHATCH"

 threat_name = "Windows.Trojan.BUGHATCH"

 reference_sample =
"b495456a2239f3ba48e43ef295d6c00066473d6a7991051e1705a48746e8051f"

 strings:

 $a1 = { 8B 45 ?? 33 D2 B9 A7 00 00 00 F7 F1 85 D2 75 ?? B8 01 00 00 00 EB 33 C0 }

 $a2 = { 8B 45 ?? 0F B7 48 04 81 F9 64 86 00 00 75 3B 8B 55 ?? 0F B7 42 16 25 00 20
00 00 ?? ?? B8 06 00 00 00 EB ?? }

 $a3 = { 69 4D 10 FD 43 03 00 81 C1 C3 9E 26 00 89 4D 10 8B 55 FC 8B 45 F8 0F B7 0C
50 8B 55 10 C1 EA 10 81 E2 FF FF 00 00 33 CA 8B 45 FC 8B 55 F8 66 89 0C 42 }

 $c1 = "-windowstyle hidden -executionpolicy bypass -file"

 $c2 = "C:\\Windows\\SysWOW64\\WindowsPowerShell\\v1.0\\powershell.exe"

 $c3 = "ReflectiveLoader"

 $c4 = "\\Sysnative\\"

 $c5 = "TEMP%u.CMD"

 $c6 = "TEMP%u.PS1"

 $c7 = "\\TEMP%d.%s"

 $c8 = "NtSetContextThread"

 $c9 = "NtResumeThread"

 condition:

 any of ($a*) or 6 of ($c*)

}Read more

