
1/15

THREAT ANALYSIS REPORT: PlugX RAT Loader Evolution
cybereason.com/blog/threat-analysis-report-plugx-rat-loader-evolution

Written By
Cybereason Global SOC Team

September 8, 2022
|
10 minute read

The Cybereason Global Security Operations Center (GSOC) Team issues Threat Analysis Reports to inform on impacting threats. The Threat
Analysis Reports investigate these threats and provide practical recommendations for protecting against them.

In this Threat Analysis report, the Cybereason GSOC investigates the PlugX malware family, a modular Remote Access Tool/Trojan (RAT)
often utilized by Asia-based APT groups such as APT27. The malware has backdoor capabilities to take full control of the environment with its
many malicious “plugins.”

https://www.cybereason.com/blog/threat-analysis-report-plugx-rat-loader-evolution
https://www.cybereason.com/blog/authors/cybereason-global-soc-team
https://www.cybereason.com/blog/category/research
https://attack.mitre.org/software/S0013/
https://attack.mitre.org/groups/G0027/

2/15

This report provides an overview of the PlugX loader as well as modifications across multiple samples (six in total) starting from the year 2012
to 2022.

Key Points

The Rule of Three: The malware may be delivered differently depending on the campaigns such as whether the initial delivering format
is self de-archiving or not. However, the PlugX loader always consists of three main components: a legitimate executable, a malicious
module, and a malicious payload. The malware has been around for over a decade, but the format of the malware has not changed.

Security Evasion-Focused Techniques: PlugX loader is known for utilizing DLL-Sideloading techniques for evasion purposes.
However, the malware is packing additional evasion techniques. This increases the chance of deploying the main PlugX payload
successfully.

Detected and Prevented: The Cybereason Defense Platform effectively detects and prevents the PlugX malware.

Introduction

PlugX is a post-exploitation modular RAT (Remote Access Trojan), which, among other things, is known for its multiple functionalities such as
data exfiltration, keystroke grabbing, and backdoor functionality. The malware’s first publications and research papers date back to 2012.

However, according to Trend Micro, the malware has actually been around since 2008. PlugX was already making a name for itself back in
2012 due to high activity within Asia.

This may have been due to the fact that the PlugX malware authors were tied to China and the operators of this malware at the time were
located within Asian countries. Since then, the malware has been active and utilized by many threat actors for over the past decade. The
malware had many updates over the years and it does not appear to be going away anytime soon.

From its original version, the PlugX malware has been primarily used against public-sector organizations such as governments and various
political organizations. In addition, advanced threat actors utilize the malware heavily to target high profile private organizations.

For example, in June 2016, Japan’s leading tourism agency announced the leak of privacy data of 7.93 million users, which was later identified
by Trellix as an attack utilizing PlugX. The malware was also seen utilized outside of Asian countries when it targeted military and aerospace
interests in Belarus and Russia.

This may be the indicator that the malware operators for PlugX were expanding their markets and targets. Most recently, the malware was
utilized to target European government agencies which aided Ukrainian refugees from the recent Russia-Ukraine War.

PlugX loader is commonly delivered via phishing emails and it is also seen delivered by exploiting a vulnerability such as ProxyLogon
according to Unit 42 from Palo Alto Networks. The malware is often delivered as an archived formatted file such as .zip, .rar or self-extracting
RAR (SFX) archive.

Within this archived file format, the malware contains three main files:

legitimate executable
malicious module
malicious payload

The malware utilizes DLL Side-Loading as a main method to load a malicious DLL from a legitimate executable, like Acrobat Reader or a
legacy Microsoft binary, for instance. The benefits of using DLL Side-Loading is that the malware can hijack and masquerade the legitimate
executable by loading malicious modules. DLL Side-loading not only allows for evasion of security tools, but also allows malware developers to
have a variety of options into which legitimate executable to side-load the PlugX payload:

https://attack.mitre.org/techniques/T1574/002/
https://www.cybereason.com/platform#graphic
https://attack.mitre.org/software/S0013/
https://web.archive.org/web/20121026140131/https://blog.trendmicro.com/trendlabs-security-intelligence/plugx-new-tool-for-a-not-so-new-campaign/
https://cybersecurity.att.com/blogs/labs-research/tracking-down-the-author-of-the-plugx-rat
https://www.japantimes.co.jp/news/2016/06/15/business/corporate-business/personal-info-7-93-million-people-may-leaked-japans-biggest-travel-agency/#.V2ESV5MrInU
https://internet.watch.impress.co.jp/docs/news/1005842.html
https://www.proofpoint.com/us/threat-insight/post/APT-targets-russia-belarus-zerot-plugx
https://socprime.com/blog/plugx-malware-used-by-china-aligned-apt-actor-ta416-targets-european-allies-to-cripple-ukrainian-refugee-services/
https://unit42.paloaltonetworks.com/thor-plugx-variant/
https://attack.mitre.org/techniques/T1574/002/

3/15

PlugX infection flow. View Loading PlugX Process FlowChart

DLL Side-Loading is one of many evasive aspects that this malware has in its arsenal, and which this analysis describes in depth:

Technical Analysis

The technical analysis focuses on the PlugX loader’s deployment method and specifically PlugX Loader Analysis focuses on three files with
the following sample Secure Hash Algorithm (SHA)-256. These files were introduced in this article from 2012:

Filename SHA-256

Nv.exe (legitimate) 523D28DF917F9D265CD2C0D38DF26277BC56A535145100ED82E6F5FDEAAE7256

NvSmartMax.dll EAAA7899B37A3B04DCD02AD6D51E83E035BE535F129773621EF0F399A2A98EE3

Nv.mp3 3D64E638F961B922398E2EFAF75504DA007E41EA979F213F8EB4F83E00EFEEBB

The malware utilizes DLL Side-Loading technique by leveraging the legitimate executable (Nv.exe) to load a malicious module
(NvSmartMax.dll), which loads an additional malicious payload (Nv.mp3) to prepare for an actual PlugX payload.

The Comparative Analysis compares different PlugX loader samples to provide the modifications of deployment methods.

PlugX Loader Analysis

This section describes the deployment of the PlugX loader in the specific case of the use of Nv.exe as the DLL side-loader. The chapter ends
with the PlugX payload loaded in memory:

https://docs.google.com/document/d/1-SUo47KAgSi3A4Rbu-ebnQ_EFb_uLZyRfmYyqXdBgaY/edit#heading=h.pmw32qblsr8g
https://cybersecurity.att.com/blogs/labs-research/the-connection-between-the-plugx-chinese-gang-and-the-latest-internet-explo
https://attack.mitre.org/techniques/T1574/002/
https://docs.google.com/document/d/1-SUo47KAgSi3A4Rbu-ebnQ_EFb_uLZyRfmYyqXdBgaY/edit#heading=h.ctha52c238ob

4/15

PlugX Loader Summary

OS Datetime Check

When the legitimate executable Nv.exe first executes and side-loads the PlugX loader module NvSmartMax.dll, the module first checks the OS
date and time with the GetSystemTime method, which then calculates the output with the following formula.

Result = ((OS_Year * 100) + OS_Month) * 100 + OS_Date

The result of the equation is expected to be a hex value, which is then compared with the value 0x1330225, which is equivalent to the date
2012-01-01. The execution of this method enables the NvSmartMax.dll to check if the OS date and time is later than 2012-01-01.

If the date and time is later than 2012-01-01, the DLL execution exits. This checking mechanism is assumed to be for malware’s release
purpose and prohibits its usage before its official release:

OS datetime check

Control Flow Manipulation

After the OS date and time is confirmed to be later than 2012-01-01, the NvSmartMax.dll fetches the address of Nv.exe’s EntryPoint and
proceeds to update the page protection of the EntryPoint by calling the VirtualProtect function. NvSmartMax.dll updates the Nv.exe’s
EntryPoint’s page protection to PAGE_EXECUTE_READWRITE to prepare a modification on the EntryPoint:

https://docs.microsoft.com/en-us/windows/win32/api/sysinfoapi/nf-sysinfoapi-getsystemtime
https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualprotect

5/15

PAGE_EXECUTE_READWRITE

The NvSmartMax.dll module proceeds to patch the EntryPoint to jump into a function at offset 0x1020 in NvSmartMax.dll. The malware
appears to be utilizing control flow manipulation as an obfuscation method against static analysis:

Nv.exe’s entry point patched

Once the control flow enters the EntryPoint of the Nv.exe, execution jumps to the patched address in NvSmartMax.dll. In the target function,
the malware prepares to load the Nv.mp3 by attempting the following steps:

Check the OS date and time again - however, during this check, the verification checks for the year 2012
Prepare the malware file
Allocate memory
Read Nv.mp3 into allocated memory
Update page protection to PAGE_EXECUTE_READ
Execute code located at Nv.mp3

Prepare payload file name

Allocate and enter the payload

InInitialization Order Module List

Once the control flow accesses the Nv.mp3 memory region, it dynamically fetches the loaded module kernel32.dll’s base address from the
InInitializationOrderModuleList within the Process Environment Block (PEB).

PEB is a data structure, which contains process information which is utilized internally by the operating system (OS). PEB is often utilized for
anti-analysis techniques such as NtGlobalFlag check, but it can also be used to fetch necessary module information.

At offset 0x0C within PEB, PEB_LDR_DATA structure is located which stores loaded module information. This structure has three members:
InLoadOrderModuleList, InMemoryOrderModuleList, and InInitializationOrderModuleList:

https://docs.microsoft.com/en-us/windows/win32/api/winternl/ns-winternl-peb
https://www.cybereason.com/blog/research/threat-analysis-report-inside-the-lockbit-arsenal-the-stealbit-exfiltration-tool#deep-dive
https://docs.microsoft.com/en-us/windows/win32/api/winternl/ns-winternl-peb_ldr_data

6/15

Fetching loaded modules from PEB_LDR_DATA

The code located in Nv.mp3 fetches InInitializationOrderModuleList, which includes all the loaded modules in order of initialization. This list
does not include the executable itself, and it only lists the modules:

InitializationOrderModuleList diagram

The Nv.mp3 searches through each element’s BaseDllName, until it finds kernel32.dll and retrieves the BaseAddress of the module.

Once the base address of kernel32.dll is retrieved, Nv.mp3 fetches the function GetProcAddress address in order to load the functions
LoadLibraryA, VirtualAlloc, VirtualFree, and ExitThread, which appears to be loaded via StackString method:

StackString libraries

Once all the function addresses are loaded from kernel32.dll, Nv.mp3 loads the module ntdll.dll by using the LoadLibraryA function which was
retrieved earlier by the GetProcAddress function. From ntdll.dll, Nv.mp3 loads functions RtlDecompressBuffer and memcpy.

Plugx Payload Decompression

https://docs.microsoft.com/en-us/windows/win32/api/libloaderapi/nf-libloaderapi-getprocaddress
https://isc.sans.edu/diary/Stackstrings%2C+type+2/26192
https://docs.microsoft.com/en-us/windows/win32/api/libloaderapi/nf-libloaderapi-loadlibrarya

7/15

The code located at Nv.mp3 level proceeds to decrypt the RC4-encrypted strings which are stored within the payload at offset 0x1529 with size
117KB. The decrypted strings are a compressed version of a PE file, which performs the RtlDecompressBuffer function with LZ decompression
format:

NT_RTL_COMPRESS_API NTSTATUS RtlDecompressBuffer(

 [in] USHORT CompressionFormat,

 [out] PUCHAR UncompressedBuffer,

 [in] ULONG UncompressedBufferSize,

 [in] PUCHAR CompressedBuffer,

 [in] ULONG CompressedBufferSize,

 [out] PULONG FinalUncompressedSize

);

Figure 11: RtlDecompressBuffer Function Parameters

Decompressed Buffer

The decompressed PE file is an actual PlugX itself. However, the control flow does not immediately enter the decompressed payload. Nv.mp3
places the “GULP” signature, which is the backward for “PLUG” in newly allocated memory by VirtualAlloc with
PAGE_EXECUTE_READWRITE protection. It proceeds to allocate each section’s .text, .rdata, .data, and .reloc by using the memcpy function
into allocated memory.

Lastly, it loads necessary libraries and functions dynamically by using LoadLibraryA and GetProcAddress from the import table listed in the
decompressed PE file. Once this preparation is done, it proceeds to enter the PlugX payload:

PlugX payload header

PlugX Loader Flowchart

The following flowchart summarizes the flow of the PlugX loader:

https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/ntifs/nf-ntifs-rtldecompressbuffer
https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualalloc
https://docs.microsoft.com/en-us/cpp/c-runtime-library/reference/memcpy-wmemcpy?view=msvc-170

8/15

Figure 14: PlugX loader flowchart

Comparative Analysis

This comparative analysis analyzes the following six samples listed in the table below. The samples are observed in the past from various
analyses from different reports. As a reference, the samples (executable, module, payload) are identified with codename with prefix px_
followed by the relevant year that the samples were observed according to the external sources:

Codename Filename SHA-256

px_2012 Nv.exe 523D28DF917F9D265CD2C0D38DF

NvSmartMax.dll EAAA7899B37A3B04DCD02AD6D51E83E035BE535F129773621EF0F399A2A98EE3

Nv.mp3 3D64E638F961B922398E2EFAF75504DA007E41EA979F213F8EB4F83E00EFEEBB

px_2014 Gadget.exe 5C859CA16583D660449FB044677C

Sidebar.dll 4B23F8683E184757E8119C8C68063F547F194E1ABD758DCBD4DACF70E3908FC1

Sidebar.dll.doc B2B93C7C4AC82623F74B14FE73F2C3F8E58E3306CC903C5AE71BC355CB5BD069

px_2015 fsguidll.exe 5C5E3201D6343E0536B86CB4AB0

fslapi.dll 96876D24284FF4E4155A78C043C8802421136AFBC202033BF5E80D1053E3833F

fslapi.dll.gui ACDC4987B74FDF7A32DFF87D56C43DF08CCE071B493858E3CE32FCF8D6372837

9/15

px_2019 mcinsupd.exe 507D49186748DD83D808281743A1

mytilus3.dll 9FB33E460CA1654FCC555A6F040288617D9E2EFE626F611B77522606C724B59B

mytilus3.dump 6914E9DE21F5CCE3F5C1457127122C13494ED82E6E2D95A8200A46BDB4CD7075

px_2021 aro.exe 18A98C2D905A1DA1D9D855E8686

aross.dll 9FFFB3894B008D5A54343CCF8395A47ACFE953394FFFE2C58550E444FF20EC47

aro.dat 59BA902871E98934C054649CA582E2A01707998ACC78B2570FEF43DBD10F7B6F

px_2022 RasTls.exe F9EBF6AEB3F0FB0C29BD8F3D652

RasTls.dll 6CD5079A69D9A68029E37F2680F44B7BA71C2B1EECF4894C2A8B293D5F768F10

RasTls.dll.res 37B3FB9AA12277F355BBB334C82B41E4155836CF3A1B83E543CE53DA9D429E2F

Each sample is compared based on the configuration and implementation of the PlugX loader:

Malware’s release date control with OS datetime check
Manipulation of control flow by patching the instructions within the executable for anti-analysis
Dynamically retrieving module kernel32.dll’s base address within payload by utilizing the PEB_LDR_DATA structure
Code obfuscation within the payload for anti-analysis
Decompression preparation of PlugX payload and the format of the payload

OS Datetime

As explained in the previous section, PlugX loader does check that the date is later than a specific value. This behavior has been observed on
three samples, from this list of six samples:

Sample Check count Datetime

px_2012 2 2012-01-01, 2012

px_2014 2 2012-01-01, 2012

px_2015 0 N/A

px_2019 1 2018

px_2021 0 N/A

px_2022 0 N/A

The date and time check happens twice in samples px_2012 and px_2014:

Checks the date before executing the instruction patching function
Checks the year before allocating the PlugX loader payload file

However, in sample px_2019, it only conducts the date and time check for the year 2018. The versioning of this malware also seems to exist,
which is evident from the date and time check of the date of px_2019 being 2018.

Manipulate Control Flow

Sample Patch Instruction Patched Instruction

10/15

px_2012 Yes JMP

px_2014 No N/A

px_2015 Yes JMP

px_2019 Yes PUSH/RET

px_2021 No N/A

px_2022 Yes PUSH/RET

Manipulation of the control flow by patching the instructions with JMP is utilized with the samples, however the samples px_2019 and px_2022
are patched with PUSH and RET instructions. The PUSH instruction “pushes” the relevant function address onto the stack and the RET
instruction moves the control flow into the pushed address.

Samples px_2014 and px_2021 did not patch instructions to manipulate the control flow. It utilized legitimate exported function names of the
legitimate DLL which gets called by the legitimate executable.

PEB_LDR_DATA

Sample PEB_LDR_DATA

px_2012 InInitializationOrderModuleList

px_2014 InInitializationOrderModuleList

px_2015 InInitializationOrderModuleList

px_2019 InInitializationOrderModuleList

px_2021 InMemoryOrderModuleList

px_2022 InInitializationOrderModuleList

Aside from InitializationOrderModuleList, sample px_2021 utilized InMemoryOrderModuleList. InMemoryOrderModuleList lists loaded modules
according to the memory placement. The difference from InInitializationOrderModuleList is that InMemoryOrderModuleList includes the
executable within the list.

Payload Obfuscation

Sample Usage of StackString Usage of Code Obfuscation

px_2012 Yes N/A

px_2014 Yes Yes

px_2015 Yes Yes

px_2019 Yes; Places one characters at a time N/A

px_2021 Yes; Places one characters at a time N/A

px_2022 Yes; Some, one character at a time, some in bulk. N/A

11/15

The usage of StackString on the functions which need to be loaded dynamically appears to be consistent throughout the samples. However, a
slight update is placed in px_2019, px_2021 and px_2022, which is placing one character at a time onto a Stack:

Fetching VirtualProtect

Samples px_2014 and px_2015 also have additional code obfuscation, which is an encryption on the function that prepares the PlugX payload.
This function is the main component of this deployment payload and this is an additional layer of anti-analysis:

Code deobfuscation in px_2015

Decompression and Payload Deployment

Sample Decompression Format Decryption of compressed data Decompressed Data Format Payload Header

px_2012 LZ Yes PE File with PE signatures GULP

px_2014 LZ Yes PE File with PE signatures GULP

px_2015 LZ Yes PE File without PE signatures XV

px_2019 LZ Yes PE File with PE signatures GULP

px_2021 LZ Yes PE File without PE signatures ROHT

px_2022 LZ Yes PE File with PE signatures .PE

Decompression of PlugX payload is consistent across the samples, which decrypts the LZ compressed data. However, the decompressed
payload for the samples px_2015 and px_2021 was not in complete PE file format. It was missing traditional PE signatures such as “MZ…This
program cannot be run in DOS mode”. The relevant section information was still intact, which was needed for the PlugX loader to allocate
necessary sections to the new memory region.

This update only removed portions of the PE header. However, it contained necessary information for the code to function. This update
prevents analysts from simply dumping the decompressed payload and conducting further analysis, since it is not in proper PE format.

Sample px_2015, px_2021 and px_2022 also had different headers once the decompressed payload was allocated into
PAGE_EXECUTE_READWRITE memory region:

px_2015: XV - Roman numeral for 15.
px_2021: ROHT - Backward for “THOR”
px_2022: .PE - Portable Executable

12/15

The differences in the header may be evidence of the versioning of PlugX as well.

Core Deployment Methods Are Consistent Across Samples

There are several slight detail differences while comparing samples, however there appears to be no major updates in the past decade
regarding the deployment method of this malware.

Although there were no major updates, the malware loader appears to have version management. This is evident from OS date and time
check as well as the differences in payload headers while deploying the actual PlugX.

The lack of a major deployment method is also believed to be due to the use of the DLL Side-Loading technique. The DLL Side-Loading
technique itself gives the threat actors various options on which legitimate executables to side-load the PlugX with. This evasion technique
already creates various combinations and an update on deployment methods deemed unnecessary

Detection and Prevention

Cybereason Defense Platform

The Cybereason Defense Platform is able to detect and prevent infections with the PlugX loader using multi-layer protection that detects and
blocks malware with threat intelligence, machine learning, anti-ransomware and Next-Gen Antivirus (NGAV) capabilities:

MalOp generation based from threat intelligence as seen in the Cybereason Defense Platform

Cybereason GSOC MDR

The Cybereason GSOC recommends the following:

Enable both the Signature and Artificial Intelligence modes on the Cybereason NGAV, and enable the Detect and Prevent modes of this
feature.
Handle files originating from external sources (email, web browsing) with caution.
To hunt proactively, use the Investigation screen in the Cybereason Defense Platform and the queries in the Hunting Queries section to
search for machines that are potentially infected with PlugX. Based on the search results, take further remediation actions, such as
isolating the infected machines and deleting the payload file.

Cybereason is dedicated to teaming with defenders to end cyber attacks from endpoints to the enterprise to everywhere. Schedule a demo
today to learn how your organization can benefit from an operation-centric approach to security.

MITRE ATT&CK MAPPING

https://www.cybereason.com/platform
https://www.cybereason.com/request-a-demo
https://www.cybereason.com/blog/the-cybereason-malop-achieving-operation-centric-security

13/15

Execution Persistence Defense Evasion Discovery Collection Command and
Control

Command and
Scripting Interpreter

Boot or logon
Autostart Execution

Deobfuscate/Decode Files
or Information

File and Directory
Discovery

Input
Capture

Application Layer
Control

Native API Create or Modify
System Process

Hide Artifacts Network Share Discovery Screen
Capture

Encrypted
Channel

 Hijack Execution Flow Process Discovery Ingress Tool
Transfer

 Masquerading Query Registry Non-Application
Layer Protocol

 Modify Registry System Network
Connections Discovery

 Web Service

 Obfuscated Files or
Information

 Trusted Developer Utilities
Proxy Execution

 Virtualization/Sandbox
Evasion

Indicators Of Compromise For PlugX Malware

https://attack.mitre.org/techniques/T1059/
https://attack.mitre.org/techniques/T1547/
https://attack.mitre.org/techniques/T1140/
https://attack.mitre.org/techniques/T1083/
https://attack.mitre.org/techniques/T1056/
https://attack.mitre.org/techniques/T1071/
https://attack.mitre.org/techniques/T1106/
https://attack.mitre.org/techniques/T1543/
https://attack.mitre.org/techniques/T1564/
https://attack.mitre.org/techniques/T1135/
https://attack.mitre.org/techniques/T1113/
https://attack.mitre.org/techniques/T1573/
https://attack.mitre.org/techniques/T1574/
https://attack.mitre.org/techniques/T1057/
https://attack.mitre.org/techniques/T1105/
https://attack.mitre.org/techniques/T1036/
https://attack.mitre.org/techniques/T1012/
https://attack.mitre.org/techniques/T1095/
https://attack.mitre.org/techniques/T1112/
https://attack.mitre.org/techniques/T1049/
https://attack.mitre.org/techniques/T1102/
https://attack.mitre.org/techniques/T1027/
https://attack.mitre.org/techniques/T1127/
https://attack.mitre.org/techniques/T1497/

14/15

Executables SHA-256 hash:

EAAA7899B37A3B04DCD02AD6D51E83E035BE535F129773621EF0F399A2A98EE3

SHA-256 hash:

3D64E638F961B922398E2EFAF75504DA007E41EA979F213F8EB4F83E00EFEEBB

SHA-256 hash:

4B23F8683E184757E8119C8C68063F547F194E1ABD758DCBD4DACF70E3908FC1

SHA-256 hash:

B2B93C7C4AC82623F74B14FE73F2C3F8E58E3306CC903C5AE71BC355CB5BD069

SHA-256 hash:

96876D24284FF4E4155A78C043C8802421136AFBC202033BF5E80D1053E3833F

SHA-256 hash:

ACDC4987B74FDF7A32DFF87D56C43DF08CCE071B493858E3CE32FCF8D6372837

SHA-256 hash:

9FB33E460CA1654FCC555A6F040288617D9E2EFE626F611B77522606C724B59B

SHA-256 hash:

6914E9DE21F5CCE3F5C1457127122C13494ED82E6E2D95A8200A46BDB4CD7075

SHA-256 hash:

9FFFB3894B008D5A54343CCF8395A47ACFE953394FFFE2C58550E444FF20EC47

SHA-256 hash:

59BA902871E98934C054649CA582E2A01707998ACC78B2570FEF43DBD10F7B6F

SHA-256 hash:

6CD5079A69D9A68029E37F2680F44B7BA71C2B1EECF4894C2A8B293D5F768F10

SHA-256 hash:

37B3FB9AA12277F355BBB334C82B41E4155836CF3A1B83E543CE53DA9D429E2F

About The Researchers

Kotaro Ogino, Senior Security Analyst, Cybereason Global SOC

Kotaro Ogino is a Senior Security Analyst with the Cybereason Global SOC team. He is involved in threat hunting, administration of Security
Orchestration, Automation, and Response (SOAR) systems, and Extended Detection and Response (XDR). Kotaro has a bachelor of science
degree in information and computer science.

Yuki Shibuya, Senior Security Analyst, Cybereason Global SOC

Yuki Shibuya is a Senior Security Analyst with the Cybereason Global SOC team. He is tasked with triaging critical incidents, threat hunting
and malware research. He has a master degree of information systems security and is interested in malware research and penetration testing.

Big thanks to Aleksandar Milenkoski for advising the research!

15/15

About the Author

Cybereason Global SOC Team

The Cybereason Global SOC Team delivers 24/7 Managed Detection and Response services to customers on every continent. Led by
cybersecurity experts with experience working for government, the military and multiple industry verticals, the Cybereason Global SOC Team
continuously hunts for the most sophisticated and pervasive threats to support our mission to end cyberattacks on the endpoint, across the
enterprise, and everywhere the battle moves.

All Posts by Cybereason Global SOC Team

https://www.cybereason.com/blog/authors/cybereason-global-soc-team

