
1/35

Chuong Dong 3 September 2022

PLAY Ransomware
chuongdong.com/reverse engineering/2022/09/03/PLAYRansomware/

Reverse Engineering · 03 Sep 2022

Contents

PLAY CTI

PLAY Ransomware (aka PlayCrypt) campaigns have been active since at least mid-July 2022. Up to five
ransom notes of PLAY Ransomware have been uploaded to VirusTotal so far. In mid-August 2022, the first
public case of PLAY Ransomware was announced when a journalist uncovered that Argentina’s Judiciary of
Córdoba was victimized.

The operators have been known to use common big game hunting (BGH) tactics, such as SystemBC RAT for
persistence and Cobalt Strike for post-compromise tactics. They have also been known to use custom
PowerShell scripts and AdFind for enumeration, WinPEAS for privilege escalation, and RDP or SMB for lateral
movement while inside a target network.

The group appends “.play” to encrypted files and its ransom note only includes the word “PLAY” and an email
address to communicate with the threat actors. The threat actors have been known to exfiltrate files using
WinSCP but are not known to have a Tor data leak site like many other BGH ransomware campaigns.

Huge thanks to my man Will Thomas for this information!

Overview

This is my analysis for PLAY Ransomware. I’ll be solely focusing on its anti-analysis and encryption features.
There are a few other features such as DLL injection and networking that will not be covered in this analysis.

Despite its simplicity, PLAY is heavily obfuscated with a lot of unique tricks that have not been used by any
ransomware that comes before.

The malware uses the generic RSA-AES hybrid-cryptosystem to encrypt files. PLAY’s execution speed is
pretty average since it uses a depth-first traversal algorithm to iterate through the file system. Despite
launching a separate thread to encrypt each file, this recursive traversal hinders its performance significantly.

IOCS

The analyzed sample is a 32-bit Windows executable.

MD5: 223eff1610b432a1f1aa06c60bd7b9a6

SHA256: 006ae41910887f0811a3ba2868ef9576bbd265216554850112319af878f06e55

Sample: MalwareBazaar

https://chuongdong.com/reverse%20engineering/2022/09/03/PLAYRansomware/
http://10.10.0.46/categories/#reverse%20engineering
https://twitter.com/BushidoToken
https://bazaar.abuse.ch/sample/006ae41910887f0811a3ba2868ef9576bbd265216554850112319af878f06e55/

2/35

Figure 2: VirusTotal Result.

Ransom Note

The content of the default ransom note is stored as an encoded string in PLAY’s executable, which contains
the string “PLAY” as well as an email address for the victim to contact the threat actor.

PLAY’s ransom note filename is “ReadMe.txt”.

Figure 3: PLAY’s Ransom Note.

Anti Analysis

Anti-Analysis: Return-Oriented Programming

Upon opening the executable in IDA, we can see that most of the assembly code does not make sense and is
not too meaningful. An example can be seen from WinMain, where there is no clear return statement with
garbage bytes popping up among valid code.

3/35

Figure 3: Anti-decompiling Feature in WinMain.

As shown in the disassembled code above, the control flow in WinMain calls sub_4142F5, and upon return,
edi is popped and we run into the garbage bytes at 0x4142F2. As a result, IDA fails to decompile this code
properly.

Figure 4: Unpatched WinMain Decompiled Code.

Examine sub_4142F5, we see that the value stored at the stack pointer is immediately added by 0x35 before a
retn instruction is executed.

We know that the call instruction basically contains two atomic instructions, one pushing the address of the
next instruction (after the call instruction) onto the stack and one jumping to the subroutine being called. When
the code enter sub_4142F5, the return address (in this case, it is 0x4142F1) is stored at the stack pointer on
top of the stack. The subroutine adds 0x35 to this, changing the return address to 0x414326, and retn to jump
to it.

Knowing this, we can scroll down and try to disassembly the bytes at 0x414326 to get the next part of the
WinMain code.

4/35

Figure 5: Disassembled Hidden Code.

Using this return-oriented programming approach to divert the regular control flow of the program, PLAY is able
to bypass most static analysis through IDA’s disassembly and decompilation.

We can also quickly see that at 0x41433A, there is another call instruction followed by some garbage bytes.
This means that the obfuscation occurs multiple times in the code.

My approached to this was to programmatically patch all these call instructions up. A simple patch used in my
analysis is calculating the jump (the value added to the return address) and replacing the call instruction with a
jump instruction to the target address.

To scan for all of this obfuscated code, I use 3 different (but quite similar) regexes(is this a word?) in IDAPython
to find and patch them. You can find my patching script here.

After patching, the WinMain code looks something like this.

https://github.com/cdong1012/IDAPython-Malware-Scripts/blob/master/PLAY/script.py

5/35

Figure 6: Patched WinMain.

A little underwhelming, but now we have successfully deobfuscated the code, get a meaningful call instruction
to sub_415110 and a proper returning statement in the decompiled code!

Anti-Analysis: Garbage Code

Beside control flow obfuscation, PLAY also litters its code with random moving instructions that don’t contribute
to the main functionality of the program.

6/35

Figure 7, 8: Garbage Code.

This makes the decompiled code looks a lot messier, and it is not simple to patch all of these ups since valid
code is usually stuffed in between of these garbage code. Patching by jumping over them would sometime
break the program itself.

The only solution I have for this is to mentally ignore them while analyzing.

Anti-Analysis: API Hashing

Similar to most modern ransomware, PLAY obfuscates its API call through API name hashing. The API
resolving function takes in a target hash and a DLL address.

7/35

It walks the DLL’s export table to get the name of the exports. For each API name, the malware calls
sub_40F580 with the name as the parameter and adds 0x4E986790 to the result to form the final hash. This
hash is compared with the target hash, and if they match, the address of the API is returned.

Figure 9: API Hashing.

As shown below, the hashing function contains a lot of unique constants, which allows us to quickly look up that
it is xxHash32. With this, we know that the full hashing algorithm is xxHash32 with the seed of 1 and the result
added to 0x4E986790.

8/35

Figure 10: xxHash32 Code.

From here, I developed an IDAPython script to automatically resolve all APIs that the malware uses, which you
can find here.

https://github.com/cdong1012/IDAPython-Malware-Scripts/blob/master/PLAY/API_resolve.py

9/35

Figure 11: Resolving APIs.

Anti-Analysis: String Encryption

Most important strings in PLAY are encoded in memory. The decoding algorithm does not seem to be too clear,
so I just dynamic-ed my way through these. School is whooping my ass right now, so I try to avoid analyzing
stuff whenever I can.

Figure 12: PLAY’s String Decryption.

Static Code Analysis

Command-Line Arguments

10/35

PLAY can run with or without command-line arguments.

Below is the list of arguments that can be supplied by the operator.

Argument Description

-mc Execute normal functionality. Same as no command-line
argument.

-d <drive path> Encrypt a specific drive

-ip <shared resource path> <username>
<password>

Encrypt network shared resource

-d <path> Encrypt a specific folder/file

Figure 13: Checking Command-Line Arguments.

Crypto Initialization

Prior to encryption, PLAY initializes and retrieves cryptographic algorithm providers.

First, it calls BCryptOpenAlgorithmProvider to load and initialize a CNG provider for random number
generation and BCryptImportKeyPair to import its hard-coded RSA public key.

11/35

Figure 14: Initializing & Importing Cryptographic Key.

Next, the malware calls VirtualAlloc to allocate a buffer to store 128 file structures used for encrypting files.
The structure’s size is 0x48 bytes with its content listed below.

 struct play_file_struct
 {
 int struct_index;
 char *filename;
 int initialized_flag;
 int padding1;
 char *file_path;
 int file_marker[2];
 int chunk_count;
 int chaining_mode_flag;
 DWORD large_file_flag;
 HANDLE AES_provider_handle;
 HANDLE bcrypt_RNG_provider;
 HANDLE RSA_pub_key_handle;
 HANDLE file_handle;
 LARGE_INTEGER file_size;
 DWORD file_data_buffer;
 DWORD padding2;
 };

Field Description

struct_index Index of the structure in the global structure list

filename The name of the file being processed

initialized_flag Set to 1 when the structure is populated with a file to encrypt

file_path Path of the file being processed

file_marker Address of constants to write to file footer marking that it’s been encrypted

chunk_count Number of chunks to encrypt in the file

chaining_mode_flag Set to 1 to use chaining mode GCM, 0 to use chaining mode CBC

large_file_flag Set to 1 when the processed file is large

12/35

Field Description

AES_provider_handle AES algorithm provider handle

bcrypt_RNG_provider RNG algorithm provider handle

RSA_pub_key_handle RSA public key handle

file_handle File handle

file_size File size

file_data_buffer Address to virtual buffer to read file data in

PLAY iterates through this global structure list and populates each structure’s field. First, it sets the encrypted
file markers in the struct to the following hard-coded values, which will later be written to the end of each
encrypted file.

Figure 15: Encrypted File Markers.

13/35

Then, the malware sets the RNG and AES provider handles as well as the RSA public key handle to the
structure. These will later be used to generate random AES key and IV to encrypt files.

Figure 16: Encrypted File Markers.

Check Existing Drives

Before iterating through all drives to encrypt, PLAY enumerates all volumes on the victim’s system by calling
FindFirstVolumeW and FindNextVolumeW. If the volume is not a CD-ROM drive or a RAM disk, the malware
calls GetVolumePathNamesForVolumeNameW to retrieve a list of drive letters and mounted folder paths for
the specified volume.

If this list is empty, which means the volume is not mounted to any folder, PLAY calls GetDiskFreeSpaceExW
to check if the volume’s free space is greater than 0x40000000 bytes. If it is, the malware calls
SetVolumeMountPointW to try mounting the volume to a drive path.

14/35

Figure 17: Enumerating Volumes.

For each volume to be mounted, PLAY iterates through all characters to find a drive name that it can call
SetVolumeMountPointW to mount the volume to.

15/35

Figure 18: Setting Mount Point for Volume.

Using the same trick to iterates through all possible drive names, PLAY calls GetDriveTypeW to check the
type of each drive.

It avoids encrypting CD-ROM drive or RAM disk. If it’s a remote drive, the malware calls
WNetGetUniversalNameW to retrieve the universal name of the network drive.

16/35

Figure 19: Processing Network Drive.

The final drive path to be encrypted is set to the network drive’s universal name or connection name,
depending on which exists.

Figure 20: Retrieving Network Drive Name.

If the drive is a regular drive, its name remains the same. Each valid drive has its name added to the list of
drive names to be traversed and encrypted.

Recursive Traversal

To begin traversing drives, PLAY iterates through the list of drive names above and spawns a thread with
CreateThread to traverse each drive on the system.

17/35

Figure 21: Spawning Threads to Traverse Drives.

Before processing a drive, the malware extracts the following ransom note content before dropping it into the
drive folder. This is the only place where the ransom note is dropped instead of in every folder like other
ransomware.

PLAY
teilightomemaucd@gmx.com

18/35

Figure 22, 23: Dropping Ransom Note in Drive.

To begin enumerating, the malware calls FindFirstFileW and FindNextFileW to enumerate subfolders and
files. It specifically checks to avoid processing the current and parent directory paths ”.” and ”..”.

19/35

Figure 24: Enumerating Files.

If the file encountered is a directory, the malware checks to avoid encrypting the “Windows” directory. After
that, it concatenates the subdirectory’s name to the current file find path and recursively traverse through the
subdirectory by calling the traversal function on it.

20/35

Figure 25: Recursively Traverse Subdirectory.

If the file encountered is a regular file, the malware checks its name as well as its size to see if it’s valid for
being encrypted.

Figure 26: Checking Files.

If its name/extension is in the list below or if its size is less than 6, PLAY avoids encrypting it.

21/35

.exe, .dll, .lnk, .sys, readme.txt, bootmgr, .msi, .PLAY, ReadMe.txt

Figure 27: Checking Filename & Extension.

PLAY also performs an additional check to see if the file extension is that of typical large files to determine its
encryption type later. The file is classified as large if its extension is in the list below.

mdf, ndf, ldf, frm

Populating File Structure

For each file to be encrypted, PLAY first populates the file structure with the appropriate data about the file.

22/35

First, it starts iterating through the global file structure list to check if there is an available structure to process
the file.

Figure 28: Checking for Available File Structure.

If there is no available structure in the global list, PLAY calls Sleep to have the thread sleep and rechecks until
it finds one.

Once the structure is found, the malware sets its initialized_flag field to 1 and the filename field to the target
filename. It also populates other fields such as the file size, large file flag, and file handle.

23/35

Figure 29, 30: Populating A File Structure To Encrypt File.

Child Thread Encryption

After populating a file structure for a specific file, PLAY spawns a thread to begin encrypting a file.

If the file is not classified as a large file, the malware calculates how many chunks it needs to encrypt
depending on the file size. The number of encrypted chunks is 2 if the file size is less than or equal to 0x3fffffff
bytes, 3 if the file size is less than or equal to 0x27fffffff bytes and greater than 0x3fffffff bytes, and 0 if the file
size is equal to 0x280000000. If the file size is greater than 0x280000000 bytes, then the number of encrypted
chunks is 5.

24/35

Figure 32: Calculating Encrypted Chunks.

The default chaining mode is set to AES-GCM. However, if the file size is greater than 4025 times the
encrypted size (which is the chunk size 0x100000 multiplied by the chunk count), the chaining mode is set to
AES-CBC.

This is because AES-GCM has worst performance compared to AES-CBC. According to this post, AES-GCM
is a more secure cipher than AES-CBC, because AES-CBC, operates by XOR’ing (eXclusive OR) each block
with the previous block and cannot be written in parallel. This affects performance due to the complex

https://helpdesk.privateinternetaccess.com/kb/articles/what-s-the-difference-between-aes-cbc-and-aes-gcm#:~:text=AES%2DGCM%20is%20a%20more,mathematics%20involved%20requiring%20serial%20encryption.

25/35

mathematics involved requiring serial encryption.

For file encryption, PLAY now introduces a new structure that represents the file footer content that gets written
at each encrypted file.

It took me an eternity to fully understand and resolve this structure’s fields, which reminds me I’m probably just
washed up at malware analysis now rip.

struct file_footer_struct
{
 byte footer_marker_head[16];
 WORD last_chunk_size;
 WORD total_chunk_count;
 WORD large_file_flag;
 WORD small_file_flag;
 DWORD default_chunk_size;
 DWORD footer_marker_tail;
 QWORD encrypted_chunk_count;
 byte encrypted_symmetric_key[1024];
};

Field Description

footer_marker_head First index in the file_marker of file struct

last_chunk_size Size of the last chunk at the end of the file

total_chunk_count Total number of chunks to be encrypted

large_file_flag Set to 1 if file is larger than 0x500000

small_file_flag Set to 1 when file size high is less than 0

chunk_count Number of chunks to encrypt in the file

default_chunk_size 0x100000 bytes

footer_marker_tail xxHash32 hash of footer_marker_head. Also the second index in the
file_marker of file struct

encrypted_chunk_count Total number of chunks successfully encrypted

encrypted_symmetric_key encrypted AES key BLOB

First, PLAY reads 0x428 bytes at the end of the file to check the file footer. If the file size is smaller than 0x428
bytes, the file is guaranteed to not be encrypted, so the malware moves to encrypt it immediately.

If the last 0x428 bytes is read successfully, the malware then checks if the xxHash32 hash of the footer marker
head is equal to the footer marker tail. If they are, then the file footer is confirmed to be valid, and the file is
already encrypted.

If this is not the case, PLAY checks each DWORD in the footer marker head and compare it to the hard-coded
values in the file structure. This is to check if the file footer is not encrypted, if the file footer is written but it has
not been encrypted, or if the file is already encrypted.

26/35

Figure 33, 34: Checking File Footer for Encryption State.

File Encryption

To encrypt a file from scratch, PLAY first generates an AES key to encrypt the file with.

27/35

It calls BCryptGenRandom to generate a random 0x20-byte buffer. Depending on the chaining mode specified
in the file structure, the malware calls BCryptSetProperty to set the chaining properly for its AES provider
handle.

Next, BCryptGenerateSymmetricKey is called on the randomly generated 0x20-byte buffer to generate the
AES key handle.

Figure 35, 36, 37: Generating AES Key Handle.

Next, to store the AES key in the file footer struct, PLAY calls BCryptExportKey to export the AES key into a
0x230-byte key blob. It also calls BCryptGenRandom to randomly generate a 0x10-byte IV and appends it
after the key blob.

28/35

Figure 38, 39: Exporting AES Key Blob & IV.

Then, it calls BCryptEncrypt to encrypt the exported key blob and the IV using the RSA public key handle and
writes the encrypted output to into a 0x400-byte buffer. This buffer is then copied to the
encrypted_symmetric_key field of the file footer structure.

Figure 40: Encrypting AES Key Blob with RSA Public Key.

PLAY then populates the file footer’s other fields such as footer_marker_head, footer_marker_tail,
small_file_flag, and large_file_flag with existing information from the file structure. The default chunk size is
also set to 0x100000 bytes.

29/35

Figure 41: Populating File Footer Structure.

Once the file footer is fully populated, the malware calls SetFilePointerEx to move the file pointer to the end of
the file and calls WriteFile to write the structure there.

30/35

Figure 42: Writing File Footer Structure To End Of File.

If the file size is greater than 0x500000 bytes, PLAY only encrypts the first and last chunk in the file.

31/35

Figure 43, 44: Encrypting Large File’s First & Last Chunk.

32/35

The encrypting function consists of a ReadFile call to read the chunk data in the buffer in the file structure, a
BCryptEncrypt call to encrypt the file using the AES key handle and the generated IV. After encryption is
finished, the malware calls WriteFile to write the encrypted output to the file as well as the index of the chunk
being encrypted in the file footer. This is potentially used to keep track of how many chunks have been
encrypted in the case where corruption or interruption occurs.

Figure 45, 46, 47: Data Encrypting Function.

If the file size is smaller than the default chunk size of 0x100000 bytes, the malware encrypts the entire file.

33/35

Figure 48: Encrypting Small File Whole.

If the file size is somewhere in between 0x100000 and 0x500000, the malware encrypts it in 0x100000-byte
chunks until it reaches the end of the file.

34/35

Figure 49: Encrypting Mid-Size File.

Finally, after the file is encrypted, the malware changes its extension to .PLAY by calling MoveFileW.

Figure 50: Appending Encrypted Extension.

35/35

There is a small bug in the code that it always changes the extension of a file despite if encryption is successful
or not due to the return value of the file encrypting function.

Figure 51: Encrypting Mid Size File.

References

https://www.bleepingcomputer.com/news/security/argentinas-judiciary-of-c-rdoba-hit-by-play-ransomware-
attack/

https://helpdesk.privateinternetaccess.com/kb/articles/what-s-the-difference-between-aes-cbc-and-aes-
gcm#:~:text=AES%2DGCM%20is%20a%20more,mathematics%20involved%20requiring%20serial%20encryption.

