
1/25

ANY.RUN August 30, 2022

Raccoon Stealer 2.0 Malware analysis
any.run/cybersecurity-blog/raccoon-stealer-v2-malware-analysis/

Raccoon Stealer was one of the most mentioned malware in 2019. Cybercriminals sold this simple but versatile info
stealer as a MaaS just for $75 per week and $200 per month. And it successfully attacked numerous systems. But in
March 2022, threat authors shut down their operations.

In July 2022, a new variant of this malware was released. And now Raccoon Stealer 2.0 has gone viral and got a
new name in the wild – RecordBreaker. In this article, we will analyze several samples of the info stealer to find out
its techniques and what data it collects.

What is Raccoon Stealer?

Raccoon Stealer is a kind of malware that steals various data from an infected computer. It’s quite a basic malware,
but hackers who provide excellent service and simple navigation have made Raccoon popular.

Raccoon malwareRaccoon malware
The malware’s owners are interested in the following data:

Login/password pairs from various services saved in browsers
Cookies from different browsers
Bank data
Cryptocurrency wallets
Credit card information
Arbitrary files, which can be of interest to intruders

Raccoon – a sample overview

In the process of malware analysis, we worked with the following samples:

sha-256

9ee50e94a731872a74f47780317850ae2b9fae9d6c53a957ed7187173feb4f42

0142baf3e69fe93e0151a1b5719c90df8e2adca4301c3aa255dd19e778d84edf

022432f770bf0e7c5260100fcde2ec7c49f68716751fd7d8b9e113bf06167e03

048c0113233ddc1250c269c74c9c9b8e9ad3e4dae3533ff0412d02b06bdf4059

263c18c86071d085c69f2096460c6b418ae414d3ea92c0c2e75ef7cb47bbe693

27e02b973771d43531c97eb5d3fb662f9247e85c4135fe4c030587a8dea72577

494ab44bb96537fc8a3e832e3cf032b0599501f96a682205bc46d9b7744d52ab

f26f5331588cb62a97d44ce55303eb81ef21cf563e2c604fe06b06d97760f544

fcdc29b4d9cb808c178954d08c53c0519970fe585b850204655e44c1a901c4de

https://any.run/cybersecurity-blog/raccoon-stealer-v2-malware-analysis/
https://any.run/malware-trends/raccoon

2/25

Raccoon malware overview in DiE
 MITRE ATT&CK Matrix produced by ANY.RUN Sandbox:

Challenges during the malware analysis of Raccoon stealer v2

Raccoon stealer v.2 got extremely famous, and, of course, we decided to look into it closely. And here, we have
faced several challenges:

When we first started our malware analysis, we immediately got a sample
9ee50e94a731872a74f4778037850ae2b9fae9d6c53a957ed7187173feb4f4, which we were unable to run in our
sandbox. This example was packed and immediately finished execution when we tried to run it in a virtual
environment. So, our team decided to investigate the sandbox evasion mechanisms.

https://any.run/?utm_source=anyrunblog&utm_medium=article&utm_content=raccoon_stealer

3/25

During the sample’s reverse-engineering, we encountered another issue: the packer detects the presence of Anti-
Anti-Debugger and terminates before checking the execution’s environment. In our case, we used TitanHide.

When running the program under a debugger, the NtQueryInformationProcess call causes the ProcessInformation
variable to be overwritten. The packer compares the random value written to this variable earlier with the value after
the call. If they are different, it stops execution.

The challenge was solved with the following script for x64dbg:

bphc
run
findallmem 0, #e91727f5ff#
bph ref.addr(0)+5
run
$p = [esp+0x10]
$val = [p]
log "secret:{0}",$val
bphc
sti
sti
mov [$p], $val
ret

It turned out that the bug was known but had not been fixed at the moment of our research. After the report, it was
fixed. Therefore, this Anti-debugger detection method no longer works.

But this script didn’t solve the problem of running in the virtual environment without a debugger. So we continued our
malware analysis and came across an interesting piece of code:

As it turned out, this piece of code is executed differently in virtual and real environments. An exception occurs after
the IF flag is set in the flag register with the popfd command. If we run in a virtual environment, the exception handler
pre-installed by the malware considers that the exception occurred on the “call” instruction.

However, when running on a real machine, the exception occurs on the “nop” instruction. Thus, by comparing the
addresses of the exceptions that occurred, the malware determines the presence of a virtual environment.

Bypassing this check is enough to decrease the EIP register value by one when entering the exception handler. After
that, the malware is successfully launched.

After making the necessary corrections on our end, this detection method no longer works in ANY.RUN sandbox.

Execution process of RecordBreaker malware

Loading WinAPI libraries, getting addresses of used functions

First, Raccoon dynamically loads WinAPI libraries using kernel32.dll!LoadLibraryW and gets addresses of WinAPI
functions using kernel32.dll!GetProcAddress

https://github.com/mrexodia/TitanHide/issues/70
https://github.com/mrexodia/TitanHide/commit/6a5a68a2447ad9454adfcbd9390ec05b9dcef2d6
https://any.run/?utm_source=anyrunblog&utm_medium=article&utm_content=raccoon_stealer

4/25

Raccoon is dynamically loading needed libraries and getting WinAPI imports addresses

Decryption of strings

Depending on the sample, the algorithm for encrypting strings can be:

encrypted with RC4 algorithm, then encoded into the Base64 format
XOR encrypted with a random key, e.g.:

Raccoon Stealer is using XOR

strings encryption
 encryption may not be applied at all

Examples of decrypted strings:

logins.json

\autofill.txt

\cookies.txt

\passwords.txt

formhistory.sqlite

…

C2 servers decryption

The next malware step is to decrypt C&C servers. There can be several up to five ones. As in the case of strings, the
encryption algorithm of C&C servers may vary depending on a sample.

From all the samples we have reviewed, at least two methods have been identified:

Encryption using the RC4 algorithm with further recoding to Base64:

Raccoonstealer is using RC4 -> Base64 encryption chain for C2sRaccoonstealer is using RC4 -> Base64
encryption chain for C2s

5/25

Encryption with XOR:

Raccoon malware is using

XOR C2s encryption

Raccoon termination triggers

At this stage the malware has not executed any malicious code yet. There are certain triggers that may cause the
program to terminate without executing any other actions.

The user’s locale is checked (in some samples, certain locales corresponding to the locales of CIS countries cause
Raccoon to terminate)

Raccoon is checking for specific

user locale
 A check is made to see if the malware has been rerun, in parallel with another sample running on this machine.

RecordBreaker tries to open a particular mutex (the value of the mutex varies in different samples). If it succeeds, it
terminates immediately. If not, it creates the mutex itself.

Raccoon v2 is

checking for a specific mutex
 We can see the result in ANY.RUN: the mutex was created.

https://any.run/?utm_source=anyrunblog&utm_medium=article&utm_content=raccoon_stealer

6/25

Mutex operations are captured by ANY.RUN interactive sandbox

Privilege Level Check

After creating a mutex, the malware performs a System/LocalSystem level privilege check using
Advapi32.dll!GetTokenInformation and Advapi32.dll!ConvertSidToStringSidW comparing StringSid with L “S-1-5-18”:

Raccoonstealer 2.0 is checking for System/LocalSystem privileges

Process enumeration

If the check shows that RecordBreaker has the privilege level it needs, it starts enumerating processes using the
TlHelp32 API (kernel32.dll!CreateToolhelp32Snapshot to capture processes and kernel32.dll!Process32First /
kernel32.dll!Process32Next). In our samples this information isn’t collected or processed in any way.

7/25

Raccoon malware is

enumerating currently running processes

Connecting to C2 servers

The next important step is to attempt to connect to one of the C&C servers. To do this, Raccoon stealer generates a
string like:

machineId={machineguid}|{username}&configId={c2_key}

Then the program tries to send a POST request with the string to every possible server.

Raccoon Stealer is trying to connect to C2s
 An example of a connection request that was intercepted by the HTTP MITM proxy feature in ANY.RUN sandbox:

Raccoon info stealer C2 connection requestRaccoon info stealer C2 connection request
 It is important to note that if there are multiple C&C servers, the malware will only accept commands from the one it

was able to connect to first. In response to the above request, the server will send the malware a configuration. If
RecordBreaker fails to connect to any of the C&C servers, it will stop its work.

Description of the malware configuration structure

Configuration lines are divided into prefixes, each tells the malware how to interpret a particular line. Here is a table
describing these prefixes and what they do:

https://any.run/?utm_source=anyrunblog&utm_medium=article&utm_content=raccoon_stealer

8/25

Prefix Example Prefix’s function

libs_ libs_nss3:http://{HOSTADDR}/{RANDOM_STRING}/nss3.dll
 libs_msvcp140:http://{HOSTADDR}/{RANDOM_STRING}/msvcp140.dll

libs_vcruntime140:http://{HOSTADDR}/{RANDOM_STRING}/vcruntime140.dll

Legitimate libraries
necessary for malware
work

grbr_ grbr_dekstop:%USERPROFILE%\Desktop\|*.txt, *.doc, *pdf*|-|5|1|0|files

 grbr_documents:%USERPROFILE%\Documents\|*.txt, *.doc, *pdf*|-
|5|1|0|files

 grbr_downloads:%USERPROFILE%\Downloads\|*.txt, *.doc, *pdf*|-|5|1|0|files

Targeted arbitrary files
from custom
directories

wlts_ wlts_exodus:Exodus;26;exodus;*;*partitio*,*cache*,*dictionar*
 wlts_atomic:Atomic;26;atomic;*;*cache*,*IndexedDB*

 wlts_jaxxl:JaxxLiberty;26;com.liberty.jaxx;*;*cache*

Targeted crypto-
wallets and the files
associated with them

ews_ ews_meta_e:ejbalbakoplchlghecdalmeeeajnimhm;MetaMask;Local Extension

Settings ews_tronl:ibnejdfjmmkpcnlpebklmnkoeoihofec;TronLink;Local
Extension Settings

 ews_bsc:fhbohimaelbohpjbbldcngcnapndodjp;BinanceChain;Local Extension
Settings

Targeted cryptowallet
related extensions for
Google Chrome

ldr_ [missing in the configuration of the sample] Additional commands
that should be
executed by malware

tlgrm_ tlgrm_Telegram:Telegram

Desktop\tdata|*|*emoji*,*user_data*,*tdummy*,*dumps*
Targeted files related
to the Telegram
messenger

scrnsht_ scrnsht_Screenshot.jpeg:1 The name of the
screenshot(s) that the
malware takes in the
process

token 101f4cb19fcd8b9713dcbf6a5816dc74 Part of the URL path
for further queries to
C2

sstmnfo_ sstmnfo_System Info.txt:System Information: |Installed applications: | The file description

with some system
data and a list of
installed applications
that the malware will
generate later

Once the info stealer receives information concerning what kind of data to collect from C2, it proceeds to do so.

System data collection

The stealer collects various information about the infected system, including the OS bitness, information about RAM,
CPU, and user data like the applications installed in the system.

Raccoon’s mechanisms for data collection:

 gets the size of the main monitor using user32.dll!GetSystemMetrics

Raccoon malware v2 is getting the user’s display resolutionRaccoon malware v2 is getting the user’s display
resolution

 finds a list of GPU devices, using user32.dll!EnumDisplayDevicesW

9/25

Raccoon

Stealer is iterating through display devices
 determines the architecture (bitness) of the system by calling the x64-specific function
kernel32.dll!GetSystemWow64DirectoryW and comparing the last error code with
ERROR_CALL_NOT_IMPLEMENTED

Raccoon malware v2 is getting the user’s display resolutionRaccoon malware v2 is getting the user’s display
resolution

 collects RAM information via kernel32.dll!GlobalMemoryStatusEx

Raccoon malware ver.2 is checking the user’s system RAM informationRaccoon malware ver.2 is checking the
user’s system RAM information

 gets information about the user’s timezone by kernel32!GetTimeZoneInformation:

Raccoon malware is collecting the user’s system timezone dataRaccoon malware is collecting the user’s system
timezone data

 grabs the OS version from the registry, using advapi32.dll!RegOpenKeyExW and
advapi32.dll!RegQueryValueExW to read the value of the key
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion\ProductName

Raccoonstealer gets the user’s OS version
 obtains Information about the vendor of the CPU using asm-instruction __cpuid:

10/25

Raccoonstealer 2.0 is

getting CPU vendor info
 gets CPU cores number with kernel32.dll!GetSystemInfo

Raccoon malware is getting CPU cores countRaccoon malware is getting CPU cores count
 collects the user’s default locale info requesting kernel32.dll!GetUserDefaultLCID and

kernel32.dll!GetLocaleInfoW

Raccoon info stealer is getting the user’s

default locale info
 grabs data about installed apps from the registry using advapi32.dll!RegOpenKeyExW,

advapi32.dll!RegEnumKeyExW, and advapi32.dll!RegQueryValueExW.

The “DisplayName” and “DisplayVersion” values of all
\HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Uninstall key sub-keys:

Raccoon malware 2.0 is traversing through the user’s installed applications listRaccoon malware 2.0 is traversing

through the user’s installed applications list
After obtaining the system information, RecordBreaker gets ready to steal user data. The malware loads the
previously downloaded legitimate libraries to reach this goal.

Raccoon Stealer is loading previously downloaded legitimate third-party libsRaccoon Stealer is loading previously
downloaded legitimate third-party libs
This way, the program has the functions needed for operations:

11/25

Raccoonstealer gets functions addresses from the newly loaded modules
 Once the libraries have been loaded, Raccoon starts to collect user data.

User data collection

Cookies

First of all, the stealer collects cookies. It creates a copy of the cookies file and tries to open it. If it fails to do so, the
current subroutine is terminated.

Raccoon malware v2 is copying the cookies database and trying to open it
 If the sample manages to open the database, it retrieves cookies from it by executing the SQL query

SELECT host, path, isSecure, expiry, name, value FROM moz_cookies

.

12/25

Raccoon

stealer v2 is executing a SQL request to retrieve data from the cookies database

Autofill data

The next step in Raccoon’s “plan” is to retrieve the autofill data. The program tries to open the database logins.json:

13/25

Raccoon Stealer 2.0 is trying to open the logins.json database
 Then the stealer tries to decrypt the data from that database, using the Зnss3.dll!PK11SDR_Decrypt method.

Raccoon malware 2.0 decrypts encrypted

logins.json database
 After that, the malware formats collected data like so:

“URL:%s\nUSR:%s\nPASS:%s”

14/25

Using encrypted data, Raccoon malware formats it to a more readable stateUsing encrypted data, Raccoon
malware formats it to a more readable state

Autofill form data

After these manipulations, the stealer collects the autofill form data. It attempts to open the formhistory.sqlite
database:

Raccoon info stealer tries to open another database
If the connection to the database is successful, the program retrieves form data values from it with an SQL query
like:

SELECT name, value FROM autofill

15/25

Raccoonstealer is executing another SQL request to retrieve data
RecordBreaker concatenates all data together and sends POST requests to C2. ANY.RUN sandbox’s HTTP MITM
proxy feature intercepts all the data that the malware has managed to collect.

 SystemInfo POST request

https://any.run/?utm_source=anyrunblog&utm_medium=article&utm_content=raccoon_stealer

16/25

System info request made by Raccoon aka RecordBreaker
UserInfo POST request

User info request made by Raccoon malware
When the C2 server gets each chunk of data, it responds “received”:

C2 server responds

Crypto-wallets, Custom, and Telegram file data collection

Crypto-wallets data

RecordBreaker is looking for users’ crypto-wallets data using filters and templates retrieved from the configuration.

17/25

RecordBreaker is looking for the user’s crypto-wallets data

Custom files

Then, the wallet.dat file is searched (it contains local information about the bitcoin wallet). After that, the stealer looks
for arbitrary files from custom directories specified in the configuration.

18/25

Raccoonstealer is looking for any custom files

Telegram messenger files

The sample is looking for files related to Telegram messenger using data from the configuration.

19/25

RecordBreaker is looking for files related to Telegram messenger
After the malware has sent all the files, it takes a screenshot(s).

Raccoon malware v2 is making

screenshots of the user’s environment
 An example of a screenshot captured by ANY.RUN:

https://any.run/?utm_source=anyrunblog&utm_medium=article&utm_content=raccoon_stealer

20/25

The screenshot made by the 2d version of Raccoon malware
 If any additional commands are provided in configuration, the sample will execute them before finishing its work. For

example, Raccoon executes other commands with the help of WinAPI (shell32.dll!ShellExecuteW) if C2 has sent
them in the prefix ldr_:

Raccoonstealer executes extra commands
Then, the malware releases the remaining allocated resources, unloads the libraries, and finishes its work.

Raccoon configuration extraction

You can use our Python script to extract C2 servers from the unpacked Raccoon sample, or get malware
configuration right in our service, which will unpack the sample from memory dumps and extract C2s for you:

https://app.any.run/tasks/df94e59b-fa59-4f8f-ba81-93781e82046f

21/25

Raccoon malware configuration

22/25

import os, sys, re, string

from enum import IntEnum
from base64 import b64decode, b64encode
from malduck import xor, rc4, base64

c2 buffer len & invalid c2 placeholder
RACCOON_C2_PLACEHOLDER = b" " * 64
RACCOON_C2_BUFF_LEN = len(RACCOON_C2_PLACEHOLDER)

c2s array size & key size
RACCOON_C2S_LEN = 5
RACCOON_KEY_LEN = 32

class ERaccoonBuild(IntEnum):
 UNKNOWN_BUILD = -1,
 OLD_BUILD = 0,
 NEW_BUILD = 1

extracts ascii and unicode strings from binary file
class RaccoonStringExtractor:
 ASCII_BYTE = string.printable.encode()

 c2_list = []
 rc4_key = str()
 xor_key = str()
 raccoon_build = ERaccoonBuild.UNKNOWN_BUILD

 def __init__(self, binary_path) -> None:
 with open(binary_path, 'rb') as bin:
 self.buffer = bin.read()
 self.__process_strings()

 def __is_base64_encoded(self, data) -> bool:
 try:
 data = data.rstrip()
 return b64encode(b64decode(data)) == data
 except Exception:
 return False

 def __is_valid_key(self, key) -> bool:
 key_re = re.compile(rb"^[a-z0-9]{%d,}" % RACCOON_KEY_LEN)
 return re.match(key_re, key)

 def __process_strings(self) -> None:
 ascii_re = re.compile(rb"([%s]{%d,})" % (self.ASCII_BYTE, 4))

 self.c2_list = []
 ascii_strings = []

 for i, match in enumerate(ascii_re.finditer(self.buffer)):
 a_string = match[0]
 offset = match.start()
 string_entry = (a_string, offset)
 ascii_strings.append(string_entry)

 if len(a_string) == RACCOON_C2_BUFF_LEN and \
 a_string != RACCOON_C2_PLACEHOLDER and \
 self.__is_base64_encoded(a_string) == True:

 self.raccoon_build = ERaccoonBuild.OLD_BUILD
 print(f"[+] found possible encrypted c2 {a_string.rstrip()} at {hex(offset)}")
 self.c2_list.append(string_entry)

 if len(self.c2_list) == 1: # first c2 found

23/25

 rc4_key, offset = ascii_strings[i-1]
 # rc4 key should be 32-bytes long and contain only a-z 0-9 chars
 if self.__is_valid_key(rc4_key):
 self.rc4_key = rc4_key
 print(f"[+] found possible rc4 key {self.rc4_key} at {hex(offset)}")
 else:
 continue

 # have we found any c2s yet?
 if len(self.c2_list) == 0:
 for a_string, offset in ascii_strings:
 if len(a_string) == RACCOON_KEY_LEN and self.__is_valid_key(a_string):
 self.raccoon_build = ERaccoonBuild.NEW_BUILD
 self.xor_key = a_string
 print(f"[+] found possible xor key {self.xor_key} at {hex(offset)}")

 # extract c2s for new builds
 curr_offset = offset + 36
 for _ in range(0, RACCOON_C2S_LEN):
 enc_c2 = self.buffer[curr_offset : curr_offset + RACCOON_C2_BUFF_LEN]

 if enc_c2.find(0x20) != 0 and enc_c2 != RACCOON_C2_PLACEHOLDER: # check if c2 is
empty
 print(f"[+] found possible encrypted c2 {enc_c2.rstrip()} at
{hex(curr_offset)}")
 self.c2_list.append((enc_c2, curr_offset))

 curr_offset += RACCOON_C2_BUFF_LEN + 8 # each c2 is padded by 8 bytes
 return # don't process strings any further
 else:
 return

 print(f"[!] C2Cs not found, could be a new build of raccoon sample")

class RaccoonC2Decryptor:
 def __init__(self, sample_path: str) -> None:
 self.extractor = RaccoonStringExtractor(sample_path)

 def __is_valid_c2(self, c2):
 return re.match(
 rb"((https?):((//)|(\\\\))+([\w\d:#@%/;$()~_?\+-=\\\.&](#!)?)*)", c2
)

 def decrypt(self) -> bool:
 raccoon_build = self.extractor.raccoon_build
 if raccoon_build == ERaccoonBuild.OLD_BUILD:
 return self.decrypt_method_1()
 elif raccoon_build == ERaccoonBuild.NEW_BUILD:
 return self.decrypt_method_2()
 else:
 return False # unknown raccoon build

 def decrypt_method_1(self) -> None:
 for enc_c2, _ in self.extractor.c2_list:
 decrypted_c2 = rc4(
 self.extractor.rc4_key,
 base64(enc_c2.rstrip())
)

 if self.__is_valid_c2:
 print(f"[>] decrypted c2: {decrypted_c2}")
 else:
 print(f"[!] invalid c2: {decrypted_c2}")

 def decrypt_method_2(self) -> None:

24/25

 for enc_c2, _ in self.extractor.c2_list:
 decrypted_c2 = xor(
 self.extractor.xor_key,
 enc_c2.rstrip()
)

 if self.__is_valid_c2:
 print(f"[>] decrypted c2: {decrypted_c2}")
 else:
 print(f"[!] invalid c2: {decrypted_c2}")

def main():
 # parse arguments
 if len(sys.argv) == 2:
 sample_path = os.path.abspath(sys.argv[1])
 else:
 print(f"[!] usage: {os.path.basename(__file__)} <sample path>")
 return False

 try:
 RaccoonC2Decryptor(sample_path).decrypt()
 except Exception as ex:
 print(f"[!] exception: {ex}")

if __name__ == '__main__':
 main()

IOCs:

Filename SHA-256

\AppData\LocalLow\nss3.dll c65b7afb05ee2b2687e6280594019068c3d3829182dfe8604ce4adf2116cc46e

\AppData\LocalLow\msvcp140.dll 2db7fd3c9c3c4b67f2d50a5a50e8c69154dc859780dd487c28a4e6ed1af90d01

\AppData\LocalLow\vcruntime140.dll 9d02e952396bdff3abfe5654e07b7a713c84268a225e11ed9a3bf338ed1e424c

\AppData\LocalLow\mozglue.dll 4191faf7e5eb105a0f4c5c6ed3e9e9c71014e8aa39bbee313bc92d1411e9e862

\AppData\LocalLow\freebl3.dll b2ae93d30c8beb0b26f03d4a8325ac89b92a299e8f853e5caa51bb32575b06c6

\AppData\LocalLow\softokn3.dll 44be3153c15c2d18f49674a092c135d3482fb89b77a1b2063d01d02985555fe0

\AppData\LocalLow\sqlite3.dll 1b4640e3d5c872f4b8d199f3cff2970319345c766e697a37de65d10a1cffa102

HTTP/HTTPS Requests:

http://[C2 address]/

http://[C2 address] /aN7jD0qO6kT5bK5bQ4eR8fE1xP7hL2vK/nss3.dll

http://[C2 address]/aN7jD0qO6kT5bK5bQ4eR8fE1xP7hL2vK/msvcp140.dll

http://[C2 address]/aN7jD0qO6kT5bK5bQ4eR8fE1xP7hL2vK/vcruntime140.dll

http://[C2 address]/aN7jD0qO6kT5bK5bQ4eR8fE1xP7hL2vK/mozglue.dll

http://[C2 address]/aN7jD0qO6kT5bK5bQ4eR8fE1xP7hL2vK/freebl3.dll

http://[C2 address]/aN7jD0qO6kT5bK5bQ4eR8fE1xP7hL2vK/sqlite3.dll

http://[C2 address]/[config token]

http://10.10.0.46/about:blank
http://10.10.0.46/about:blank
http://10.10.0.46/about:blank
http://10.10.0.46/about:blank
http://10.10.0.46/about:blank
http://10.10.0.46/about:blank
http://10.10.0.46/about:blank
http://10.10.0.46/about:blank

25/25

http://[C2 address]/aN7jD0qO6kT5bK5bQ4eR8fE1xP7hL2vK/softokn3.dll

Conclusion

We have done malware analysis of the Raccoon stealer 2.0 performance using a v2 sample in ANY.RUN sandbox.
The examined sample has used various techniques to evade detection: legitimate libraries for data collection,
dynamic library loading, string encryption, and C&C server encryption. Some examples are additionally protected by
packers or being a part of other malware.

Copy the script of Raccoon stealer and try to extract C2 servers by yourselves and let us know about your results.

And write in the comments below what other malware analysis you are interested in. We will be glad to add it to the
series!

malware analysis

http://10.10.0.46/about:blank
https://any.run/?utm_source=anyrunblog&utm_medium=article&utm_content=raccoon_stealer
https://any.run/cybersecurity-blog/tag/malware-analysis/

