
1/8

John F August 30, 2022

NanoCore RAT Hunting Guide
medium.com/@the_abjuri5t/nanocore-rat-hunting-guide-cb185473c1e0

John F

Aug 30

·

9 min read

Analysis and tools for hunting NanoCore command-and-control

NanoCore is a prevalent RAT (Remote Access Trojan) which is used by threat actors to spy
on victims and provide remote access to target computers. CISA identified NanoCore as a
top malware strain of 2021 due to its prevalence among cyber criminals and potential to
cause damage. I have researched NanoCore’s command-and-control framework and I wrote
this blog post as a guide for hunting-down and blocking NanoCore.

Table of Contents

Background and Functionality

https://medium.com/@the_abjuri5t/nanocore-rat-hunting-guide-cb185473c1e0
https://medium.com/@the_abjuri5t?source=post_page-----cb185473c1e0--------------------------------
https://medium.com/@the_abjuri5t?source=post_page-----cb185473c1e0--------------------------------
https://www.cisa.gov/uscert/ncas/alerts/aa22-216a

2/8

In 2013, Taylor Huddleston (arrested in 2017) wrote NanoCore using the .NET framework.
Despite its age, the RAT remains popular among cyber-criminals and malware-as-a-service
markets because of its ease of use for non-technical threat actors and various plugin
features. NanoCore is widely used today with ANY.RUN Trends documenting it as the 8th
most-common malware strain in July 2022.

As a RAT, NanoCore is well-suited for providing initial access, stealing information, and
spying on victims. Historically, NanoCore’s remote access and spyware capabilities have
been used to attack businesses, stalk victims, and conduct espionage for nation-state
groups¹. There are multiple NanoCore plugins which can be purchased (or stolen/cracked)
from cyber-crime forums to add new features and capabilities — though NanoCore’s base
payload is already capable of:

accessing files
executing programs
stealing saved passwords
logging keystrokes
and surveilling webcams

NanoCore payloads are primarily controlled from a GUI installed on the threat actor’s
computer. The GUI functions as both a payload builder and command-and-control panel.
Using the GUI to create and operate NanoCore payloads requires limited technical
knowledge as there is no shell involved and the interface provides guiding documentation.
Once built and deployed, a threat actor can control single agents or an entire collection of
bots from the panel.

Figure 1: Experiments with NanoCore platform included builder configurations and traffic
analysis.

https://www.fbi.gov/news/stories/malware-creator-sentenced-070518
https://any.run/malware-trends/

3/8

I downloaded cracked NanoCore platforms and used them to conduct experiments inside
virtual machines. It’s disturbing to see the “community” which forms around malware-as-a-
service capabilities…

Command-and-Control Analysis

At start-up, a NanoCore payload will query the domain name of its assigned C2 (Command-
and-Control) server and then attempt to use the answered IP address for all of its
communications². NanoCore payloads are configured with 8.8.8.8 as their primary DNS
server and 8.8.4.4 as a backup. Some payloads are also configured with primary and
secondary C2 domains — though in practice, many threat actors just list the same C2 twice.

A NanoCore payload will then send an ‘introduction’ message to its C2 server with basic
context about the payload configuration and the infected target host. Following an
acceptance message from its C2 server, NanoCore will then begin sending a ‘heartbeat
message’ to the C2 server in order to let the server know that the payload is still active and
to request new tasks. NanoCore will encode these heartbeat messages to the C2 server as
0x00000600. Experiments show that NanoCore will send these heartbeat messages almost
immediately after processing the C2’s response — leading to a stream of communication
(unlike other RATs/agents which may only communicate once every several minutes). The
generic heartbeat messages are interspersed with commands and requests from the C2
server itself. Most often, these messages are automated requests for status updates though
they will also include commands initiated by the threat actor.

Figure 2: PCAP of server DNS request, C2 introduction message, and encrypted heartbeat
The content of the messages sent from NanoCore to its C2 server will be encrypted using a
custom protocol over TCP. NanoCore uses DES to encrypt the contents of its messages
(curiously, the DES key and IV have the same value). The length of the message ciphertext

4/8

is then appended to the front of the TCP data payload and sent to the C2 server. I wrote a
CyberChef recipe to help explain NanoCore’s custom protocol and decrypt its messages.

Figure 3: Debugging of NanoCore’s method for message encryption — including IV/Key
values
For more analysis of NanoCore’s actual code, check-out the awesome reverse engineering
conducted by and .

Network Defenses

Signature-Based Detection

NanoCore’s encryption of its C2 communications makes PCAP analysis and signature
mapping more difficult. The custom protocol which NanoCore implements, however,
inadvertently creates patterns that can be leveraged to develop network signatures³. There
are a few DES Keys/IVs that have been hard-coded into NanoCore strains and are
commonly used in different payloads — even those appearing to belong to unique threat
actors. Accurate network signature rules for tools such as Snort can be written to monitor for
NanoCore’s heartbeat message, as encrypted by these common keys.

NanoCore ’heartbeat’ signature (0x00000600) encrypted by common keyalert tcp any
any -> any any (msg:"NanoCore ’heartbeat’ signature";flags:PA;dsize:12;content:"|08
00 00 00 c1 c3 d0 32 43 59 a1 78|";)

https://gchq.github.io/CyberChef/#recipe=From_Hexdump()To_Hex('Space',0)Find_/_Replace(%7B'option':'Regex','string':'%5E%5B0-9a-fA-F%5D%5B08%5D%2000%2000%2000%20'%7D,'',true,false,false,false)From_Hex('Auto')Comment('%22722018788C294897%22%20is%20the%20most%20common%20Key/IV%20pair%20used%20by%20NanoCore%20in%20the%20wild')DES_Decrypt(%7B'option':'Hex','string':'722018788C294897'%7D,%7B'option':'Hex','string':'722018788C294897'%7D,'CBC','Raw','Raw')To_Hexdump(16,false,false,false)&input=MDAwMCAgIDA4IDAwIDAwIDAwIGMxIGMzIGQwIDMyIDQzIDU5IGExIDc4

5/8

Several less-popular NanoCore strains have begun changing their DES Keys/IVs — making
the encryption of the heartbeat message difficult to predict. The command-and-control
messages from these rarer strains can still be detected by taking-advantage of NanoCore’s
custom protocol. In the protocol, the first 4 bytes of a TPC payload are used to encode the
length of a message and the possible lengths are limited due to the protocol’s reliance on
DES. NanoCore’s custom C2 messaging protocol can still be detected regardless of Key/IV
by searching the first 4 bytes of TCP data and matching the value to the message length.

NanoCore command-and-control custom message protocolalert tcp any any -> any any
(msg:"NanoCore DES length 08";flags:PA;dsize:12;content:"|08 00 00
00|";depth:4;)alert tcp any any -> any any (msg:”NanoCore DES length
40";flags:PA;dsize:68;content:"|40 00 00 00|";depth:4;)

By implementing these network signature rules into a monitoring tool such as Snort or
Suricata, you will be alerted to an infected host sending NanoCore’s ‘introduction’ to the C2
server, the encrypted ‘heartbeat’, and all subsequent communications which use its custom
message protocol.

The rules have been released publicly in my GitHub repository NanoCore-Hunting.
Additionally, I strongly encourage you to monitor for C2 traffic as well as outgoing. I have
worked with cloud services, small businesses, and others in the past to help them take-down
malicious C2 servers that they were unknowingly hosting. It is better to handle hosting abuse
before your infrastructure is used to harm others.

Infrastructure Blocking

Traditional network blocking solutions can of course be used to deny access to NanoCore C2
servers — though these methods require constant updating. With a DNS sinkhole deployed⁴,
DNS requests from NanoCore can be answered with an incorrect IP address to redirect
NanoCore from its real C2 server — though this redirection is only possible if the DNS
sinkhole is configured with the payload’s domain name (for more information, see Palo Alto’s
explanation of DNS sinkholes). Simple firewalls can also be deployed to block⁵ connection
attempts to known NanoCore IP addresses but again, this blocking solution only works if the
C2 server’s address is known and added to the blocklist.

The following lists are based on the hundreds of recently-active NanoCore C2s I verified
while researching the RAT. The lists likely do not include all active NanoCore C2s but they
should block a decent amount of connections.

IP-list.txt domain-list.txt Indicators-of-Compromise.csv

Those of you familiar with my SarlackLab project know that I track malicious infrastructure —
not to look for specific IOCs but to gather intelligence and get a better picture of the Internet
threat landscape.

https://github.com/Abjuri5t/Hunting-NanoCore/blob/main/NanoCore-C2-protocol.rules
https://docs.paloaltonetworks.com/pan-os/10-2/pan-os-admin/threat-prevention/use-dns-queries-to-identify-infected-hosts-on-the-network/dns-sinkholing
https://raw.githubusercontent.com/Abjuri5t/Hunting-NanoCore/master/IP-list.txt
https://raw.githubusercontent.com/Abjuri5t/Hunting-NanoCore/master/domain-list.txt
https://raw.githubusercontent.com/Abjuri5t/Hunting-NanoCore/master/Indicators-of-Compromise.csv

6/8

Meta-Analysis of IOCs

I set my malware analysis lab to collect and analyze thousands of NanoCore samples
throughout the Spring and Summer of 2022. By analyzing network traffic generated during
sample detonation and cross-referencing apparent C2 traffic with malware configuration
extractors, I confirmed the existence of hundreds of NanoCore C2 servers.

Domain Patterns

I analyzed trends among the NanoCore C2 servers I had identified and uncovered patterns
for server domains as well as suspicious hosting providers. Almost all of the domain names I
found are legible and do not appear to be high-entropy or randomized. Many of the Fully
Qualified Domain Names (FQDNs) have the same second-level domains (see Figure 4) — of
which most appear to be tied to dynamic record and redirection services.

Figure 4: Second-Level Domains of NanoCore C2 Domain Names
The second-level domains ddns[.]net, duckdns[.]org, hopto[.]org, bounceme[.]net, and
3utilities[.]com appeared in almost 80% of all NanoCore FQDNs. The listed second-level
domains are tied to Dynamic DNS services which their FQDNs appear to be utilizing. The
service ngrok[.]io, however, is a distributed reverse proxy that is commonly used as a
network tunnel for hosting gaming servers or file shares — though it also has a history of
abuse.

https://malwareconfig.com/

7/8

(abbreviated as DDNS) is built upon common (DNS) technology but uses special
authoritative DNS servers. Unlike traditional DNS records, which have static IP
addresses that can take up to 24 hours to update, Dynamic DNS records can be updated
rapidly using their highly-responsive authoritative DNS servers (such as
duckdns[.]org). Dynamic DNS can be used for the benign purpose of resolving dynamic
IP addresses (ie addresses granted by a home ISP) - however Cybercriminals Dynamic
DNS to in an attempt to survive server take-downs and IP blocking.

I have used DNS sinkholes to great effect in denying access from hosts to various C2
servers — regardless of how threat actor modify their DNS or DDNS records. Personally, I
recommend sinkholing⁴ DNS requests to all subdomains of the identified infrastructure and
authoritative DDNS servers, then only allowing specific FQDNs as-needed⁶. By configuring
such a sinkhole, many NanoCore payloads will be unable to resolve the IP address of the C2
server — even if the payload is attempting to connect to a novel subdomain, not yet
identified as an IOC.

Part 2 — TLP:GREEN

There is a second part to this command-and-control meta-analysis which is labeled
TLP:GREEN. If you are interested, contact me via Twitter and I will send you a copy of the
research.

Hunting Summary

NanoCore is a powerful remote access trojan that remains popular among cybercriminals
today. To hunt-down NanoCore command-and-control communications in your network, look
for the signature of its custom messaging protocol (see published rules). You can of course
attempt blocking individual IPs and sinkholing specific domains — but I recommend
considering the overall trends of malicious traffic on the Internet and denying access to
commonly malicious infrastructure. Please contact me on Twitter, if you have any feedback
or wish to contribute.

See Also

Other work on NanoCore analysis (technical deep-dives). Config extractor. Other places to
watch.

Full break-down of IOCs available at
CyberChef recipe

Footnotes

[1] According to research compiled by MITRE ATT&CK, groups back by nation-states have
been attributed to the use of NanoCore.

https://www.cisa.gov/tlp
https://twitter.com/Abjuri5t/
https://github.com/Abjuri5t/Hunting-NanoCore/blob/main/NanoCore-C2-protocol.rules
https://raw.githubusercontent.com/Abjuri5t/Hunting-NanoCore/master/IP-list.txt
https://raw.githubusercontent.com/Abjuri5t/Hunting-NanoCore/master/domain-list.txt
https://twitter.com/Abjuri5t
https://attack.mitre.org/software/S0336/#groups

8/8

[2] In my research, I found a couple of NanoCore payloads which used hard-coded IP
addresses. The overwhelming trend among threat actors, however, appears to be relying on
domain names because the hosting IP addresses may change.

[3] I work for Vectra AI as a Network MDR Analyst. I honestly believe that network metadata
and AI models (ya, I said it) are the best indicators of malicious activity in a network. That
being said, signatures and IOCs are useful as part of a complete balanced b̶r̶e̶a̶k̶f̶a̶s̶t̶
defense. I wrote a Vectra custom model based on these IDS signatures which Recall
customers can install.

[4] When configuring your DNS sinkhole, remember to re-direct all DNS requests to your
local server. Otherwise, NanoCore’s DNS requests will just go to 8.8.8.8 and the sinkhole will
fail.

[5] Make sure you log these connection attempts as well and consider setting an alert for
them. Just because you have blocked a C2 server does not mean that you have completely
managed the threat.

[6] Check your SIEM and/or firewall logs before applying these restrictions. Depending on
how locked-down your network is, you may accidentally block an important service that
happens to be using ngrok or similar.

