
1/16

Chromeloader browser hijacker
cybergeeks.tech/chromeloader-browser-hijacker

Summary

We analyzed a new version of ChromeLoader (also known as Choziosi Loader) that was seen in the wild in recent
weeks.

This ChromeLoader campaign that appears to have started in December 2021 has become widespread and has
spawned multiple versions, making atomic indicators ineffective for detections.

In our analysis we will be discussing the capabilities of this loader, as well as trying to dig a little deeper, in order
to find some indicators that will be more difficult for the threat actor to alter without making significant changes to
the malware’s architecture (at least compared to extracting domains, IP and hashes as only IOCs)

We will be starting our analysis with the execution of the obfuscated powershell that ultimately downloads the
malicious extension on the host.

We have managed to extract some interesting strings from the different stages of the malware, as well as
discovering a few modules that are not in use at the moment (or are not working properly), but could give a hint on
what functionality will be added to the malware in the future.

We will not be talking about the dropper in this analysis, as it is already quite well documented and no significant
changes were seen for new versions of Chromeloader.

For more information on the dropper, a collection of atomic indicators and a comparison between different
versions seen in the wild, we recommend you read the article put out by Unit42, as it is quite extensive:

https://unit42.paloaltonetworks.com/chromeloader-malware/#post-123828-_rk3otl9durd

Ok, let’s get to it.

Static Analysis

We start our analysis with a powershell command that will connect to the C2 server used for the installation
(different from the C2 used for data exfil) to download the first malicious payload, as well as set the ground for the
extension’s installation.

While the initial powershell is heavily obfuscated, there are a few strings of interest that we can identify with little
effort. One of them is the function that builds the URL for the installation C2 server. We can also see the Invoke-
Expression cmdlet.

https://cybergeeks.tech/chromeloader-browser-hijacker
https://unit42.paloaltonetworks.com/chromeloader-malware/#post-123828-_rk3otl9durd

2/16

By changing one of the visible iex expressions to Write-Output, we were able to make good progress without
bothering with decrypting the script.

NOTE: this method is a lot faster than manual deobfuscation, but can miss details that could be relevant for the
analysis (there could be multiple “invokeExpressions” that were obfuscated and we could not see for instance).
Just something to keep in mind.

Running the script like this downloads a C# script from the installation server present in the command. During
normal execution it would then invoke it.

The C# script gives us some good hints about the capability of the malware.

Some interesting function names:

getGoogSearchUri
hookSearchNavigation
runChromeOrEdge
runFirefox
runThread

Some interesting methods:

paneConditionChromeOrEdge
editConditionChromeOrEdge
toolbarConditionFirefox
comboboxConditionFirefox
editboxConditionFirefox

Image 1 – Installer URL visible in the initial Powershell

Image 2

3/16

While previous analysis of the malware concluded that it would only affect Chrome browsers, we can see here
that it checks to see if Chrome, Edge or Firefox is installed and can hook any of these.

It seems to be mostly interested in the user’s search history, as it intercepts searches done on google and then
redirects them to Bing .

It also intercepts keyboard keys to account for the users that use the keyboard to navigate the results.

4/16

Image 3 – the extension is

looking for Google search links Image 4 – the

extension can intercept keystrokes

5/16

In the string from image 6 , the URL is built using the following variables:

Domain
TID is a hardcoded value in the script; the value was the same every time for this version of the malware so
maybe it is used for versioning
U is an unique identifier for the user
We could not determine what “ist” is at this time

Once the C# code finishes, it is followed by a series of additional Powershell commands that will build it, load it
into memory and run it.

Powershell is used again to build the URL from which the next payload will be downloaded.

The commands suggest that a new archived file will be downloaded and expanded in a new folder made in the
user’s APPDATA , that is randomly generated by the script via an XOR operation.

The following function sets up the key for the encryption:

Image 5 – methods exist for both

Chromium browsers and Firefox

Image 6 – the C2 url is dynamic and built with variables extracted from the script and user environment

Image 7 – Powershell is used to build the C# code

6/16

It looks like the script is testing multiple possible paths to see if they exist before finally settling on one and
downloading the corresponding archive:

Dynamic Analysis

Indeed, after arming the sample and detonating it , we can see a new folder in AppData called “chrome_glass”:

Image 8 – It uses a random number

and the current date to always provide a new encryption key

Image 9 – C2 URL is built with variables extracted from the script and the host, same for the installation path

7/16

Before creating the folder, the malware verifies if one of the following paths already exists:

%AppData%\Local\chrome_metric
%AppData%\Local\chrome_pref
%AppData%\Local\chrome_settings
%AppData%\Local\chrome_tools
%AppData%\Local\chrome_storage
%AppData%\Local\chrome_configuration
%AppData%\Local\chrome_bookmarks
%AppData%\Local\chrome_flags
%AppData%\Local\chrome_history
%AppData%\Local\chrome_cast
%AppData%\Local\chrome_view
%AppData%\Local\chrome_tab
%AppData%\Local\chrome_panel
%AppData%\Local\chrome_window
%AppData%\Local\chrome_control
%AppData%\Local\chrome_glass
%AppData%\Local\chrome_nav

We can see how the script downloaded the C# code and then built it into a .dll in the Temp folder:

Image 10 – a fairly simple Chrome extension

8/16

 There are also some evasion mechanisms here that are worth pointing out:

The files are downloaded, ran and then deleted
The PSScript Policy test runs to ensure that the Temp folder is writable and that the files can be deleted
A new directory is created with a randomly generated name, to ensure that the files cannot be retrieved by
tools such as DirWatch

Let`s also look at registry changes. We have caught hints from the powershell script from earlier that the installer
will also write a value in “HKCU:\Software\CodeSector\”.

And indeed, we see a new registry Key being added:

It is unclear at this time why the registry key is added, as there was no followup activity for this key. Perhaps it
serves as a mutex of some sort for the attacker, to avoid infecting the same host.

Now let’s look a bit at the items that were unpacked from the archive .

This is a Chrome extension; We can see that quite a few permissions are requested (manifest.json):

Image 11

– the stager is built and executed in the user’s Temp folder, and then deleted

Image 12 – A new registry key is added

9/16

Using an online deobfuscator (https://deobfuscate.io/) , we get a more readable code, but still hard to follow. We
did manage however to extract an URL and an interesting base64-encoded string. We also noticed a function that
seems to be modifying some Chrome settings:

Image 13

Image 14 – the .js file is heavily obfuscated, to hinder the analysis

https://deobfuscate.io/

10/16

The Javascript contains multiple switch statements, in an attempt to make the analysis of the code as hard as
possible. At this point it is possible to start decoding the code manually, but it would be quite cumbersome.

Since our goal is to identify some unique indicators that we can use for detection, we will just note a few
interesting functions that will give us a hint about what the extensions is trying to do , and instead we will attempt
some basic dynamic analysis.

Once the sample detonates, we see the request for the domain that we found in the JS file:

Image 15

Image 16 – DNS queries for

the C2 Image 17 –

The traffic is sent (and encrypted) via QUIC Protocol.

11/16

Network indicators:

We know that the extension is using QUIC as a transport protocol for fast and encrypted communication. But,
since we control the execution, we can force Chrome to dump the SSL Keys so we can load them in Wireshark
and decrypt the traffic.

Image 18

– Procmon shows how Chrome succesfully loads the libraries used for encryption

Image 19 – Establishing connection (notice the full URL and the base64 encrypted key that was identified in the JS –“bmpmcHdXUldDQl9cUERDWFtVSUBYX1UMTltYUEFBEltQRkZcXF9AR1kWFQUVBw4=” ; this looks to be an identifier of sorts)

Image 20 – Cookies are made persistent

Image 21

12/16

Suspicious DNS Queries and responses:

goog.withyourrety[.]xyz: type A, class IN, addr 104.21.70.206

goog.withyourrety[.]xyz: type A, class IN, addr 172.67.139.75

Freychang[.]fun: type A, class IN, addr 104.21.45.207

Freychang[.]fun: type A, class IN, addr 172.67.218.221

Using the IPs extracted from the DNS queries, the following interesting strings were identified:

GREASE is the word
 HEX:

9b8d047b7db70d45ca16cf225df6e36ce3dcb0bec41dee190f8f20c859de8861967d771e2f4d572f4f7f5dfc04d5d5

The same “GREASE” string appears in other packets and is a setting for the HTTP3 communication;

Settings are a new registry used in HTTP3

Image 22 – Decrypted

QUIC traffic

Image 23 Image 24

13/16

A 302 redirect status response code:

<html>
 <head><title>302 Found</title></head>

 <body>
 <center><h1>302 Found</h1></center>

 <hr><center>openresty/1.15.8.3</center>
 </body>

 </html>

While the page gives a code 302, it redirects back to goog[.]withyourrety[.]xyz so this is probably a redundancy if
one of the IPs the domain resolves to is no longer reachable.

While the page gives a code 302, it redirects back to goog[.]withyourrety[.]xyz so this is probably a redundancy if
one of the IPs the domain resolves to is no longer reachable.

Running Chrome:

Using the browser once the malicious extension was installed does indeed reflect what we have seen up to this
point :

Any search made on google.com is redirected to Withyourrety[.]xyz , and then eventually to Bing (image 25)
The extension messes with the Google settings and does not allow the user to view the Extensions pane.
When trying to do so, the user is redirected to the main settings page
The extension is hidden by default and cannot be turned off, but can be removed by right clicking on it and
removing from browser
We can see the hardcoded cookies that we have encountered earlier (image 27)

Image 25

Image 26

14/16

At this time the implant for Firefox does not seem to function. When attempting to install the extension on a host
without any Chromium browser, the process hunged and no Firefox instance was started.

Indicators of Compromise:

Files:

6A84FE906EBBEED933D7776731FE7118E1E028C1 – *background.js

B7CD274E9C4036DC3F27D347A8428B40437A7AFA – *manifest.json

E1DCD96B5D14141E2F6EE50246E68EE7499E4D87 – %AppData%\Local\data.zip

Paths:

%AppData%\Local\chrome_metric

%AppData%\Local\chrome_pref

%AppData%\Local\chrome_settings

%AppData%\Local\chrome_tools

%AppData%\Local\chrome_storage

%AppData%\Local\chrome_configuration

%AppData%\Local\chrome_bookmarks

%AppData%\Local\chrome_flags

%AppData%\Local\chrome_history

%AppData%\Local\chrome_cast

%AppData%\Local\chrome_view

%AppData%\Local\chrome_tab

Image 27

15/16

%AppData%\Local\chrome_panel

%AppData%\Local\chrome_window

%AppData%\Local\chrome_control

%AppData%\Local\chrome_glass

%AppData%\Local\chrome_nav

%AppData%\Local\Temp\[a-zA-Z0-9]{8}

%AppData%\Local\Temp\[a-zA-Z0-9]{8}\[a-zA-Z0-9]{8}.cs

%AppData%\Local\Temp\[a-zA-Z0-9]{8}\[a-zA-Z0-9]{8}.dll

%AppData%\Local\Temp\[a-zA-Z0-9]{8}\[a-zA-Z0-9]{8}.cmdline

%AppData%\Local\Temp\[a-zA-Z0-9]{8}\[a-zA-Z0-9]{8}.out

Domains:

Mplayeran[.]autos

Withyourrety[.]xyz

Freychang[.]fun

Registry:

Computer\HKEY_CURRENT_USER\SOFTWARE\CodeSector\Tera Copy

IPs:

104.21.70.206

172.67.139.75

172.67.218.221

104.21.51.237

172.67.191.177

Network Indicators:

String: GREASE is the word

HEX:
9b8d047b7db70d45ca16cf225df6e36ce3dcb0bec41dee190f8f20c859de8861967d771e2f4d572f4f7f5dfc04d5d5

Scriptblock and Memory

getGoogSearchUri

hookSearchNavigation

runChromeOrEdge

16/16

runFirefox

runThread

hxxps://$d/e?iver=$iv&u=$u&is=$is&ed=$di

hxxps://$d/e?iver=$iv&did=$dd&ver=$ver&ed=$di

hxxps://$d/err?iver=$iv&did=$dd&ver=$ver

hxxps://$dl/err?iver=$iv&u=$u&is=$is

hxxps://$d/x?u=$u&is=$is&lv=$lv&rv=$v

