
1/11

By Gaurav Yadav August 25, 2022

BleachGap Revamped
labs.k7computing.com/index.php/bleachgap-revamped/

BleachGap ransomware was first reported in Feb 2021 by a researcher named Petrovic on
Twitter. This ransomware variant that we have analysed was reported on Twitter in June
2022. This variant got us curious to get into the nuances of it because it was tagged as a
stealer and all the code was compiled in a single executable thereby not needing
any supporting .bat or PowerShell scripts to execute, most probably done for evasion
and to be less noisy in comparison to the variant found in 2021, which needed the
supporting .bat and .exe that it dropped for execution.Though there are not many cases
reported in the wild, this blog has been written to let the cyber community know that
threat actors are modifying the attack techniques of this malware for a possible
major attack that might be planned in the future. Lets now get into the details.

Why a Stealer?

When this ransomware executes, the first step is to get the username and generate a
Unique ID (UID) and Password for that particular victim. By the first look, it seems it is
stealing the password from the user but after multiple executions we identified that the
password is different every time and after reversing the sample we found that the
ransomware is using a function (shown in Figure 1) to randomly generate the UID and the
same function is being called again to generate the password which is always 32 byte
long.

https://labs.k7computing.com/index.php/bleachgap-revamped/
https://twitter.com/petrovic082
https://twitter.com/Finch39487976/status/1533126802159304705

2/11

Figure 1: Function used to generate random ID and Pass
After generating the UID and Password, it gets the Username of the current user using the
environment variable. It first moves the encoded bytes to memory which are already
hardcoded in the executable and then decodes those to the ‘username’ and then uses it
as an argument to get environment variable data related to the username as shown in
Figure 2.

3/11

Figure 2: Getting username using environment variables
Instead of hardcoding the useful strings into executables directly, so as to evade detection,
this ransomware has used a similar method of moving encoded strings into memory and
then decoding them at runtime for different purposes.We will see similar method being
used later in this ransomware. After getting the Username, it forms a huge string using the
same method of decoding the encoded bytes which includes UID, Password, Username
as shown in Figure 3.

Figure 3: Large

decoded string
After further analysis we learn that this ransomware sends the large decoded string shown
in Figure 3 as a Post request to the Discord Webhook API which has been highlighted in
Figure 4 and 5.

FIgure 4: Post request to Discord API

4/11

Figure 5: Fakenet output for DNS and SSL connection

Disabling Tools to Work

After sending information to the Discord API, the ransomware tries to disable tools like
command prompt (CMD), Task Manager and Registry Editor so that the user is not able to
make changes and stop the ransomware execution. Disabling the mentioned tools
happens with the help of the registry. Ransomware first copies the encoded registry key
into memory and then decodes the key using XOR loop and then does the same for key
value and then calls the function RegCreateKey using the decoded key and value as
arguments. Figure 6 shows the encoded registry key.

5/11

Figure 6: Encoded Registry key

Figure 7: Decoding encoded registry key

6/11

Figure 8: Tools getting disabled
After disabling the tools, the ransomware decodes the different folder names which
includes Desktop, Documents, Downloads, Pictures, Music ,Public and adds it to the string
C:\Users\%username% so that it can enumerate these folders first and encrypt the files
stored inside.

Figure 9: Function adding folder names after decoding
After getting all the folder names, the ransomware starts to enumerate them using
FindFirstFileExW and FindNextFileW and then uses ReadFile to read the existing file
into a buffer for encryption.

Figure 10: Using FindFirstFileExW

7/11

Figure 11: Using FindNextFileW

Figure 12: Using ReadFile to read ApkStudio.exe.lnk

Encrypting Files

When analysing the sample after ReadFile we observed that the sample doesn’t use any
common encryption related Windows APIs like CryptAcquireContextA,
CryptReleaseContext, CryptGenKey, CryptExportKey, etc. On further digging, we found
that the whole encryption routine is implemented inside the ransomware. We identified
this when a hardware breakpoint on the randomly generated password (described at the
start of the blog) was hit after the ReadFile API. There were some calculations happening
with the password and some bytes were also present in the .rdata section.

8/11

Figure 13: Using AES S-block for key expansion
After checking those prestored bytes we identified that it is an S-Block used in the AES
Algorithm during the Key Expansion phase. So ransomware is using the AES algorithm to
encrypt the files using the password (key) that was randomly generated and sent to
discord webhook. On further analysis, we got the functions which were responsible for
encrypting the file bytes and writing it to the memory 16 bytes at a time as in Figure 14 and
Figure 15.

Figure 14: ApkStudio.exe.lnk File getting encrypted

9/11

Figure 15: Encrypted File ApkStudio.exe.lnk
Ransomware creates a new file with the same name and writes the encrypted bytes into
that file and then renames the file with the extension PAY2DECRYPT+UID. After
encrypting the files, it puts 100 ransom notes on the Desktop. This ransomware encrypts
executables as well. It changes its own name to encrypted file extension but the file
remains as-is and not encrypted.

10/11

Figure 16: 100 ransom notes on Desktop

Figure 17: Ransom Note
We at K7 Labs provide detection for BleachGap ransomware and all the latest threats.
Users are advised to use a reliable security product such as “K7 Total Security” and
keep it up-to-date to safeguard their devices.

Indicators of Compromise (IOCs)

File Name Hash Detection Name

ransomito.exe bfe289c6f91ffcda97c207f3c1c525a9 Riskware (00584baa1)

References

https://www.goggleheadedhacker.com/blog/post/reversing-crypto-functions-aes

https://www.goggleheadedhacker.com/blog/post/reversing-crypto-functions-aes

11/11

https://twitter.com/Finch39487976/status/1533126802159304705

https://www.reversingsecurity.com/blog/pay2decrypt-bleachgap-analysis

https://twitter.com/Finch39487976/status/1533126802159304705
https://www.reversingsecurity.com/blog/pay2decrypt-bleachgap-analysis

