
1/11

August 24, 2022

Looking for the ‘Sliver’ lining: Hunting for emerging
command-and-control frameworks

microsoft.com/security/blog/2022/08/24/looking-for-the-sliver-lining-hunting-for-emerging-command-and-control-
frameworks

Microsoft has observed the Sliver command-and-control (C2) framework now being adopted
and integrated in intrusion campaigns by nation-state threat actors, cybercrime groups
directly supporting ransomware and extortion, and other threat actors to evade detection.
We’ve seen these actors use Sliver with—or as a replacement for—Cobalt Strike. Given
Cobalt Strike’s popularity as an attack tool, defenses against it have also improved over time.
Sliver thus presents an attractive alternative for actors looking for a lesser-known toolset with
a low barrier for entry.

First made public in late 2019 and advertised to security professionals, Sliver is an open-
source framework that’s available on GitHub and includes many common C2 framework
features such as support for multiple simultaneous operators, multiple listener types, user-
developed extensions, and payload generation. Since December 2020, we’ve observed
threat actors adopting Sliver into their arsenal.

https://www.microsoft.com/security/blog/2022/08/24/looking-for-the-sliver-lining-hunting-for-emerging-command-and-control-frameworks
https://www.ncsc.gov.uk/files/Advisory%20Further%20TTPs%20associated%20with%20SVR%20cyber%20actors.pdf
https://aka.ms/ransomware-as-a-service

2/11

Among its adopters is the prolific ransomware-as-service (RaaS) affiliate DEV-0237. More
recently, we’ve seen cybercrime actors historically tied to human-operated ransomware now
deliver Sliver and various post-compromise tools using Bumblebee malware (also known as
COLDTRAIN) as an initial access loader. Customers can learn more about Bumblebee in our
Threat Analytics report available in the Microsoft 365 Defender portal.

In this blog, we share how the researchers behind Microsoft Defender Experts for Hunting
analyzed Sliver and used both lab-simulated attacks and real-world threat activity to create
hunting queries to surface Sliver and other C2 frameworks.

Threat hunting: Part art(ifact), all science

For security researchers, there’s a distinction between hunting and detection. For novel
threats, researchers try to strike a balance between high-fidelity detection rules identifying a
specific, known malware family, threat actor, or class of behavior and low-fidelity hunting
rules, which generate more false positives but also more generically capture a technique and
its derivatives.

The following sections illustrate the art and science of how these lower-fidelity rules help
threat hunters measure and contextualize suspicious observations to find novel or stealthy
threats.

Sleuthing Sliver

Threat actors use C2 frameworks to manage their access to compromised hosts and
networks during an intrusion. A C2 framework usually includes a server that accepts
connections from implants on a compromised system, and a client application that allows the
C2 operators to interact with the implants and launch malicious commands.

Many threat actors integrate public, open-source C2 framework options into their arsenal
because these have a low barrier to entry and offer several advantages for attackers like low
cost, ease of modification, and difficult attribution. As previously mentioned, Sliver is one
such open-source framework. Although Sliver is somewhat new, the TTPs it implements are
common across many frameworks.

Below are examples of how Defender Experts hunt for these TTPs to identify Sliver and
other emerging C2 frameworks in customer environments.

Infrastructure

Sliver, like many C2 frameworks, supports various network protocols such as DNS,
HTTP/TLS, MTLS, and TCP. It can also accept implant or operator connections and host files
to impersonate a benign web server.

https://aka.ms/ransomware-as-a-service#DEV-0237
https://www.microsoft.com/security/business/siem-and-xdr/microsoft-365-defender
https://www.microsoft.com/security/business/services/microsoft-defender-experts-hunting

3/11

The first step in testing any C2 framework is starting listeners and scanning them to identify
anomalies. Some common artifacts are unique HTTP header combinations and JARM
hashes, the latter of which are active fingerprinting techniques for TLS servers. RiskIQ has
shared such a methodology for Sliver and Bumblebee detection.

Payloads

Since Sliver is written in the Go programming language (GoLang), its implants are cross-
platform compatible. By default, operators can generate implants in several formats,
including:

Shellcode
Executable
Shared library/DLL
Service

Sliver also supports stagers—smaller payloads with few built-in features that are primarily
intended to retrieve and launch a full implant. Stagers are used by many C2 frameworks to
minimize the malicious code that’s included in an initial payload (for example, in a phishing
email). This can make file-based detection more challenging.

However, operators don’t need to use Sliver’s default DLL or executable payloads. Motivated
threat actors can generate a Sliver shellcode and embed it in custom loaders like Bumblebee
that then runs the Sliver implant on a compromised system. Detection engineers can create
loader-specific detections or, if the shellcode isn’t obfuscated, rules for the shellcode payload
that is embedded in the loader.

Config extraction

When responding to a suspected intrusion, security analysts may find themselves with a
malware payload with little context. Quickly extracting key configuration details from the
malware like C2 address, network configurations, and other implant details is a crucial step
in hunting for affected devices in the network.

Many implants, including Sliver, heavily obfuscate or encrypt useful information to prolong
analysis and detection attempts. Sliver, like other implants based on GoLang, uses the public
gobfuscate library for this purpose. Several researchers have created tools to assist with “de-
gobfuscating” strings in payloads, but it is still a fairly manual process .

In such cases, we can extract configurations we are interested in more easily when they’re
loaded into memory. Sliver must de-obfuscate and decrypt its configurations to use them, so
we can scan memory for these values and extract them programmatically to get results like
configuration data, as illustrated in Figure 1 below:

[1]

https://github.com/salesforce/jarm
https://ti.defender.microsoft.com/articles/b1406335
https://ti.defender.microsoft.com/articles/0b211905
https://github.com/BishopFox/sliver/wiki/Stagers
https://github.com/unixpickle/gobfuscate

4/11

Figure 1. Sample configuration extraction from a Sliver test implant
There are similar public de-obfuscation tools for Cobalt Strike, such as
Apr4h/CobaltStrikeScan and CCob/BeaconEye.

Some malware will attempt to obfuscate or encrypt configurations in memory as well. Cobalt
Strike’s “sleep_mask” is a good example of this. However, it’s important to note that even in
these cases, the malware must decrypt the configurations when it wants to check in with the
C2 server for new instructions. Thus, extracting configurations from memory requires
intentional timing.

Code execution

Sliver includes a variety of built-in techniques and post-exploitation functionality. One of the
most common underlying techniques used by C2 operators and frameworks is process
injection, which is a method of running arbitrary code within the address space of a separate
live process.

Attackers use process injection for defense evasion, access, or privilege elevation,
distancing risky code execution, and many other reasons. As Microsoft researchers
explained: “[P]rocess injection gives attackers the ability to run malicious code that
masquerades as legitimate programs. With code injection, attackers don’t have to use
custom processes that can quickly be detected. Instead, they insert malicious code into
common trusted processes (e.g., explorer.exe, regsvr32.exe, svchost.exe, etc.), giving their
operations an increased level of stealth and persistence.” Figure 2 below illustrates how
process injection typically works:

https://github.com/Apr4h/CobaltStrikeScan
https://github.com/CCob/BeaconEye
https://www.cobaltstrike.com/blog/sleep-mask-update-in-cobalt-strike-4-5/
https://www.microsoft.com/security/blog/2017/07/12/detecting-stealthier-cross-process-injection-techniques-with-windows-defender-atp-process-hollowing-and-atom-bombing/

5/11

Figure 2.

How process injection works
Just like any other C2 framework, Sliver utilizes process injection as a core part of many
default commands or capabilities, such as:

6/11

migrate (command) – migrate into a remote process
spawndll (command) – load and run a reflective DLL in a remote process
sideload (command) – load and run a shared object (shared library/DLL) in a remote
process
msf-inject (command) – inject a Metasploit Framework payload into a process
execute-assembly (command) – load and run a .NET assembly in a child process
getsystem (command) – spawn a new Sliver session as the NT AUTHORITY\SYSTEM
user
extensions/aliases – Beacon Object Files (BOFs), .NET apps, and other third-party
tooling

Sliver also uses common process injection implementations. For example, as of this writing,
the built-in Sliver migrate command migrates to a remote process using a classic
combination of VirtualAllocEx, WriteProcessMemory, VirtualProtectEx, and finally
CreateRemoteThread Windows API calls. Other commands such as Sideload, SpawnDll,
and Execute-Assembly also rely on this combination. This sequence of injection-related API
calls is well documented, and Microsoft Defender for Endpoint generates alerts like A
process was injected with potentially malicious code based on the combination of such API
calls:

Figure 3. Example of Microsoft Defender for Endpoint alerts for injection-related API calls
Aside from process injection, Sliver provides additional familiar techniques such as lateral
movement via a PsExec command. Defender for Endpoint generates multiple alerts on such
default techniques:

https://www.microsoft.com/security/business/endpoint-security/microsoft-defender-endpoint

7/11

Figure 4. Example of Microsoft Defender for Endpoint alerts for default service installation
created by PsExec command

Surfacing Sliver threat activity

Based on our analysis of the Sliver framework, Defender Experts designed advanced
hunting queries to surface Sliver-related threat activity. These hunting queries leverage
Kusto Query Language (KQL), a query language specifically designed to work with large
datasets in Azure. Unless otherwise noted, the detection and hunting guidance in this blog
are designed for official, non-customized Sliver codebase available as of this writing.

Customers can run the following queries in the Microsoft 365 Defender portal. These queries
are examples of how hunters can key in on unique default configurations implemented by
Sliver.

Figure 5. Running advanced hunting queries in Microsoft 365 Defender

https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/
https://security.microsoft.com/v2/advanced-hunting?query=H4sIAAAAAAAAA81Y227bRhCd5wD9h82TZMSXFGmbNoWABrKduEjjIFILJGlrUCIjK5FNgrStpG3y7TlzdpfiVRZjPxQEydXu7OzMmTO7Q-3Jnhh5IpFcyEg-SoZ3JGfoeyqXco5fczxn8o3ckQWlDOQi2cc9gcRMXkgKmSv0D3B_K_flO_lRvpeH8oP8zHkqewWZKd4HaEXUm3HsP8xZyin6UtxGDiGn6zyXAFZE1Kp6e5BPJMa1QOtKdjH2AXevUctjrKWWx1hpDK-SkqYhpQJ6-pLexmyPocGOhNCQYP4Q7QWu5lWOoH3OdYIcJ0UjpqcZrro3d-UzbZhiNKVM3ZOEOt6hb0q8r1_nCBZvQ7KItO8rejvGmNoxyFsab7UtoWzVXm_RO6yl6xp5z3cIDfo-JxZG-pQ07loXby_TLWJlby3jzmBjCskxRt5zjd_QCjHyFneEVq-2oiJ9QdkQv6ozPSaWyXWEvLYt3DHRaMJ7s2g18andngkzb4lnxHX7uJriamQH9wPkYEYrd3E1M2Art6CMya_I7mPEfwB_AzI0khPEP6PHfcQpJMY-Vpofh8R7gf7M6d3jrqL5NEefwdicXNFWTC-19y1aaet-Ypk4y_23SBqsfMo-tfKZvHL5Up0xhVTAGZGLy5LWaL9xVp1i_SV_XeR9c0Z6wV3B8jYiLpb9I3pyxYg1RXBCOcvLE-Cq_vWhI6bfak0_R3gXT7V75uYsCvH3GBxwZEJ7QmC73aprCOxSWqE2X69pK8-uZvRXUTwGHsVoL-Cb4hsDIY-R5sMl3z46ulZMpAzjoBhekk1WpsyL5vicET-dMeM6EW2bFjRmebw-upjrntmVXefc_8ssmxey2PsclTD0CK3ngLX0djnQ5tMqpvc3YOd1lnVl1Hq77jq7jGPVkCvqTp0igh7162NlmVGOhM_OssXF_bR5rxsTixn31vXn9qD1ZCyf1TtcXXkXupOxeEL4uZudEtUVtztZ3O0k8reNzYicUdY3VYFFj8raime9aWRgWX7o9hDLxGf5GeFP_YT7c8RTyFvkqyU96Z5j_AC_7P69U9Fn5I1jWUaGR_KXPMJ1zJ0q4VM5PHVVg_o3wJyxY8mu_I72IWrZqpTV40d7jQjOyQDNq4C22F49U5fQse_Q1d4D-jOlPRG8eExs9PyZuH3na2PQvTKuxmdVN4QtNfCmEbVV77mrtBOiUq98Q-a39fSmte__pXb92q-NttW65dA6xNtWqFe-TRVoG1c8Dr4itTXopvL3-AWZsUJRG2-r1i7n5wtmis27an4ZRmnmmKhnZTXjquM3y7mqtj_Igkv0joh5c97118yrfzsfkSEz7hYB669eoYpq17RP6YC1mLZshaW7e-pO5A9o_wJtf2PnDLB7_QNv9al75J-4li7ndCfP2GP_X0jYLs55jbjvyE-Y-S858AnjK75aHqQl3vqrGxb7lNOaMYCkH--Kh9dW_CJYWWluxU5FesoaaFWB34adq6-cgKztuVzrkiMjavIZ0fVfnvUZUdZ9xBP8wu2N5ZOo-dvVfr_f5Pu1nm2HrCFsVedzyLiVM7Jce074v47NiEcN7PfcL0ax_h9Rt1zbLG9MqbYvI1znXpXVXwA9xcOsJhQAAA&timeRangeId=week

8/11

GetSystem

The following query finds potential launch of the built-in GetSystem command, where the
default target process of spoolsv.exe is used as the target process for injection. The query
looks for SeDebug privileges being added to a process, followed by that same process
creating a remote thread in spoolsv.exe within 30 seconds.

// SeDebugPrivilege constant used to identify if this privilege is enabled in Token
let SeDebugPriv = 1048576;
DeviceEvents
| where FileName == 'spoolsv.exe'
| where ActionType == 'CreateRemoteThreadApiCall'
| where InitiatingProcessFileName !~ 'csrss.exe'
| project InitiatingProcessId, DeviceId, CreateTime=Timestamp, FileName
| join kind=inner (
 DeviceEvents
 | where ActionType == 'ProcessPrimaryTokenModified'
 | extend TokenModTime = Timestamp
) on DeviceId, InitiatingProcessId
| where TokenModTime between ((CreateTime - 30s) .. CreateTime)
| extend JSON=parse_json(AdditionalFields)
// This line looks for SeDebugPrivilege being the ONLY privilege changed, which is
how it is implemented in Sliver
| where
binary_xor(tolong(JSON.OriginalTokenPrivEnabled),tolong(JSON.CurrentTokenPrivEnabled))
== SeDebugPriv
// Optionally comment out the above and use this line, which is more generic and
simply checks for SeDebugPrivilege not being initially enabled
//| where binary_and(tolong(JSON.OriginalTokenPrivEnabled), SeDebugPriv) == 0
| where binary_and(tolong(JSON.CurrentTokenPrivEnabled), SeDebugPriv) != 0 //
Confirming SeDebugPrivilege is enabled in Current Token
| extend TargetProcessFileName=FileName
| project-reorder DeviceName, InitiatingProcessFileName, TargetProcessFileName,
InitiatingProcessId

Shell

The following query finds the default, unique PowerShell command used when Sliver creates
an interactive shell with the ‘Shell’ command.

DeviceProcessEvents
| where ProcessCommandLine == 'powershell.exe -NoExit -Command
[Console]::OutputEncoding=[Text.UTF8Encoding]::UTF8'

Sideload/SpawnDll/Execute-Assembly

The Sideload, SpawnDll, and Execute-Assembly commands spawn and inject into
notepad.exe by default. The following query finds process creation events where the same
process creates and injects into notepad.exe within 10 seconds.

9/11

DeviceProcessEvents
| where ActionType == 'ProcessCreated'
| where ProcessCommandLine =~ 'notepad.exe'
| distinct InitiatingProcessId, DeviceId
| join kind=inner (
 DeviceEvents
 | where ActionType == 'CreateRemoteThreadApiCall'
 | where ProcessCommandLine == 'notepad.exe'
 | where Timestamp between (ProcessCreationTime .. (ProcessCreationTime+10s))
) on DeviceId, InitiatingProcessId

PsExec

The following query finds default values for the ImagePath, DisplayName, and Description of
the service installed on the remote system when using Sliver’s PsExec command.

DeviceRegistryEvents
| where ActionType == 'RegistryValueSet'
| where (RegistryValueName == 'ImagePath' and RegistryValueData matches regex @'^[a-
zA-Z]:\\windows\\temp\\[a-zA-Z0-9]{10}\.exe') or
 (RegistryValueName == 'DisplayName' and RegistryValueData == 'Sliver') or
 (RegistryValueName == 'Description' and RegistryValueData == 'Sliver
implant')

The following query is an alternative method of searching on the same service properties but
within service installation events instead of registry keys.

DeviceEvents
| where ActionType == 'ServiceInstalled'
| extend JSON = parse_json(AdditionalFields)
| where (FolderPath endswith_cs @':\windows\temp' and FileName matches regex @'^[a-
zA-Z0-9]{10}\.exe') or (JSON.ServiceName == 'Sliver')

Building resilience against future attacks with threat hunting

Our analysis of Sliver’s source code and functionality reveals hunting opportunities that can
also be adapted for use against other malware frameworks. In addition, Sliver and many
other C2 frameworks are yet another example of how threat actors are continually attempting
to evade automated security detections. Threat hunting provides an added layer to other
security mitigations and can help address areas of defense evasion. By focusing research
efforts on the underlying attacker techniques used within Sliver, detections and threat hunting
strategies are more resilient to future changes in attacker toolsets implementing those
techniques.

Defender Experts is part of Microsoft’s global network of more than 8,500 security experts
that further enriches our vast cross-domain signals and lets us deliver coordinated threat
defense in our security products and solutions. As seen in our research on Sliver, our
monitoring of the threat landscape informs advanced, high-fidelity KQL queries that are then

10/11

thoroughly tested to form the basis of our Defender Experts Notifications. These notifications
are designed to identify the most important risks, and provide technical information, as well
as hunting and mitigation guidance.

Our insights from threat hunting and monitoring also feed into products like Microsoft
Defender for Endpoint that then alert customers to malicious activity seen with C2
frameworks like Sliver. The following titles in the security center can indicate threat activity on
their networks:

Ransomware-linked emerging threat activity group detected
Suspicious behavior by cmd.exe was observed
Suspicious sequence of exploration activities
Suspicious data transfer
Suspicious System Network Configuration Discovery
Process hollowing detected
A process was injected with potentially malicious code
Suspicious Peripheral Device Discovery
Abnormal Remote Service Execution
Suspicious file dropped
Suspicious command launched from a remote location
Suspicious files or content obfuscation/de-obfuscation activity

Microsoft customers can also apply the following security mitigations to reduce the impact of
Sliver and other similar threats:

Turn on network protection. Network protection helps prevent users from accessing
dangerous domains and IP addresses. Check your perimeter firewall and proxy to
restrict servers from making arbitrary connections to the internet to browse or download
files. Such restrictions help inhibit malware downloads and C2 activity including mobile
devices.
Use Microsoft Defender Firewall, which, along with your network firewall, prevents
remote procedure call (RPC) and service message block (SMB) communication along
endpoints whenever possible. This limits lateral movement and other attack activities.
Turn on cloud-delivered protection and automatic sample submission on Microsoft
Defender Antivirus. These capabilities use artificial intelligence and machine learning to
quickly identify and stop new and unknown threats.
Check your Office 365 email filtering settings to ensure you block spoofed emails,
spam, and emails with malware. Use Microsoft Defender for Office 365 for enhanced
phishing protection and coverage against new threats and polymorphic variants.
Configure Office 365 to recheck links on click and delete sent mail in response to newly
acquired threat intelligence.

https://docs.microsoft.com/microsoft-365/security/defender/onboarding-defender-experts-for-hunting?view=o365-worldwide#receive-defender-experts-notifications
https://endpoint.microsoft.com/#blade/Microsoft_Intune_DeviceSettings/DevicesMenu/configurationProfiles
https://support.microsoft.com/windows/turn-microsoft-defender-firewall-on-or-off-ec0844f7-aebd-0583-67fe-601ecf5d774f
https://docs.microsoft.com/microsoft-365/security/defender-endpoint/enable-cloud-protection-microsoft-defender-antivirus?view=o365-worldwide
https://docs.microsoft.com/microsoft-365/security/office-365-security/overview?view=o365-worldwide
https://docs.microsoft.com/microsoft-365/security/office-365-security/safe-links?view=o365-worldwide
https://docs.microsoft.com/microsoft-365/security/office-365-security/zero-hour-auto-purge?view=o365-worldwide

11/11

Organizations can also follow these general best practices to make their networks resilient
against attacks:

Harden the cloud. As attackers move towards cloud resources, it’s important to secure
cloud resources and identities as well as on-premises accounts. Security teams should
focus on hardening security identity infrastructure, enforcing multifactor authentication
(MFA) on all accounts, and treating cloud admins/tenant admins with the same level of
security and credential hygiene as Domain Admins.
Close security blind spots. Organizations should verify that their security tools are
running in optimum configuration and perform regular network scans to ensure a
security product protects all systems.
Reduce the attack surface. Establish attack surface reduction rules to prevent
common attack techniques used by C2 frameworks.
Evaluate the perimeter. Organizations must identify and secure perimeter systems
that attackers might use to access the network. Public scanning interfaces can be used
to augment data.
Harden internet-facing assets. Attackers use unpatched vulnerabilities, whether
already disclosed or zero-day, especially in the initial access stage to get the C2
framework onto the target systems. They also rapidly adopt new vulnerabilities. To
further reduce exposure, organizations can use endpoint detection and response
(EDR) products with threat and vulnerability management capabilities, such as
Microsoft Defender for Endpoint, to discover, prioritize, and remediate vulnerabilities
and misconfigurations.

To find out how you can extend your ability to defend and manage your security with
managed services from Microsoft, learn more about Microsoft Security Experts.

Appendix

Microsoft 365 Defender detections

Microsoft Defender Antivirus

Microsoft Defender Antivirus detects Sliver threat components as the following malware:

Microsoft Defender Antivirus also detects Bumblebee loader as the following malware:

Trojan:Win64/Bumblebee
Trojan:Win64/BumbleBeeLoader
Trojan:PowerShell/Bumblebee

Automated string de-gobfuscation, Kryptos Logic[1]

https://docs.microsoft.com/azure/active-directory/roles/best-practices
https://docs.microsoft.com/microsoft-365/security/defender-endpoint/attack-surface-reduction?view=o365-worldwide
https://www.microsoft.com/security/business/cloud-security/microsoft-defender-external-attack-surface-management
https://digital.nhs.uk/cyber-alerts/2022/cc-4002
https://www.microsoft.com/security/business/services
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Trojan:Win64/Bumblebee!MSR&threatId=-2147149680
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Trojan:Win64/BumbleBeeLoader.AG!MSR&threatId=-2147148047
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Trojan:PowerShell/Bumblebee.RQB!MTB&threatId=-2147147633
https://www.kryptoslogic.com/blog/2020/12/automated-string-de-gobfuscation/

