
1/35

From Ramnit To Bumblebee (via NeverQuest): Similarities
and Code Overlap Shed Light On Relationships Between
Malware Developers

securityintelligence.com/posts/from-ramnit-to-bumblebee-via-neverquest

Home / Malware
From Ramnit To Bumblebee (via NeverQuest): Similarities and Code Overlap Shed Light On
Relationships Between Malware Developers

https://securityintelligence.com/posts/from-ramnit-to-bumblebee-via-neverquest
https://securityintelligence.com/
https://securityintelligence.com/category/x-force/malware-threat/

2/35

Malware August 18, 2022
By Charlotte Hammond co-authored by Ole Villadsen 26 min read
A comparative analysis performed by IBM Security X-Force uncovered evidence that
suggests Bumblebee malware, which first appeared in the wild last year, was likely
developed directly from source code associated with the Ramnit banking trojan. This newly
discovered connection is particularly interesting as campaign activity has so far linked
Bumblebee to affiliates of the threat group ITG23 (aka the Trickbot/Conti group), who are not
known to have had a previous connection with Ramnit.

This year has so far proven tumultuous for ITG23 – the group suffered a series of high profile
leaks, referred to as the ContiLeaks and TrickLeaks, which resulted in the publication of
thousands of chat messages and the doxxing of numerous group members. In addition, the
group have seemingly retired two of their most high-profile malware families, Trickbot and
Bazar, and shutdown their Conti ransomware operation.

Various reports have suggested that a significant reshuffling of personnel may be occurring,
with ITG23 splitting into several factions and some members moving on entirely. The
appearance of Ramnit code within Bumblebee may be indicative of this flux and a sign that
new alliances are being formed, which could be a prelude to new types of attack campaigns.

This research highlights previously unreported similarities and code overlaps between the
Bumblebee and Ramnit malware families. It also examines the links between these two
malware families, ITG23’s Trickbot malware, and the retired NeverQuest banking trojan.

The findings include:

Significant code overlap between Bumblebee and Ramnit, suggesting they may share
the same developer

https://securityintelligence.com/category/x-force/malware-threat/
https://securityintelligence.com/author/charlotte-hammond/
https://securityintelligence.com/author/ole-villadsen/
https://securityintelligence.com/posts/trickbot-gang-doubles-down-enterprise-infection/
https://www.forbes.com/sites/daveywinder/2022/07/15/inside-the-russian-cybergang-thought-to-be-attacking-ukraine-the-trickbot-leaks/?sh=231a838276a8

3/35

A custom code library used in both the Bumblebee/Ramnit malware and Trickbot trojan,
indicating possible historical code sharing
Evidence of potential collaboration between the developers of NeverQuest and Trickbot
in the early days of Trickbot’s development

The analysis below provides further detail and explanations on the unique aspects observed
between Bumblebee and Ramnit, and how they can be connected back to Trickbot and
finally traced to their suspected origins within the retired NeverQuest banking trojan.

From Ramnit to Bumblebee

Ramnit is an older malware that originated in 2010 as a worm and swiftly evolved into a
modular backdoor and banking trojan. Ramnit spread prolifically over the next few years,
growing into a botnet with several million systems infected worldwide until it was subject to a
takedown by Europol in early 2015. The impact of the takedown did not last long and by the
end of 2015 Ramnit returned and was once again in active development. The malware
struggled to regain its previous momentum, however, and the following years were
characterised by campaigns of activity followed by periods of quiet.

A notable development occurred in mid-2018, when Ramnit relaunched, infecting 100,000
devices in two months, and demonstrating significant code updates. This included the
addition of new loader modules which made extensive use of a custom hooking library for
both payload execution and AV evasion; web injects were updated from Zeus-style to Lua-
style; and a new name ‘Camellia’ appeared, replacing the original ‘Demetra’ designation. The
reason for this overhaul is unknown, but some researchers noted that the code style had
changed and speculated that it may have new developers.

Ramnit went through another quieter period during 2019 and 2020, with no significant
developments observed. Then in early 2021, new Ramnit samples were observed using the
internal name ‘hooker2.dll’, which matched several of the samples observed during Ramnit’s
resurgence in August 2018. The sample code was similar to its 2018 counterparts but had
gone through several updates, which included the addition of the OpenSSL library.

In August 2021, X-Force spotted a new malware that we shall now refer to as ‘Bumblebee
Beta’ being deployed during a campaign exploiting the CVE-2021-4044 Microsoft Office
vulnerability. This activity was attributed to the initial access broker “Exotic Lily”, which X-
Force tracks as Hive0110, and who have previously distributed BazarLoader. This new
malware primarily operated as a downloader and was capable of receiving payloads, such as
Cobalt Strike, from the C2, which it would inject into a process randomly chosen from a
hardcoded list. It was notable for using the user-agent string ‘bumblebee‘, which overlaps
with the full version and is how the malware’s eventual name was derived. During our
analysis at the time, we observed a number of significant code overlaps with Ramnit,
including identical lists of inject targets, similar hooking and unhooking code, use of the

https://exchange.xforce.ibmcloud.com/malware-analysis/guid:7680268ad009c082847e5dd9062549d8
https://securityintelligence.com/ramnit-evolution-from-worm-to-financial-malware/
https://thehackernews.com/2015/02/europol-takes-down-ramnit-botnet-that.html
https://securityintelligence.com/the-return-of-ramnit-life-after-a-law-enforcement-takedown/
https://securityintelligence.com/ramnit-rears-its-ugly-head-again-targets-major-uk-banks/
https://securityintelligence.com/news/ramnit-infects-more-than-100000-machines-in-two-months/
https://www.vkremez.com/2018/08/lets-learn-in-depth-into-latest-ramnit.html
https://securityintelligence.com/the-business-of-organized-cybercrime-rising-intergang-collaboration-in-2018/
https://blog.google/threat-analysis-group/exposing-initial-access-broker-ties-conti/

4/35

OpenSSL library and the presence of two unused intermediary loader binaries stored in the
malware data section, which were almost identical to those used in the 2018 and 2021
variants of Ramnit.

In March 2022, the full version of Bumblebee was released and quickly used in a number of
large scale campaigns by distribution affiliates of threat group ITG23 (also known as the
Trickbot/Conti group), such as Exotic Lily, TA579, and TA578 (tracked by X-Force as
Hive0107). The malware appeared to be being used as a replacement for ITG23’s
BazarLoader which had not been seen since February and has been observed downloading
payloads including Cobalt Strike, Sliver, and Meterpreter. Bumblebee has also since been
linked to ransomware operations involving Conti and MountLocker/Quantum.

Bumblebee had received several updates over the prior six months and now has full C2
communication and task functionality implemented, as well as the inclusion of anti-AV and
anti-analysis code. It is capable of gathering system information, installing itself for
persistence, and receiving and loading payloads including DLLs and shellcode. The
previously unused intermediary loader binaries, observed in Bumblebee Beta, are now used
as part of the fully implemented payload injection process.

Bumblebee still bears significant resemblance to Ramnit and in addition to the previously
mentioned similarities, such as the inject and hooking functionality, Bumblebee was also
found to contain the string ‘Z:\hooker2\Common\md5.cpp‘ suggesting it may have used
code from a project called ‘hooker2‘ which is the internal name used in several of the 2018
and 2021 Ramnit samples. An identical string was also then found in a 2021 Ramnit sample.

The NeverQuest Connection

While investigating the potential links between Ramnit and ITG23 in an effort to understand
the relationship between the groups, we — like several other researchers — also noted the
code overlap between Ramnit/Bumblebee and the Trickbot WebInject modules which may
indicate that some code sharing has occurred between the two groups. Finally, we were
eventually able to trace a significant portion of the code back to an old, now defunct, banking
trojan called NeverQuest – also known as Vawtrak.

NeverQuest was a major player in the field of banking trojans from 2013 through to early
2017 when one of its developers was arrested in Spain. It is thought that the IcedID malware,
which was discovered by IBM in September 2017, is likely to be the successor of
NeverQuest. The NeverQuest group reportedly had a close relationship with Dyre, aka
Dyreza, the predecessor of Trickbot, potentially explaining the close relationship between the
Trickbot and IcedID groups today.

https://www.bleepingcomputer.com/news/security/new-bumblebee-malware-replaces-contis-bazarloader-in-cyberattacks/
https://www.proofpoint.com/us/blog/threat-insight/bumblebee-is-still-transforming
https://symantec-enterprise-blogs.security.com/blogs/threat-intelligence/bumblebee-loader-cybercrime
https://research.nccgroup.com/2022/04/29/adventures-in-the-land-of-bumblebee-a-new-malicious-loader/
https://elis531989.medium.com/the-chronicles-of-bumblebee-the-hook-the-bee-and-the-trickbot-connection-686379311056
https://securityintelligence.com/new-neverquest-variant-spotted-in-the-wild/
https://securityintelligence.com/neverquest-gang-takes-leave-is-it-the-end-of-the-quest/
https://securityintelligence.com/new-banking-trojan-icedid-discovered-by-ibm-x-force-research/
https://securityintelligence.com/the-business-of-organized-cybercrime-rising-intergang-collaboration-in-2018/

5/35

Dyre was another older banking trojan that operated around the same time as NeverQuest,
until it suffered a takedown at the hands of Russian law enforcement at the end of 2015. Its
successor Trickbot was released less than a year later, along with a module responsible for
performing browser injects. Analysis of module samples reveals that even in its earliest
stages of development in 2016, the Trickbot web inject module already contained code
associated with NeverQuest. Given the close relationship between NeverQuest and Dyre, it
is not hard to imagine that NeverQuest may have offered to share code with their associates
in order to help get Trickbot off the ground.

The link between the Trickbot group and Ramnit is less clear, as there has been less
observable cooperation between the two groups. However, during our investigation we did
note that the NeverQuest code did not seem to be present in any of the older Ramnit
samples we analysed; it seems that code may have only been added during Ramnit’s
revamp in 2018. It was speculated at the time that the revamp may suggest that Ramnit had
new developers, and it’s possible those developers may have had some sort of link with the
Trickbot group. Notably, during its upgrade, Ramnit also switched to using LUA-style web
injects which is a language favoured by IcedID.

One challenge we faced during this exercise was tracking the provenance of the code used
in the myriad of samples analysed. Many banking trojans today are based on the publicly
available leaked source code of several older trojans including Zeus, Carberp, and Gozi.
When assessing code overlap between malware families, it’s therefore important to
determine whether the code in question comes from a public source, as in that instance its
presence in both malware families may just be a coincidence rather than indicating any sort
of significant relationship.

NeverQuest borrows code heavily from the leaked Gozi source, and parts of this code have
also made their way into Ramnit and Bumblebee, so when doing our comparison we were
careful to focus on areas that couldn’t be attributed to a public source. To this end, much of
our research focuses on a hooking library that is shared across all the malware families
analysed in this report, but that we have not been able to trace back to any public source.
Our research findings indicate that this library may have been originally created by the
developers of NeverQuest, and then later shared with the Trickbot group – eventually ending
up in Ramnit and Bumblebee.

Analysis Details

A number of samples were analysed for the purpose of this research, the full details of which
are presented in the Sample Hashes table at the end of this report. This includes sets of
Ramnit samples dating back to 2018 and 2021, Bumblebee Beta samples from 2021, and
Bumblebee samples from 2022. In addition, samples including NeverQuest, Karius, and
Trickbot’s inject modules, were analysed for the purposes of comparison and provenance
tracking.

https://securityintelligence.com/dyre-straights-group-behind-the-dyre-trojan-busted-in-moscow/
https://securityintelligence.com/news/trickbot-malware-resurrects-the-ghost-of-dyre/
https://securityintelligence.com/tricks-of-the-trade-a-deeper-look-into-trickbots-machinations/

6/35

Ramnit’s Revamp

In 2018, after a brief hiatus, Ramnit relaunched with great potency, infecting 100,000 devices
in two months and boasting new loaders and an upgraded code base. Campaigns involving
the sLoad dropper were widely reported on and attributed to TA554. At this point, Ramnit
was demonstrating a complex multi-component loading mechanism, including a
dropper/installer utilising VBS and Powershell scripts.

This research focuses on the unpacked components of Ramnit outlined in the diagram
below, specifically the Camellia Loaders, Hook Loaders, and Hooker2 module. The
functionality of the Ramnit Core binary, rmnsoft.dll, did not change significantly and is not
covered in this report.

Figure 1 — Diagram showing the relationship between different Ramnit components
including the Hook Loaders, Ramnit Core, Hooker2 module, and WebInject module.

The Hook Loaders

Ramnit’s Hook Loaders are small binaries with the primary function to load a payload by
hooking the Windows API functions ZwOpenFile, ZwCreateSection, ZwOpenSection and
ZwMapViewOfFile. The process of function hooking, as used in this example, involves
accessing the target library module in memory and overwriting the code at the start of the
target function such that the flow of execution is redirected to a function supplied by the
malware.

In this instance, the functions ZwOpenFile, ZwCreateSection, and ZwOpenSection are
hooked and redirected to functions within the loader which check the parameters being
passed for a file named ‘wups.dll‘, before directing execution back to the original API
function.

In the hook function for ZwMapViewOfSection, if the call is determined to be related to the
loading of file ‘wups.dll’, then the payload data is retrieved, and a new memory section is
created and the payload binary mapped into it. The address of this new section is then
copied to the BaseAddress variable which is an output parameter for ZwMapViewOfSection.
The result of this is that when ZwMapViewOfSection is called in relation to file ‘wups.dll’, the
address of the loaded payload will be returned instead of that of wups.dll.

https://www.vkremez.com/2018/08/lets-learn-in-depth-into-latest-ramnit.html
https://www.cybereason.com/blog/research/banking-trojan-delivered-by-lolbins-ramnit-trojan
https://www.proofpoint.com/us/threat-insight/post/sload-and-ramnit-pairing-sustained-campaigns-against-uk-and-italy

7/35

Once these hooks have been set, the loader calls the Windows API function LdrLoadDll with
‘wups.dll’ as the parameter. The function LdrLoadDll is used for loading DLLs, and it makes
use of the APIs ZwOpenFile, ZwCreateSection, ZwOpenSection and ZwMapViewOfFile as
part of its loading process. So, when the loader calls LdrLoadDll, this triggers the hooked
functions and results in the loading of the payload in place of wups.dll, as described above.
As part of the standard DLL loading process LdrLoadDll will also call the loaded DLL’s
entrypoint which in this case results in the execution of the payload.

Different versions of the Hook Loader may use DLL names other than wups.dll, and samples
using names such as sbe.dll, dimsroam.dll and dimsjob.dll have also been observed.

The main function for the Hook Loader showing the installation of the hooks and execution of
LdrLoadDll can be seen in the image below.

8/35

Figure 2 — Main function for the Ramnit Hook Loader showing the installation of the hooks
and execution of LdrLoadDll

Two variations of the Hook Loader appear to be in use. One is used as a standalone loader
and has its payload stored within its data section. The second type we have referred to in
this report as an intermediary loader, which is used by a parent loader during the loading
process, and require the payload details to be supplied as parameters during execution. The
parent executes the intermediary loader and passes the memory address of the payload to it
using the DllEntrypoint function’s ‘Reserved’ parameter, and the intermediary loader, in turn,
loads the given payload.

9/35

Upgraded versions of the intermediary Hook Loaders were observed in the 2021 Ramnit
sample set, which could receive an RC4 encrypted payload that the loader decrypted just
prior to loading into the allocated memory section. A 4-byte RC4 key would be passed to the
intermediary loader by the parent along with the payload address.

This updated variant of the Hook Loader was also observed in Bumblebee samples.

The Hooking Library

Many of the samples analysed throughout this report all make use of the same custom
hooking library for the process of setting hooks and storing information about set hooks. We
have not been able to trace this hooking code back to any public source and the code does
not match the hooking functions found in the leaked source code for trojans such as Gozi,
Carberp, and Zeus. Our analysis indicates that this hooking library was likely developed by
NeverQuest, aka Vawtrak in 2013, and since then it has shown up in Trickbot inject modules
starting in 2016, Ramnit binaries from 2018, and Bumblebee from 2021.

The hooking library is easily recognisable. It makes use of a hook store that contains
information about installed hooks including function addresses and the original code so the
function can be restored once the hook is no longer needed. An initialization function, usually
run during the start of the malware’s execution, will allocate space for the hook store using
VirtualAlloc. The size of each hook store object is 71 bytes in most 32-bit implementations
and this constant can be useful in identifying the hook library code. The size of the hook
store object in 64-bit implementations appears to be 60 bytes.

Figure 3 — Hook library initialization function, referencing notable 32-bit hook object size of
71 bytes.

10/35

Figure 4 — The hook creation function within a 2021 Ramnit sample. At this point several of
the library’s other functions have been updated to use control flow flattening code
obfuscation, which was not present in the 2018 samples.

Ramnit’s Unhooking Code

Hooking is not just confined to malware – it has many different applications and is often used
by security software to examine the behaviour of processes and look for malicious activity.
One piece of code which is seen repeatedly throughout the Ramnit binaries checks a
hardcoded list of API functions for any hooks that might already be set, for instance by
security applications, and removes them by restoring the code at the start of the function with
the original code as found in the corresponding DLL file stored on disk. Note, this
functionality does not seem to make use of hooking library referenced above.

Similar code can also be seen within the Hook Loaders used within the Bumblebee samples.

11/35

Figure 5 — Ramnit’s API unhooking function

The Camellia Loader

The Camellia Loader is usually found as a second or third stage loader in the Ramnit loading
process and is generally loaded by the standalone version of the Hook Loader such as that
described above. The purpose of the Camellia Loader is to load and execute its payload via
process injection. A significant amount of the code base of the Camellia Loader can be
traced back to source code from the leaked Gozi malware, specifically Gozi’s ‘activdll’
module which contains process injection functions.

Upon execution, the Camellia loader creates a new thread to run its main functionality and
uses the same unhooking function described above to check a hardcoded list of APIs for
hooks and restore them to their original states. The loader then selects a random process
from the following hardcoded list, which will be used as the process injection target. It should
be noted that this process list does not appear within the Gozi source and so seems to
originate from Ramnit.

%PROGRAMFILES%\Windows Photo Viewer\ImagingDevices.exe

%PROGRAMFILES%\Windows Mail\wab.exe

%PROGRAMFILES%\Windows Mail\wabmig.exe

%PROGRAMFILES%\Windows Media Player\wmplayer.exe

%PROGRAMFILES%\Windows NT\Accessories\wordpad.exe

12/35

The loader uses the Windows Management Instrumentation (WMI) interface to create a new
instance of the selected process in suspended mode. It then gets a handle on the newly
created process and parses it to identify the address of the process entrypoint or first TLS
callback function, if applicable, which will be the address of the first function executed by the
process. The loader then patches the code at this address, replacing it with the following
code, which calls the Sleep API in an infinite loop.

31 c0 xor eax,eax

31 db xor ebx,ebx

31 c9 xor ecx,ecx

68 e8 03 00 00 push 0x3e8

b8 ?? ?? ?? ?? mov eax,<Sleep_Address>

ff d0 call eax

eb ec jmp 0x0

At this point the loader enters code that closely matches Gozi’s ProcessInjectDll function.
The comments in the code for this function also provide a concise explanation for why the
process needed to be patched to enter an infinite loop prior to injection:

// Injects current DLL into the process described by lpProcessInformation structure.
 // We cannot just inject a DLL into the newly-creted process with main thread

suspended. This is because the main thread
 // suspends BEFORE the process initializes. Injecting a DLL will fail within LoadLibrary

function.
 // So we have to make sure the process is completely initialized. To do that we put an

infinitive loop into the processes OEP.
 // Then we resume the main thread and wait until it reaches OEP. There we inject a DLL,

restore the OEP and resume the main thread.

The code resumes the created process and waits until it is fully initialized, before suspending
it again. It then creates a new memory section and maps a view of the memory section in
both the current process and the target process. This makes the memory section available to
both the loader process and the newly created target process. The loader then takes its
payload, which is a DLL file stored within its data section and loads it into the new memory
section.

It also copies into the memory section a structure containing information about the payload,
as well as a ‘LoaderStub’ function which is responsible for performing the rest of the steps to
properly load the payload DLL in the target process. The loader then gets the context for the

https://ghoulsec.medium.com/reddev-series-3-spawn-process-from-wmi-in-c-26bd84bb9cc8
https://github.com/t3rabyt3-zz/Gozi/blob/master/AcDll/activdll.c#L824

13/35

target thread and updates it to execute an InjectStub function, which in turn executes the
copied LoaderStub function. The target process is resumed and the LoaderStub function
executes within the target process. The LoadStub function finishes loading the payload DLL
within the target process, and finally executes the payload at its entry point.

The payload for the Camellia Loader is often the Ramnit Core module, rmnsoft.dll.

Figure 6 — The main function for the Camellia Loader

Hooker2

Hooker2 is the controller module for Ramnit’s web injection modules. These modules are
injected into web browser processes where they can monitor and intercept web requests
made through the browser. They may be configured to steal information such as credentials
and banking and payment information.

Hooker2 acts as the controller and loader for the web injection binaries, and it is primarily
designed to target the web browsers Internet Explorer, Microsoft Edge, Firefox, and Google
Chrome. It has two binaries stored within its resources which are the 32 and 64 bit web
injection modules. It also contains 32 and 64 bit binaries within its data section, which are
intermediary hook loaders, as described earlier in this report.

Hooker2 starts by checking and adjusting the settings for the above listed browsers in order
to weaken their security; this includes modifying registry settings and updating command line
arguments in shortcut files. It then monitors running processes on the system for any

14/35

instances of the target web browsers – if found, it proceeds to inject its payloads into the
browser process.

Similar to the Camellia Loader, Hooker2 also makes use of code based on the Gozi
ProcessInjectDll and AdInjectImage functions in order to accomplish the injection of its
payloads into the target browser process. In this case, however, it is injecting two binaries
into the target process – the intermediary hook loader and the web inject module (either the
32-bit or 64-bit versions depending on the target process architecture).

Hooker2 goes through the same steps as the Camellia Loader, creating a new memory
section, mapping a view of the memory section in both the current process and the target
process, and then building the Hook Loader binary within the created memory section. It then
repeats this process for the webinject payload.

This procedure is illustrated in the screenshot below.

Figure 7 — Image showing the creation of memory sections and views in current and target
processes, and copying payloads into the sections

Hooker2 then creates a ‘Loader Context’ structure which is stored directly after the hook
loader in memory and contains information about the web inject payload, as well as a copied
Loader Stub function. Finally, a function is called which executes the Loader Stub function
within the target process, which in turn loads and executes the Hook Loader binary. The
Hook Loader binary then uses its hooking technique, described earlier in this report, to load
and execute the final Web Inject module payload.

15/35

Figure 8 — Population of Loader Context structure and execution of code within target
process.

Ramnit’s 2021 Updates

In addition to the 2018 samples, we analysed two sets of Ramnit binaries compiled in early
2021. Overall the structure and functionality of these newer samples hadn’t changed
significantly, but we noted the following updates:

Hooker2 module updated to target the Thunderbird email application in addition to web
browsers, and includes code targeting email clients. The web browser targeting code is
also updated.
Addition of the OpenSSL library, which was not included in the 2018 samples.
Inclusion of string Z:\hooker2\Common\md5.cpp in the Hooker2 binary.
The LoaderStub function is updated with control-flow flattening obfuscation.
Several of the functions within the hooking library are also updated to use control-flow
flattening obfuscation.

16/35

The Intermediary Hook Loaders are updated with the ability to decrypt the supplied
payload using RC4, and now have the internal name RapportGP.dll.
The list of process injection targets in the Camellia Loader is reduced to the following:

%PROGRAMFILES%\Windows Photo Viewer\ImagingDevices.exe
%PROGRAMFILES%\Windows Mail\wab.exe
%PROGRAMFILES%\Windows Mail\wabmig.exe

At this point, it starts to become noticeable how the state of the malware is shifting closer
towards Bumblebee, which contains all the above listed features, except the first.

The Birth of Bumblebee

In August 2021, we observed an unusual campaign exploiting the CVE-2021-4044 Microsoft
Office vulnerability, which involved the distribution of specially crafted Microsoft Office
documents via phishing emails. The malicious document contained an OLEObject linking to
an external, malicious HTML file, which was downloaded upon opening the document, or
even previewing it in Explorer. The HTML file contained malicious, obfuscated Javascript
which is parsed within Microsoft Office by the MSHTML engine. The code creates an ActiveX
control constructed to download a malicious .cab file from an external site, which is saved
with a name such as championship.inf, then located by the javascript via directory traversal
and executed as a CPL file.

The downloaded file was a previously unknown backdoor but now recognised as an early
version of Bumblebee. It incorporates the OpenSSL and Boost libraries and is also notable
for using the user-agent bumblebee. Upon execution, it connects to its C2 and receives a
JSON-formatted command containing a base64 encoded shellcode payload, which it injects
into a process and executes.

Upon first glance, this early version of Bumblebee does not resemble the Ramnit binaries
much at all as its main function is almost entirely taken up by large chunks of code from the
OpenSSL and JSON libraries used by Bumblebee for connecting to the C2 and generating or
parsing the JSON-formatted data being sent and received. However, closer inspection
reveals several notable similarities.

Firstly, immediately after entering the DllMain function, Bumblebee initialises a hook store
object very similar to those used in the Ramnit samples, indicating that it is likely using the
same hooking library.

https://www.microsoft.com/security/blog/2021/09/15/analyzing-attacks-that-exploit-the-mshtml-cve-2021-40444-vulnerability/

17/35

Figure 9 — Hook store initialisation code indicates Bumblebee is likely using the same
hooking code as Ramnit

Later on in the code, once Bumblebee has received its payload from the C2, it selects a
process to inject the payload into a hardcoded list that matches exactly the list used in the
2021 version of the Ramnit Camellia Loader.

Figure 10 — The list of process injection targets in Bumblebee Beta

Once a process has been selected, Bumblebee creates a new instance of the process in
suspended mode using the Windows Management Instrumentation (WMI) interface, and
then patches the entrypoint of the process, replacing it with code that calls the SleepEx API
in an infinite loop. This chain of events is also almost identical to that performed by the
Camellia Loader.

18/35

Figure 11 — Patching code from 64-bit Bumblebee sample (left) compared with the
equivalent 32-bit code from a Camellia Loader sample (right)

The function to inject the payload into the target process has some similarities to that used in
Camellia Loader and Hooker2 in that it still injects the payload into the target process by
creating and mapping views of a shared memory section in both the current and target
processes. However, it is much simpler than the version of the injection function used by
Ramnit, it does not use the LoaderStub code or loader context structures, and instead
executes the payload code by calling the NtQueueApcThread API. This difference may be a
result of the payload being shellcode rather than a full DLL binary which requires more
complex loading mechanisms.

19/35

A final, significant observation is that the Bumblebee Beta binary contains 32 and 64-bit
Hook Loader binaries within its data section, despite not using them within its injection
function. These Hook Loaders are almost identical to those found in the 2021 Ramnit
samples; they include the ability to decrypt a provided payload using RC4 and use the name
RapportGP.dll also seen in the 2021 Ramnit versions.

Bumblebee 1.0

In March 2022, the full version of Bumblebee was released, with full C2 communication and
task functionality implemented, as well as the inclusion of anti-AV and anti-analysis code
taken from the Al-Khaser Project. It is capable of gathering system information, installing
itself for persistence, and receiving and loading payloads including DLLs and shellcode. The
intermediary Hook Loaders are still present and are now used as part of the fully
implemented payload injection process.

A full analysis of the campaigns involving Bumblebee is outside the scope of this report but
detailed write-ups can be found here, here and here.

Like its predecessor, the full version of Bumblebee still uses the OpenSSL library for network
communication, and requests and responses between itself and the C2 are JSON formatted,
albeit with a much more detailed structure. Bumblebee gathers basic system information
about the infected host which it converts to JSON and sends to the C2, and in return
receives a JSON formatted response containing task data.

Bumblebee is currently capable of carrying out the following tasks:

Task Name Description

ins Install persistence

shi Inject Shellcode payload

dij Inject DLL payload

dex Save payload to disk and execute

sdl Delete self

The shi command instructs Bumblebee to inject a shellcode payload, and this procedure is
very similar to the one seen in Bumblebee Beta. Bumblebee selects a target process from
the following hardcoded list of processes, which is noted to be the same as Bumblebee Beta

https://github.com/LordNoteworthy/al-khaser
https://elis531989.medium.com/the-chronicles-of-bumblebee-the-hook-the-bee-and-the-trickbot-connection-686379311056
https://www.proofpoint.com/us/blog/threat-insight/bumblebee-is-still-transforming
https://research.nccgroup.com/2022/04/29/adventures-in-the-land-of-bumblebee-a-new-malicious-loader/

20/35

and Ramnit:

%PROGRAMFILES%\Windows Photo Viewer\ImagingDevices.exe
%PROGRAMFILES%\Windows Mail\wab.exe
%PROGRAMFILES%\Windows Mail\wabmig.exe

It then uses the same injection and execution method observed in Bumblebee Beta to inject
the payload into the target process and execute it using the NtQueueApcThread API.

The dij command instructs Bumblebee to inject a DLL payload into a process chosen from
the same hardcoded list as above. This method more closely resembles the Gozi-based
injection method used in the Ramnit Hooker2 module, including the use of the intermediary
hook loader binary and loader stub code. The injection function first creates a new memory
section for the hook loader, maps views to the section in both the current and target process,
and then builds the hook loader within the section. A second memory section is created and
the payload DLL copied into it. The function then creates the ‘Loader Context’ structure
directly after the hook loader in memory and populates it with information about the payload,
as well as the copied Loader Stub function. Finally, the Loader Stub function is executed
within the target process using the NtQueueApcThread API, which in turn loads and
executes the Hook Loader binary. The Hook Loader binary then uses its hooking technique,
described earlier in this report, to load and execute the final payload.

The below image shows the DLL injection function within Bumblebee and similarities can be
seen with the equivalent function within Hooker2, illustrated previously.

21/35

Figure 12 — Bumblebee DLL Injection function showing similarities to the Gozi-based
injection function used in Hooker2

The LoaderStub function used by Bumblebee is very similar to that used in the 2021 Ramnit
samples and also includes the control flow flattening obfuscation. The below image shows
the execution of the Hook Loader by the Loader Stub function. Information about the payload
is passed as a parameter to the Hook Loader, including the payload address, size, entrypoint
export name, and RC4 key for decryption.

Figure 13 — Execution of the Hook Loader within the Loader Stub function.

The dex command saves the received payload to disk at the path
%LocalAppData%\wab.exe and then executes it using the WMI interface. The use of WMI
for process creation was also observed in Ramnit.

For persistence, Bumblebee copies itself to the %AllUsersAppData% folder and creates a
VBS file using WScript designed to execute the copied binary. Finally, a scheduled task is
created which executes the VBS script when run.

For deletion, Bumblebee executes a Powershell command designed to delete itself from disk
and then exits.

Comparisons with Ramnit

Overall, the similarities between Bumblebee and Ramnit appear quite stark, despite the
functional differences. They both make use of the same hooking library and injection code,
and they both contain the same lists of injection targets. Even though the injection code can
be traced back to the publicly available Gozi source, both Bumblebee and Ramnit use a
customised version of it which includes control flow flattening obfuscation within the
LoaderStub function.

Both malware families make use of the intermediary Hook Loader binaries, and both
specifically use the same version of the Hook Loader which has the internal name
RapportGP.dll and the ability to decrypt the payload using RC4.

22/35

The string Z:\hooker2\Common\md5.cpp appears in the 2021 Ramnit Hooker2 binary and
Bumblebee, and the Ramnit samples also use the internal name hooker2.dll. Based on
analysis of the code, it appears that Bumblebee is likely derived from the Ramnit Hooker2
project but combined with code from the Camellia Loader.

We also looked at the PE Rich Headers present within the headers of the Bumblebee and
Ramnit binaries and found some interesting similarities. The Rich Header is a chunk of data
present near the start of every PE binary built using Microsoft Visual Studio; it contains
information about the build environment and the products and versions used during the
compilation of the malware. This can be used as a fingerprint for the malware’s build
environment and provide interesting insights during comparison between samples.

Comparing the Rich Headers of the Bumblebee samples with the Ramnit Hooker2 samples
showed a remarkably similar collection of compiler products and versions, despite the
significant functional differences, indicating that both may have been built in the same
environment.

Figure 14 — A comparison of the PE Rich Header contents for a Ramnit Hooker2 sample
(left) and Bumblebee (right)

Following the Hooks

As previously discussed, much of the injection related code within Ramnit and Bumblebee
can be traced back to the leaked source code for the Gozi trojan. However, we were curious
about the hooking library used in both, as it did not seem to match the hooking code found
within Gozi nor any other publicly available code we could find. It does share some
similarities with the hooking code from the leaked Zeus trojan code, and may have been
based on that originally, but has been modified significantly since.

https://www.virusbulletin.com/virusbulletin/2020/01/vb2019-paper-rich-headers-leveraging-mysterious-artifact-pe-format/

23/35

Searching for the hooking code within malware repositories such as VirusTotal revealed
some interesting connections.

Trickbot

The Trickbot banking trojan was released towards the end of 2016, less than a year after the
take down of its predecessor Dyre. Trickbot was originally released in conjunction with two
modules, GetSystemInfo and InjectDLL, with the former gathering information about the
infected system, and the latter providing web inject functionality.

Examination of Trickbot samples relating to its injectDLL or browsers_engine module
uncovered use of the same hooking library found within Bumblebee and Ramnit samples.
These hooking functions are found even in the very earliest iterations of the modules dating
back to 2016. The version of the code used in the Trickbot modules is almost identical to that
used in Ramnit/Bumblebee, and some examples are shown in the images below.

Figure 15 — The hook store initialisation function used in an early version of the Trickbot web
inject module

24/35

Figure 16 — The hook creation function within an early version of the Trickbot web inject
module bears a strong resemblance to the version used in Ramnit and Bumblebee

NeverQuest

Interestingly our investigations also led us to several NeverQuest, aka Vawtrak samples, and
it is here that we finally reach the end of our trail and potentially the origin of this hooking
library.

NeverQuest is an older banking trojan which was active from 2013 through to early 2017 and
is thought to be the predecessor of IcedID. The group behind NeverQuest were thought to
have close ties to the Dyre/Dyreza group, which was the predecessor of Trickbot, and IcedID
and the Trickbot group continue to share that close relationship.

We analysed a cross section of NeverQuest samples generated in 2013, 2014, and 2016,
and were able to observe the active development and evolution of the hooking library. The
latest NeverQuest sample we analysed was created in May 2016, five months prior to the
release of Trickbot and its web inject module. The state of the hooking code in this 2016
NeverQuest sample is a very close match to that then used in the Trickbot modules several

25/35

months later. Several other code overlaps were also observed between the two, which can’t
easily be explained by coincidence or traced to publicly available code. This suggests that
there may have been some code sharing, or potentially even a sharing of developers
between the two groups at this time. Given the reported ties between NeverQuest and Dyre
at the time, it’s possible that the former may have shared code or resources with the latter in
order to help get Trickbot up and running after Dyre’s takedown.

The below images show an example of the evolution of one of the functions within the
hooking library from 2013 to 2016. The version found in the 2016 sample bears close
resemblance to the Trickbot equivalent above, and to the versions used in Ramnit and
Bumblebee later on. The size of the 32-bit hook item structure used by library also changes
over this time, from 75 bytes in the earlier NeverQuest samples to 71 bytes in the 2016
sample. The size remains at 71 bytes throughout its later use in Trickbot, Ramnit, and
Bumblebee.

26/35

Figure 17 — The hook creation version as found within a 2013 variant of NeverQuest. At this
point the hooking library was still in development.

Figure 18 — The hook creation version as found within a 2014 variant of NeverQuest. At this
point the function appears to have been expanded to manage different use cases.

27/35

Figure 19 — The hook creation version as found within a 2016 variant of NeverQuest. Here
the function has been simplified again, and the hook item structure size reduced to 71 bytes.
This version of the code closely resembles that used in Trickbot, Ramnit and Bumblebee.

Karius

In June 2018, CheckPoint reported on a new banking Trojan named Karius that was under
development and noted code overlap between Karius and Ramnit, Trickbot and Vawtrak
(NeverQuest). We analysed a Karius sample as part of this investigation and found it to
contain the same hooking code as the other samples discussed in this report. The structure
of the code was also observed to bear a striking resemblance to that of the Trickbot web
inject module, and it seems likely that Karius was developed by someone who had access to
that source code.

Sample Hashes

Category Description Hash Compilation
Date

https://research.checkpoint.com/2018/banking-trojans-development/

28/35

Category Description Hash Compilation
Date

Ramnit 2018 Packed sample 436aaa1014e8528ed72c89c4bf74d14c Sun, Jul 22
2018,
8:11:25 – 32
Bit EXE

Ramnit 2018 Dropper 6f62fbb377b834f06971754ea13d5809 Wed, Jul 18
2018,
8:35:48 – 32
Bit EXE

Ramnit 2018 Hook Loader c65289331a7ccb58131e6bce5a144d91 Tue, Jul 3
2018,
14:19:03 –
32 Bit DLL

Ramnit 2018 Camellia Loader 4fc3b7c8ac3fc178386549ef859f5b40 Tue, Jul 3
2018,
14:18:59 –
32 Bit DLL

Ramnit 2018 Rmnsoft Ramnit
Core

81e3f4dd945a172a2283b6bc720a1f89 Tue, Jul 3
2018,
14:18:57 –
32 Bit DLL

Ramnit 2018 Hooker2
WebInject
Controller

625db8cd9536c91f5ee044c318a80fec Wed, Jul 4
2018,
8:36:42 – 32
Bit DLL

Ramnit 2018 WebInject
Module 32-bit

73c95a2a9c9348f0b65de23a17f1790c Wed, Jul 4
2018,
8:36:34 – 32
Bit DLL

Ramnit 2018 WebInject
Module 64-bit

f836f4949483071d80b59d47d8ce2bd9 Wed, Jul 4
2018,
8:36:41 – 64
Bit DLL

29/35

Category Description Hash Compilation
Date

Ramnit 2018 Intermediary
Hook Loader 64-
bit

8db81f83fa7cb790b11695d65c46406c Thu, Apr 19
2018,
12:11:06 –
64 Bit DLL

Ramnit 2018 Intermediary
Hook Loader 32-
bit

3db90477a4f14ca2270c21df2e510a54 Thu, Apr 19
2018,
12:11:05 –
32 Bit DLL

Ramnit 2018 Packed sample a27b84ff5fa08138f87dfb0d14bf9f76 Thu, Nov 8
2018,
14:34:09 –
32 Bit DLL

Ramnit 2018 Hook Loader 0948c9d8df7690f0741aedea20fbea3f Thu, Nov 8
2018,
14:34:09 –
32 Bit DLL

Ramnit 2018 Hooker2
WebInject
Controller

2b8ea6cbf125dc75b85cbc21e98aade4 Thu, Nov 8
2018,
14:34:02 –
32 Bit DLL

Ramnit 2018 WebInject
Module 32-bit

06d371f2fa5c19bda78788bff1d5e9ca Thu, Nov 8
2018,
14:33:05 –
32 Bit DLL

Ramnit 2018 WebInject
Module 64-bit

e17e9ea60aacfff5db740116113aae3b Thu, Nov 8
2018,
14:33:41 –
64 Bit DLL

Ramnit 2018 Intermediary
Hook Loader 64-
bit

17ef1264fb78b91a6c4df6b99253ae43 Thu, Nov 8
2018,
14:21:06 –
64 Bit DLL

30/35

Category Description Hash Compilation
Date

Ramnit 2018 Intermediary
Hook Loader 32-
bit

79dd566a814ceef1547e60c84d6561bb Thu, Nov 8
2018,
14:21:02 –
32 Bit DLL

Ramnit 2018 Packed sample 93aa15605b86c41a5ba37107dd5d7ac1 Mon, Nov 12
2018,
8:13:53 – 32
Bit EXE

Ramnit 2018 Dropper c556cb430cdf197d14f4d768ac166565 Wed, Nov 7
2018,
16:01:22 –
32 Bit EXE

Ramnit 2018 Hook Loader c0775d6bb5c10caf9e9bbcbe3f26cf65 Wed, Nov 7
2018,
15:51:48 –
32 Bit DLL

Ramnit 2018 Camellia Loader ba4b3691bbc24fde556e5ad1f48be0d7 Wed, Nov 7
2018,
15:51:47 –
32 Bit DLL

Ramnit 2018 Rmnsoft Ramnit
Core

73ed96ffb519ca117684e89ecfd469a2 Wed, Nov 7
2018,
15:51:46 –
32 Bit DLL

Ramnit 2021 Hook Loader c76c74ad012fe03fa48b124a13849473 Wed, Jan 27
2021,
10:57:49 –
32 Bit DLL

Ramnit 2021 Camellia Loader 8ecd3b0505c241d79166f3f003a3b5ce Wed, Jan 27
2021,
10:57:48 –
32 Bit DLL

31/35

Category Description Hash Compilation
Date

Ramnit 2021 RmnSoft Ramnit
Core

0e5bbaccc1507a8d7175555fd86c6070 Wed, Jan 27
2021,
10:56:56 –
32 Bit DLL

Ramnit 2021 Intermediary
Hook Loader 32-
bit

909fa5b56ddb1050800c3f010f20c2d7 Wed, Jan 27
2021,
10:55:27 –
32 Bit DLL

Ramnit 2021 Intermediary
Hook Loader 64-
bit

e522a2e480c20e9e305ea5806516e7d5 Wed, Jan 27
2021,
10:55:32 –
64 Bit DLL

Ramnit 2021 Hooker2
WebInject
Controller

c1e4f0c34b6e8cb4a5c2170af7a96a43 Wed, Feb 3
2021,
15:05:27 –
32 Bit DLL

Ramnit 2021 WebInject
Module 32-bit

5c85e27dbf5c6d1960fdaed8d1c8e3da Wed, Feb 3
2021,
15:05:13 –
32 Bit DLL

Ramnit 2021 WebInject
Module 64-bit

ab242db433611209238dd61ecf332445 Wed, Feb 3
2021,
15:04:57 –
64 Bit DLL

Ramnit 2021 Intermediary
Hook Loader 32-
bit

f9c89f8aeee639249b8ba0352038bfee Wed, Feb 3
2021,
15:01:36 –
32 Bit DLL

Ramnit 2021 Intermediary
Hook Loader 64-
bit

04e0945f442ae6a67f822445f83c2737 Wed, Feb 3
2021,
15:01:40 –
64 Bit DLL

32/35

Category Description Hash Compilation
Date

Bumblebee
Beta 2021

Bumblebee Beta 0b7da6388091ff9d696a18c95d41b587 Fri, Aug 20
2021,
9:59:17 – 64
Bit DLL

Bumblebee
Beta 2021

Intermediary
Hook Loader 32-
bit

a27a4388a51077840a0c731bb7ae0638 Fri, Aug 20
2021,
9:56:21 – 32
Bit DLL

Bumblebee
Beta 2021

Intermediary
Hook Loader 64-
bit

1cd00b8a55b335512773a652c856a5d1 Fri, Aug 20
2021,
9:56:25 – 64
Bit DLL

Bumblebee
2022

Packed sample 052c8b8d48cc2337516ea39ef85e2b06 Thu, Mar 24
2022,
11:19:12 –
64 Bit EXE

Bumblebee
2022

Bumblebee c66759399e6047a2d17e029f0d8c5b55 Tue, Mar 22
2022,
15:47:49 –
64 Bit DLL

Bumblebee
2022

Intermediary
Hook Loader 32-
bit

0bdd60d8c791dcbd0866958ae2cb5732 Tue, Mar 22
2022,
15:44:25 –
32 Bit DLL

Bumblebee
2022

Intermediary
Hook Loader 64-
bit

54d6fde71047dd31f4525c03fa180a18 Tue, Mar 22
2022,
15:44:29 –
64 Bit DLL

Comparison
Samples

Trickbot 2016
Inject Module

17f5cc7b7396f6f5c8c72728e3f413c9 Mon, Oct 10
2016,
13:08:15 –
32 Bit DLL

33/35

Category Description Hash Compilation
Date

Comparison
Samples

NeverQuest
2013

1164310a00dbeab0caaea36d8e8eb4db Fri, Aug 16
2013,
15:47:42 –
32 Bit DLL

Comparison
Samples

NeverQuest
2014

27635ba59b3c0eed7baf589dfc7b56e8 Tue, Sep 9
2014,
14:49:55 –
32 Bit DLL

Comparison
Samples

NeverQuest
2016

0fd80bc95ea6579ed176a880fd929620 Mon, May 23
2016,
11:46:20 –
32 Bit DLL

Comparison
Samples

Karius 2018 b0992f8c36cd8a09efd0fb034530f1b9 Sat, Feb 10
2018,
20:32:59 –
32 Bit DLL

Recommendations

Ensure anti-virus software and associated files are up to date.
Search for existing signs of the indicated IOCs in your environment.
Keep applications and operating systems running at the current released patch level.
Do not install unapproved apps on a device that has access to the corporate network.
Exercise caution with attachments and links in emails.

Charlotte Hammond
Malware Reverse Engineer, IBM Security

Charlotte is a malware reverse engineer for IBM Security's X-Force IRIS team. She has been
working in the security industry for more than 7 years with a focu...

https://securityintelligence.com/author/charlotte-hammond/
https://www.ibm.com/account/reg/signup?formid=urx-49364&utm_medium=OSocial&utm_source=Blog&utm_content=000039JJ&utm_term=10014630&utm_id=TII-2021-Full-Report-Security-Intelligence%20

34/35

https://www.ibm.com/account/reg/signup?formid=urx-49364&utm_medium=OSocial&utm_source=Blog&utm_content=000039JJ&utm_term=10014630&utm_id=TII-2021-Full-Report-Security-Intelligence%20

35/35

https://www.ibm.com/account/reg/signup?formid=urx-49364&utm_medium=OSocial&utm_source=Blog&utm_content=000039JJ&utm_term=10014630&utm_id=TII-2021-Full-Report-Security-Intelligence%20

