
1/33

Counter Threat Unit Research Team

DarkTortilla Malware Analysis
secureworks.com/research/darktortilla-malware-analysis

Wednesday, August 17, 2022 By: Counter Threat Unit Research Team

Summary

DarkTortilla is a complex and highly configurable .NET-based crypter that has possibly been
active since at least August 2015. It typically delivers popular information stealers and
remote access trojans (RATs) such as AgentTesla, AsyncRat, NanoCore, and RedLine.
While it appears to primarily deliver commodity malware, Secureworks® Counter Threat
Unit™ (CTU) researchers identified DarkTortilla samples delivering targeted payloads such
as Cobalt Strike and Metasploit. It can also deliver "addon packages" such as additional
malicious payloads, benign decoy documents, and executables. It features robust anti-
analysis and anti-tamper controls that can make detection, analysis, and eradication
challenging.

From January 2021 through May 2022, an average of 93 unique DarkTortilla samples per
week were uploaded to the VirusTotal analysis service. Code similarities suggest possible
links between DarkTortilla and other malware: a crypter operated by the RATs Crew threat
group, which was active between 2008 and 2012, and the Gameloader malware that
emerged in 2021.

Delivery

CTU™ analysis of VirusTotal samples revealed numerous campaigns delivering DarkTortilla
via malicious spam (malspam). The emails typically use a logistics lure and include the
malicious payload in an archive attachment with file types such as .iso, .zip, .img, .dmg, and
.tar. The language of the email message is customized to the victim, and CTU researchers
observed samples in English, German, Romanian, Spanish, Italian, and Bulgarian. Figure 1
shows a German-language malspam sample. The redacted filename of the attached ISO
image archive file (.iso) includes the name of the organization the email was sent from. It is
unclear if that organization was compromised. The archive file contains a single executable
with the same filename but the .exe extension. This executable is a DarkTortilla initial loader
sample.

https://www.secureworks.com/research/darktortilla-malware-analysis
https://blog.malwarebytes.com/cybercrime/malware/2017/03/explained-packer-crypter-and-protector/
https://blog.malwarebytes.com/threat-analysis/2015/08/rainbows-steganography-and-malware-in-a-new-net-cryptor/
https://github.com/malwares/Crypter/tree/master/%5BC%23%5D%20The%20RATs%20Crew%20Crypter
https://wiki.hackforums.net/RATs_Crew
https://www.gosecure.net/blog/2021/11/02/new-malware-gameloader-in-discord-malspam-campaign-identified-by-gosecure-titan-labs/
https://www.virustotal.com/gui/file/981aa83b2d33cca994021197237ac5ee3ad3402f7d25f04f4e76985f4ec8744c
https://en.wikipedia.org/wiki/Optical_disc_image
https://www.virustotal.com/gui/file/5e03556be992d23088a3c49d24c45b1c21cd275bffb4e536348e8128d50374b6

2/33

Figure 1. DarkTortilla malspam containing malicious archive attachment. (The German text
translates to "Good morning, Please give us your best price offer for our attached order.
Awaiting your kind reply. Kind regards"). (Source: Secureworks)

CTU researchers also identified malicious documents (maldocs) delivering DarkTortilla. Most
of these maldocs embed the DarkTortilla initial loader executable as a Packager Shell
Object. Figure 2 shows a sample that prompts the victim to double-click the embedded
Packager Shell Object, which executes the payload. Inspection of the Packager Shell
Objects properties revealed that it is an executable named RFQ-010129H.exe, which is a
DarkTortilla initial loader sample. Other analyzed maldocs use different approaches, such as
leveraging embedded macros to automatically execute the Packager Shell Object when a
victim opens the document and enables macros.

https://www.virustotal.com/gui/file/4f15b28c91fa0e8d0dd9e86481bad04fa34fcaf564d08de7c4c0c513fc6e122d
https://www.virustotal.com/gui/file/55d7d9bd9d4a511417033b6c14ce93f962d6a6e6c6414f0cb7e455baee1d3ab7

3/33

Figure 2. Maldoc sample delivering DarkTortilla. (Source: Secureworks)

High-level execution flow

DarkTortilla consists of two components that rely on each other to successfully detonate
payloads: a .NET-based executable (initial loader) and a .NET-based DLL (core processor).
The typical high-level execution flow for a DarkTortilla payload starts with execution of the
initial loader. The initial loader then retrieves its encoded core processor. While the encoded
core processor is typically embedded within the .NET resources of the initial loader, CTU
researchers identified initial loaders that retrieved their core processor from public paste sites
such as pastebin . pl, textbin . net, and paste . ee.

The initial loader decodes, loads, and executes the core processor. When executed, the core
processor extracts, decrypts, and parses its configuration. The encrypted configuration is
stored within the .NET resources of the initial loader as bitmap images. Depending on
DarkTortilla's configuration, the core processor performs the following actions:

Displays a fake message box

https://cyberhoot.com/cybrary/paste/

4/33

Performs anti-virtual machine checks
Performs anti-sandbox checks
Implements persistence
Migrates execution to the Windows %TEMP% directory by using the "Melt"
configuration element
Processes addon packages
Migrates execution to its install directory

The core processor then injects and executes its configured main payload within the context
of the configured subprocess. Finally, if configured, the core processor implements anti-
tamper controls to prevent interference with execution of the initial loader, core processor,
injected subprocess, and WatchDog executable.

Figure 3 illustrates this high-level DarkTortilla execution flow.

5/33

Figure 3. High-level execution flow for DarkTortilla infection. (Source: Secureworks)

Initial loader

Initial loader samples analyzed by CTU researchers were obfuscated using the DeepSea
.NET code obfuscator. As a result, many aspects of the original code have been altered to
thwart analysis. For example, namespace, class, function, and property names were

https://marketplace.visualstudio.com/items?itemName=DeepSeaObfuscator.DeepSeaObfuscator

6/33

renamed from their original descriptive values to random characters. Figure 4 shows an
example of these obfuscated values within the code decompiled by the dnSpy .NET analysis
tool.

Figure 4. Obfuscated DarkTortilla initial loader sample. (Source: Secureworks)

In addition to name obfuscation, DeepSea applies switch dispatch control flow obfuscation to
DarkTortilla's initial loader. This technique restructures the original linear code into switch
statements that transfer execution in a seemingly unpredictable pattern, making analysis
difficult. Figure 5 shows a switch statement at the entry point of a DarkTortilla sample. In this
example, the value stored in the "num" variable controls which code gets executed next. This
value is obfuscated and is often the result of a conditional or mathematical expression
calculated at runtime, such as "((!flag) ? 15 : 9)" or "Math.Abs(num2 * 25 * 25)".

https://github.com/dnSpyEx/dnSpy
http://tigress.cs.arizona.edu/transformPage/docs/flatten/index.html
https://www.virustotal.com/gui/file/a0b96236bfd79d2ebeadb8e3deb9448af3ec8edd1ea9672b7ad4793934bb4c47
https://en.wikipedia.org/wiki/%3F:
https://docs.microsoft.com/en-us/dotnet/api/system.math.abs?view=net-6.0#system-math-abs(system-int32)

7/33

Figure 5. Switch dispatch control flow obfuscation applied to DarkTortilla initial loader.
(Source: Secureworks)

The initial loader stores DarkTortilla's encrypted configuration as bitmap images. Figure 6
lists the partial resource section of one sample consisting of over 700 of these images.

https://www.virustotal.com/gui/file/b3754c6ecc445e9a3b37c5ebe68adb9630ca4aa89a8e8515468f39ae8131f141

8/33

Figure 6. Encrypted configuration stored as bitmap images within the .NET resources of
DarkTortilla initial loader. (Source: Secureworks)

The initial loader's execution flow typically starts by checking for internet connectivity by
issuing HTTP GET requests. In samples that implement this check, the initial loader attempts
to retrieve content from google . com, bing . com, or both. Some samples store the URLs in
the executable as plain text (see Figure 7), but most samples encode them. If the check fails,
the initial loader retries the request(s) until all are successful.

https://www.virustotal.com/gui/file/45ef054bca2ae4d67e6623bf28ff75e5d178924602674c654e1b569aa74601cd

9/33

Figure 7. Internet connectivity check in DarkTortilla initial loader. (Source: Secureworks)

The initial loader generates a 16-byte key to decode the core processor. This key is based
on an initial hard-coded value multiplied by the index value of its location in the destination
array. Because the values are stored as single bytes, the maximum value for an element in
the array is 0xFF (255 decimal). For example, the decode key array for an initial hard-coded
value of 0x6E (110 decimal) is
[0x00,0x6E,0xDC,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF].

The initial loader then retrieves the encoded core processor data. This data commonly
resides within the .NET resources of the initial loader binary. Figure 8 shows encoded core
processor data residing within the "pnj" .NET resource of a DarkTortilla sample.

https://www.virustotal.com/gui/file/45ef054bca2ae4d67e6623bf28ff75e5d178924602674c654e1b569aa74601cd

10/33

Figure 8. Encoded core processor data stored within the .NET resources of DarkTortilla initial
loader. (Source: Secureworks)

The initial loader decodes the core processor data by applying the following algorithm to
each byte:

enc_byte ^ (dec_key_arr[idx % len(dec_key_arr)] ^ (idx + (seed_byte %
len(dec_key_arr)) & seed_byte)

enc_byte: The core processor byte array value being decoded
idx: The encoded byte index in the core processor byte array
dec_key_arr: The generated 16-byte decode key byte array
seed_byte: The fourth byte of the 16-byte decode key byte array

The initial loader loads the decoded core processor assembly code and executes its pre-
determined entry point function.

Initial loader variant with externally hosted core processor

11/33

Initial loader variants that retrieve the encoded core processor from public paste sites first
decode the URL where the core processor is hosted. The encoding logic applied to the URL
varies across analyzed DarkTortilla samples, making analysis and detection difficult. Figure 9
shows a DarkTortilla sample that encodes the URL (https: //pastebin . pl/view/raw/60b6b03b)
by prepending and appending random text.

Figure 9. DarkTortilla initial loader variant that retrieves encoded core processor data from
public paste site. (Source: Secureworks)

The initial loader retrieves an encoded string hosted at the decoded URL. This string
represents the encoded core processor data. The string consists of fake XML tags, integer
values encoded with a shift cipher, and delimiters comprised of random letters (see Figure
10). The downloaded data is stored in memory and is never saved to the filesystem.

https://www.virustotal.com/gui/file/0a5dc3b6669cf31e8536c59fe1315918eb4ecfd87998445e2eeb8fed64bd2f2c
https://en.wikipedia.org/wiki/Caesar_cipher

12/33

Figure 10. Encoded DarkTortilla core processor data hosted on public paste site. (Source:
Secureworks)

The initial loader decodes the string by first removing the fake XML tags. The string is
converted into an array of integers by replacing the random letter character delimiters with a
consistent letter and then using that letter to split the string into integers. The last step is to
iterate through the integer array and subtract a pre-defined value. This value changes across
samples.

In the Figure 10 example (<xml>1002k1015U1069k925E928s925U925E925g929E925…
</xml>), the consistent letter delimiter is "k" and the pre-defined subtracted value is 925:

1. Remove XML tags: 1002k1015U1069k925E928s925U925E925g929E925…
2. Replace random letters with consistent character:

1002k1015k1069k925k928k925k925k925k929k925…
3. Split into integer array: [1002, 1015, 1069, 925, 928, 925, 925, 925, 929, 925, …]
4. Subtract pre-defined value from each integer: [77, 90, 144, 0, 3, 0, 0, 0, 4, 0, …]

The hex representation of the final integer array for this example is [4D, 5A, 90, 00, 03, 00,
00, 00, 04, 00, …]. This decoded data is the core processor DLL (see Figure 11).

13/33

Figure 11. Decoded DarkTortilla core processor DLL. (Source: Secureworks)

Core processor

The core processor contains DarkTortilla's primary functionality. From at least June 2020 to
March 2022, the malware author transitioned through a limited number of filenames for this
DLL that appeared to relate to a function or purpose (Deserialize.dll, SHCore1.dll,
PVCore1.dll, and SHCore2.dll). In March 2022, the names began to change more frequently
to seemingly random names (e.g., BRIN.dll, UKRUSAIN.dll, KNIFALL.dll, NullSBAS.dll).

Configuration processing

The core processor identifies the following resources in the initial loader that are associated
with the encrypted configuration:

The bitmap image resource(s) containing the encrypted configuration data
The binary resource specifying the total number of images to process
The resource folder containing these images and binary resources

The names of these resources are calculated using the compile timestamp listed in the initial
loader (which is not the file's actual compile timestamp) and two hard-coded values that
represent an initialization value and the length of the resource name. The hard-coded
initialization and name length values were consistent across all DarkTortilla samples
analyzed by CTU researchers (see Table 1).

Initial loader resource Initialization value Resource name length value

Resource folder 5 12

Image count file 80 8

Image file 20 8

Table 1. Values used to derive initial loader resource names.

https://www.virustotal.com/gui/file/93dd1202697dbaed9ef4f4707f2628212bf13aad096de29c14924b1dae1d6d5b

14/33

These names are calculated via the following process:

1. Divide the compile timestamp by <initialization value>.
2. Round the result using the Math.Round() function.
3. Pass the result to the Random.Random() function as a seed value. By using a

precalculated seed value, the malware author can generate a predictable 16-byte
value.

4. Convert the 16-byte value to a GUID using the Guid.Guid() function, which transposes
the byte order.

5. Remove dash characters (‘-') added during the GUID conversion.
6. Truncate the value to <resource name length> characters.

For example, the following calculation generates the resource folder name of a sample with a
compile timestamp of "Sun May 26 23:57:08 1985" (integer: 486014228):

1. 486014228 / 5 = 97202845.6
2. Math.Round(97202845.6) = 97202846
3. Random.Random(97202846) = d00bee25fa9dc9024fdf632727286708
4. Guid.Guid(d00bee25fa9dc9024fdf632727286708) = 25ee0bd0-9dfa-02c9-4fdf-

632727286708
5. Remove dashes = 25ee0bd09dfa02c94fdf632727286708
6. Truncate to 12 characters = 25ee0bd09dfa

Applying the same calculation to the other components reveals that the image count
resource name for this sample is "cd6935eb" and the image base name is "d390ea32". The
bitmap-formatted image names follow the pattern <image_base_name><image_index>,
where the <image_index> value ranges from 0 to the value specified in the image count
resource. In this sample, the image count resource value is 0x2D4 (integer: 724), which
means DarkTortilla attempts to process 725 bitmap-formatted images with the names
d390ea320, d390ea321, d390ea322, …, d390ea32723, d390ea32724.

To extract the encrypted configuration, the core processor iterates through each of the image
resources in order, extracts the pixel data, and concatenates the pixel data into a byte array
(see Figure 12).

https://docs.microsoft.com/en-us/dotnet/api/system.math.round?view=net-6.0#system-math-round(system-decimal)
https://docs.microsoft.com/en-us/dotnet/api/system.random
https://docs.microsoft.com/en-us/dotnet/api/system.guid
https://www.virustotal.com/gui/file/b3754c6ecc445e9a3b37c5ebe68adb9630ca4aa89a8e8515468f39ae8131f141

15/33

Figure 12. Logic for extracting encrypted configuration from bitmap images. (Source:
Secureworks)

The resulting byte array is decrypted using the Rijndael cipher (also known as the Advanced
Encryption Standard (AES)) with Electronic Code Book (ECB) block cipher mode and
ISO10126 padding configured. The ISO10126 standard was withdrawn in 2007, so the use
of this padding could indicate that DarkTortilla's origins date back to 2007 or earlier. The key
used to decrypt this data is stored as the hard-coded integer array [81, 42, 59, 7, 27, 70, 83,
13, 71, 75, 17, 9, 39, 64, 3, 2] (see Figure 13).

Figure 13. Hard-coded key to decrypt DarkTortilla configuration. (Source: Secureworks)

https://en.wikipedia.org/wiki/Advanced_Encryption_Standard
https://en.wikipedia.org/wiki/Padding_(cryptography)#ISO_10126
https://www.iso.org/standard/18114.html

16/33

DarkTortilla parses the decrypted configuration data into a structure so that its elements can
be easily referenced. Table 2 lists the potential configuration elements contained within
DarkTortilla's decrypted configuration. Entries in bold indicate configuration elements that
were consistently present in all samples analyzed by CTU researchers.

Key Type Description

%Installation% bool Install DarkTortilla and implement persistence

%InstallationReg% string Registry key used for persistence

%InstallationKey% string Registry value used for persistence

%InstallationDirectory% int Root install directory

%InstallationFolder% string Subfolder name within the root install directory

%InstallationFileName% string Filename for the initial loader executable within the root
subfolder

%StartupFolder% bool Enable Startup folder persistence

%Hidden% bool Enable "Hidden" registry persistence

%HiddenReg% string "Hidden" registry key used for persistence

%HiddenKey% string "Hidden" registry value used for persistence

%Message% bool Display fake message box

%MessageIcon% int Fake message box icon ID

%MessageButton% int Fake message box button ID

%MessageTitle% string Fake message box title

%MessageBody% string Fake message box message

%MessageRepetition% bool Display fake message box even if installed

%VM% bool Perform anti-virtual machine checks

%SB% bool Perform anti-sandbox checks

%InjectionPersist% bool Enable anti-tamper control for running processes

%StartupPersist% bool Enable anti-tamper control for startup persistence

%Melt% bool Migrate initial loader execution to the Windows
%TEMP% directory

17/33

Key Type Description

%MeltName% string Filename for the initial loader executable within the
Windows %TEMP% directory

%WatchDogName% string Filename for the anti-tamper WatchDog executable

%WatchDogBytes% byte[] WatchDog byte array

%Compress% bool Indicates if payloads are zlib-compressed

%Delay% int Number of seconds to delay execution within the
core processor

%HostIndex% int ID of the target subprocess name to use for
main/addon payload injection

%MainFile% byte[] Main payload byte array

%FilesNum% int Number of addon packages to process

F.{0}.D byte[] Addon package (data): Payload byte array

F.{0}.N string Addon package (name): Filename

F.{0}.P int Addon package (path): Target install folder (special
folder ID)

F.{0}.F string Addon package (folder): Target install subfolder

F.{0}.O int Addon package (operation): Execution type (disk,
memory, none)

F.{0}.T int Addon package (time): Execution delay (seconds)

F.{0}.R int Addon package (run): Payload execution criterion

Table 2. DarkTortilla configuration elements. Bold text indicates elements that appear in all
analyzed samples.

Fake message display

DarkTortilla can be configured to display a message box when executed. The threat actor
can customize message box characteristics such as the display message, message box title,
and the icon and button configuration. Threat actors use fake message boxes to make
victims think that execution failed or that a legitimate application is loading and installing.
Table 3 lists the configuration elements and values in one DarkTortilla sample.

https://docs.microsoft.com/en-us/office/vba/language/reference/user-interface-help/msgbox-constants
https://www.virustotal.com/gui/file/083acce46cb8cf35e37c778d1f4aee6814bca72d2874b793a47f9823f51df0fe/

18/33

Configuration
element Assigned value as it appears in the configuration
Configuration
element Assigned value as it appears in the configuration

%Message% True

%MessageIcon% 16

%MessageButton% 0

%MessageTitle% .Net Framework Initialization Error

%MessageBody% To run this application, you first must install one of the following
version of the .Net Framework:\r\n.Net Framework, Version =
4.8.0

%MessageRepetition% True

Table 3. Fake message box-related configuration elements.

Figure 14 shows the message box for the DarkTortilla sample configured with the values in
Table 3. The %MessageRepetition% configuration element controls whether the message
box will continue to be displayed upon execution after DarkTortilla is installed and persistent
on the compromised system.

Figure 14. Fake message box. (Source: Secureworks)

"Melt" execution migration

If the %Melt% configuration element is set to true, the core processor moves the initial loader
executable to the Window's %TEMP% directory. It uses the %MeltName% configuration
element value as the executable filename (e.g., java.exe, PDF.exe, cookies.exe). The core
processor runs the new executable and then terminates the original initial loader executable.
However, the %TEMP% directory may not be the final destination for the initial loader. The
executable could migrate again if the %Installation% configuration element is set to true.

Installation

19/33

The %Installation% configuration element controls whether DarkTortilla installs itself on a
system. If set to true, the core processor moves the current DarkTortilla executable into the
directory specified by the configuration. Table 4 lists the values stored in one DarkTortilla
sample.

Configuration element Value

%InstallationDirectory% 38

%InstallationFolder% WindowsPowerShell

%InstallationFileName% PowerShellInfo.exe

Table 4. Installation configuration elements with example values.

The integer value assigned to the %InstallationDirectory% configuration element represents
a CSIDL value associated with a special folder on the system. In Table 4, the value 38
corresponds to the Windows Program Files directory. Based on this configuration, the full
install path and filename for this DarkTortilla sample is "C:\Program
Files\WindowsPowerShell\PowerShellInfo.exe".

To install, the core processor terminates the currently running DarkTortilla executable. It
copies the executable to the configured installation path and filename, and then executes the
installed executable via Process.Start().

Persistence

Persistence is controlled by the %Installation% configuration element in combination with the
%Hidden% and %StartupFolder% configuration elements. DarkTortilla uses the logic in Table
5 to determine the persistence type.

%Hidden% %StartupFolder% Persistence type

False False Use registry HKCU Run key

True True Windows startup folder

False True Windows startup folder

True False Use registry HKCU Winlogon key

Table 5. Configuration elements determining the persistence type.

A bug in the code causes the %StartupFolder% logic to override the %Hidden% logic if both
configuration elements are set to true. The malware author erroneously used an "if"
statement instead of "else if" in the logic setting the persistence type (see Figure 15).

https://www.virustotal.com/gui/file/53b3b37b7d1e40c80fcda2c424cd837379ac2ce93023de6c22ba3e2d94679671
https://docs.microsoft.com/en-us/windows/win32/shell/csidl
https://www.magnumdb.com/search?q=CSIDL_PROGRAM_FILES
https://docs.microsoft.com/en-us/dotnet/api/system.diagnostics.process.start?view=net-6.0

20/33

Figure 15. Error in persistence code. (Source: Secureworks)

For Windows startup folder persistence, the core processor uses the WshShortcut COM
object to create a .lnk shortcut file in the Windows startup folder. This file points to the
configured installation path and filename of DarkTortilla's initial loader executable (see Figure
16).

Figure 16. COM object that drops shortcut file in Windows startup folder for persistence.
(Source: Secureworks)

DarkTortilla features standard and hidden techniques for implementing persistence via the
Windows registry. Both options implement persistence in the HKEY_CURRENT_USER
(HKCU) hive as a hard-coded value in the core processor code. This persistence results in
the installed DarkTortilla initial loader executable being run every time the user logs in.

For standard registry persistence, the core processor uses the %InstallationReg% and
%InstallationKey% values to set the target key/value combination. In every sample
analyzed by CTU researchers where standard persistence was configured, the
%InstallationReg% value was "Software\Microsoft\Windows\CurrentVersion\Run". The
value stored in %InstallationKey% varied across samples (e.g., "Updates", "svchost",
"Runtime Broker").

https://docs.microsoft.com/en-us/troubleshoot/windows-client/admin-development/create-desktop-shortcut-with-wsh

21/33

For hidden registry persistence, the core processor uses the %HiddenReg% and
%HiddenKey% values to set the target key/value combination. In every sample
analyzed by CTU researchers where hidden persistence was configured, the
%InstallationReg% value was "Software\Microsoft\Windows
NT\CurrentVersion\Winlogon" and the value stored in %HiddenKey% was "Shell". Prior
to setting the hidden persistence registry value, DarkTortilla's core processor prepends
the installed initial loader executable path with the Windows shell value retrieved from
the HKEY_LOCAL_MACHINE (HKLM) hive. This value is typically "explorer.exe",
resulting in "explorer.exe,<installed_darktortilla_exe_path>". For example, if the
configured install path and executable name for a DarkTortilla sample is "C:\Program
Files\WindowsPowerShell\PowerShellInfo.exe", then the HKCU Winlogon\Shell registry
entry is "explorer.exe,C:\Program Files\WindowsPowerShell\PowerShellInfo.exe". To
create these registry values, the core processor executes the following command via
Process.Start():

cmd.exe /c REG ADD "HKCU\<configured_reg_key>" /f /v "
<configured_reg_val>" /t

REG_SZ /d "<installed_darktortilla_exe_path>"

RunPE process injection

DarkTortilla can execute its payloads using process injection. With this method, the payload
resides only in memory and never accesses the filesystem. The %HostIndex% configuration
element defines which legitimate process to target for process injection (see Table 6).

%HostIndex% value
Corresponding target
process Source directory

0 (or any numeric value that is
not 1-6)

Initial loader executable's
name

1 AppLaunch.exe Microsoft.NET Framework
folder

2 svchost.exe System32 folder

3 RegAsm.exe Microsoft.NET Framework
folder

4 InstallUtil.exe Microsoft.NET Framework
folder

5 mscorsvw.exe Microsoft.NET Framework
folder

22/33

%HostIndex% value
Corresponding target
process Source directory

6 AddInProcess32.exe Microsoft.NET Framework
folder

Table 6. %HostIndex% values and corresponding target processes used for payload
injection.

Prior to setting the target process name, the core processor checks for active processes
named "avp". The avp.exe process is part of the Kaspersky Anti-Virus suite. If the core
processor detects this process, it overrides the %HostIndex% value and sets the target
process name to the name of the initial loader executable. When the %HostIndex% value is
1-6, the core processor attempts to copy the legitimate target executable file to the Windows
%TEMP% directory.

DarkTortilla uses a .NET-based DLL named "RunPe6" for process injection. This DLL is
embedded within the core processor as an encoded byte array (see Figure 17).

Figure 17. Encoded RunPe6 DLL stored as byte array within DarkTortilla core processor.
(Source: Secureworks)

To decode each byte, the core processor uses the following equation with <xor_key> as the
hard-coded integer array [45, 89, 125, 69, 250, 222, 111] and <seed> as the hard-coded
integer 99:

23/33

decoded_byte = encoded_byte ^ (<xor_key>[(idx * <seed>) % xor_key.Length])

The core processor loads RunPe6 and calls its ‘Runn' function to execute the malicious
payload within the context of the configured target subprocess. The core processor does not
directly reference this function. Rather, it references the index values for the target class (18)
and function (0). Figure 18 displays PowerShell code developed by CTU researchers to
replicate the core processor's target function identification logic.

Figure 18. Custom PowerShell script to identify RunPe6 function used for payload process
injection. (Source: Secureworks)

Addon package processing

DarkTortilla can be configured with zero or more payloads known as addon packages. These
addons are in addition to the main payload that DarkTortilla is tasked with delivering.
Observed addons include benign decoy documents, legitimate executables, keyloggers,
clipboard stealers, cryptocurrency miners, and additional DarkTortilla payloads. Each addon
package possesses a set of configuration elements composed of a static "F" character, an
integer "{0}" that represents the index value indicating the position of the addon in the
package array, and a character representing a particular property associated with the
package.

The %FilesNum% configuration element defines the number of addon packages to process.
For example, if the %FilesNum% value is 3, the configuration elements are F.0.<addon
property>, F.1.<addon property>, and F.2.<addon property>.

The F.{0}.D (data) configuration element contains the addon package payload binary data.
The core processor checks the %Compress% configuration element to determine if the
stored data is compressed. If the element is set to true, the core processor decompresses
the data before processing it.

The core processor next determines if it should process the addon package by inspecting the
initial loader's installation state and the addon package's F.{0}.R (run) value. Table 7 lists the
criteria and their result.

24/33

Initial loader running from install
directory

F.{0}.R (run)
value

Process addon
package?

Initial loader running from install
directory

F.{0}.R (run)
value

Process addon
package?

True True Yes

True False No

False True No

False False Yes

Table 7. Criteria for processing addon package.

If configured to process the addon package, the core processor inspects the F.{0}.O
(operation) configuration element value to determine how to execute its payload. This value
can be any integer but is typically 0, 1, or 2. If the value is set to 0 or any value other than 1
or 2, the core processor saves the payload to disk but does not execute it. If the value is 1,
the core processor saves the payload to disk and executes it. If the value is 2, the core
processor executes the payload in memory via the same RunPE process injection technique
and target process it uses for the main payload.

If the payload is saved to disk, the location is specified by the addon path (F.{0}.P), subfolder
(F.{0}.F), and filename (F.{0}.N) configuration elements. The F.{0}.P integer value represents
a CSIDL value associated with a special folder on the system. For example, the value 2
corresponds to the Windows Start Menu/Programs folder. The full path of an analyzed
sample containing a F.{0}.P value of 2, an empty string for F.{0}.F, and a value of sertif.exe
for F.{0}.N is "C:\Users\<username>\AppData\Roaming\Microsoft\Windows\Start
Menu\Programs\sertif.exe".

Main payload processing

After processing addon packages and installing the initial loader executable if appropriate,
DarkTortilla processes its main payload. This main payload is typically a commodity
information stealer or remote access trojan (RAT). DarkTortilla stores the binary data for the
main payload in the %MainFile% configuration element. Processing this payload consists of
two steps:

1. The core processor queries the %Compress% configuration element to determine if the
binary data in the %MainFile% configuration element is compressed. If set to true, the
core processor decompresses the data.

https://www.virustotal.com/gui/file/5be86cfca25e295f88b5aab42a6f604d2f1bb97f3c73b01df664c137908e2ec4

25/33

2. The core processor executes the main payload via RunPE process injection. Unlike the
addon payloads, there is no option to save the main payload to the filesystem.
Therefore, the main payload resides only in memory. The target process used for
injection is the same as the addon packages and is defined by the %HostIndex%
configuration element.

Anti-analysis controls

DarkTortilla core processor samples analyzed by CTU researchers were obfuscated using
the ConfuserEx code obfuscator. In addition to the obfuscator altering namespace, class,
function, and property names, CTU researchers identified multiple samples where it injected
specially crafted code that did not affect execution but inhibited decompilation by tools such
as dnSpy (see Figure 19). Bypassing this anti-analysis control requires removing the code
that caused the decompiler to break, identifying another sample that does not implement this
control, or piecing together analysis from multiple samples to understand the code.

Figure 19. Broken dnSpy decompilation of DarkTortilla core processor. (Source:
Secureworks)

The core processor includes code that that detects profilers and debuggers, but these anti-
analysis controls are not called. To detect profiling, the code verifies if the
COR_ENABLE_PROFILING environment variable is present and sets to the value of 1. To
detect debuggers, the code spawns a thread (see Figure 20) that continuously checks the

https://yck1509.github.io/ConfuserEx/
https://docs.microsoft.com/en-us/previous-versions/dotnet/netframework-4.0/ee471451(v=vs.100)?redirectedfrom=MSDN

26/33

Debugger.IsAttached property and the Debugger.IsLogging method. If the core processor
identifies a debugger or if the thread performing the checks is terminated, the code
terminates the initial loader process. It is unclear if this code was added by ConfuserEx or
the malware author.

Figure 20. Debugger detection performed by DarkTortilla core processor. (Source:
Secureworks)

The core processor implements string encoding to obscure important strings such as the
configuration keys. Figure 21 shows a code excerpt that passes the string length (17),
character index array ([26,8,13,18,19,0,11,11,0,19,8,14,13,17,4,6,26]), and capital letter
index array ([8,17]) to the decode function.

Figure 21. DarkTortilla core processor string obfuscation example. (Source: Secureworks)

This function decodes the string by iterating through each value in the character index array
and retrieving the corresponding character at the specified index in a hard-coded character
array (see Figure 22).

https://docs.microsoft.com/en-us/dotnet/api/system.diagnostics.debugger.isattached?view=net-6.0
https://docs.microsoft.com/en-us/dotnet/api/system.diagnostics.debugger.islogging?view=net-6.0

27/33

Figure 22. Character array used by string decoding logic. (Source: Secureworks)

Figure 21 shows that the example's first three values of the character index array passed to
the decode function are 26, 8, and 13. These values correspond to the characters "%", "i",
and "n" in the hard-coded character array shown in Figure 22. The values passed in the
capital letter index array (8, 17) indicate which characters should be capitalized ("I" and "R"
in this example). Processing the character index array results in the decoded string
"%InstallationReg%".

The %VM% configuration element enables DarkTortilla's anti-virtual machine (anti-VM)
controls. If set to true, the core processor obtains information about the system by querying
the following Windows Management Instrumentation (WMI) objects:

The core processor also retrieves information about the system's running processes and
services. It then inspects this data for strings associated with Hyper-V, QEMU, Virtual PC,
VirtualBox, and VMware. If any of the case-insensitive data matches the criteria in Table 8,
the core processor terminates the initial loader process.

Targeted
technology Inspected entity Inspection logic

Hyper-V Win32_DiskDrive Caption contains "virtual"

Hyper-V Win32_ComputerSystem Manufacturer contains "microsoft" and Model
contains "virtual"

QEMU Win32_DiskDrive Name contains "qemu"

Virtual PC Process Process list contains "vmusrvc" or both
"vpcmap" and "vmsrvc"

VirtualBox Win32_DiskDrive Model contains "vbox"

VirtualBox Process ProcessName contains "vboxservice"

VMware Win32_DiskDrive Name contains "vmware"

VMware Win32_DiskDrive Model contains "vmware"

VMware Win32_ComputerSystem Manufacturer contains "vmware" and Model
contains "virtual"

28/33

Targeted
technology Inspected entity Inspection logic

VMware Win32_BIOS Serial number contains "vmware"

VMware Win32_PnPEntity Name equals "vmware pointing device"

VMware Win32_PnPEntity Name contains "vmware sata"

VMware Win32_PnPEntity Name equals "vmware usb pointing device"

VMware Win32_PnPEntity Name equals "vmware vmci bus device"

VMware Win32_PnPEntity Name equals "vmware virtual s scsi disk
device"

VMware Win32_PnPEntity Name starts with "vmware svga"

VMware Service ServiceImagePath contains "vmware" and
ServiceName equals "vmtools"

VMware Service ServiceImagePath contains "vmware" and
ServiceName equals "tpvcgateway"

VMware Service ServiceImagePath contains "vmware" and
ServiceName equals "tpautoconnsvc"

Table 8. DarkTortilla core processor anti-VM detections.

The %SB% configuration element enables DarkTortilla's anti-sandbox control. This control
only detects the Sandboxie sandbox. The core processor terminates the initial loader
process if it detects a running process named "sandboxierpcss" in the current session.

Anti-tamper controls

DarkTortilla's anti-tamper controls are the last step in its execution chain and occur after the
main payload is executed. The four controls ensure that nothing interferes with DarkTortilla's
execution of its critical components.

1. The first anti-tamper control is employed by the core processor and ensures that the
injected subprocess running the main payload is immediately rerun if terminated. The
%InjectionPersist% configuration element regulates this control. If set to true, the core
processor starts a thread that monitors the state of the injected subprocess. If the
subprocess is terminated, this anti-tamper control automatically respawns the
configured target subprocess, re-injects the main payload, and executes it within the
context of the subprocess.

https://sandboxie-plus.com/Sandboxie/

29/33

2. The second anti-tamper control ensures that the initial loader executable is immediately
rerun if terminated. DarkTortilla implements this functionality with a secondary .NET-
based executable that it refers to as "WatchDog". The %InjectionPersist% configuration
element regulates this control. If set to true, the core processor drops the WatchDog
executable and its configuration file to the Windows %TEMP% directory. It then
executes the WatchDog executable, which monitors the initial loader process.

The WatchDog executable bytes are stored in the DarkTortilla %WatchDogBytes%
configuration element, and the filename is stored in %WatchDogName%. Prior to
processing, the core processor decompresses the WatchDog executable's bytes if the
%Compress% configuration element is set to true. Every WatchDog executable
dropped by DarkTortilla was identical:

MD5 hash: 0e362e7005823d0bec3719b902ed6d62
SHA1 hash: 590d860b909804349e0cdc2f1662b37bd62f7463
SHA256 hash:
2d0dc6216f613ac7551a7e70a798c22aee8eb9819428b1357e2b8c73bef905ad

If an executable with the configured WatchDog name already exists in the Windows
%TEMP% directory, the core processor removes the existing executable's
Zone.Identifier Alternate Data Stream (ADS), which strips the executable of any
existing URL security zones. It then overwrites the existing executable with the new
WatchDog executable.

The WatchDog configuration file dropped to the filesystem shares the same name as
the WatchDog executable but uses a .txt file extension. For example, the configuration
filename for "WatchDog.exe" is "WatchDog.txt". This configuration file contains three
lines representing the following values:

The process ID of the initial loader executable
The path and filename of the initial loader executable
The process ID for the WatchDog executable

If the initial loader process terminates, the WatchDog process reruns it and refreshes
the contents of the WatchDog configuration text file with the new process ID
information.

3. The third anti-tamper control is employed by the core processor and ensures that the
dropped WatchDog executable continues to execute. The core processor retrieves the
WatchDog executable process ID from the WatchDog configuration file once per
second and verifies that the corresponding process is running. If the WatchDog
process terminates, the core processor breaks the loop, drops a new WatchDog
configuration file, and reruns the WatchDog executable.

https://www.virustotal.com/gui/file/2d0dc6216f613ac7551a7e70a798c22aee8eb9819428b1357e2b8c73bef905ad
https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-fscc/6e3f7352-d11c-4d76-8c39-2516a9df36e8
https://docs.microsoft.com/en-us/previous-versions/windows/internet-explorer/ie-developer/platform-apis/ms537183(v=vs.85)?redirectedfrom=MSDN

30/33

4. The fourth anti-tamper control is employed by the core processor and maintains
persistence for the initial loader. The %StartupPersist% configuration element regulates
this control. If set to true, the core processor starts a thread that sets persistence every
30 seconds using the persistence type defined in the DarkTortilla configuration. The
control does not contain validation logic to check the persistence status, so it repeats
the process indefinitely.

Delayed execution

The core processor implements the kernel32.dll Sleep function to delay execution at the
following stages of the process. The length of delay is typically controlled by the value in the
%Delay% configuration element. CTU researchers observed values ranging from 0 seconds
to 300 seconds.

Prior to implementing persistence, the core processor sleeps for the number of
seconds specified by the %Delay% configuration element.
Prior to processing addon packages, the core processor sleeps for the number of
seconds specified by the %Delay% configuration element.
The core processor sleeps for a hard-coded 5 seconds after copying the source
executable to the install directory but before running the executable.

The number of delays increases if the %Melt% and %Installation% configuration elements
are set to true, as the delays are processed each time the executable migrates. These
delays can impede detection in sandbox environments if they exceed the maximum wait
time.

Possible malware connections

DarkTortilla code shares similarities to other malware. For example, payload compression,
junk code inclusion, and payload execution via RunPe6 are also features of a RATs Crew
crypter last updated in 2016. DarkTortilla could represent an evolution of that crypter.
Additionally, the Gameloader malware uses similar malspam lures and archive files as
DarkTortilla. It also leverages .NET resources to store encoded DLLs and encrypted bitmap
images and delivers similar commodity malware payloads. However, there is insufficient
evidence as of this publication to definitively link these malware families or threat actors to
DarkTortilla.

Conclusion

Researchers often overlook DarkTortilla and focus on its main payload. However, DarkTortilla
is capable of evading detection, is highly configurable, and delivers a wide range of popular
and effective malware. Its capabilities and prevalence make it a formidable threat.

https://github.com/malwares/Crypter/blob/master/%5BC%23%5D%20The%20RATs%20Crew%20Crypter/Form1.cs#L161-L163

31/33

Threat indicators

The threat indicators in Table 9 can be used to detect activity related to DarkTortilla. The URL
may contain malicious content, so consider the risks before opening it in a browser.

Indicator Type Context

59295e810bbdbfd64b8c41316ea13cae MD5 hash Malicious spam delivering
DarkTortilla

18391a58ee25a5cb8dfbf4d48517b5b0
 c66c5ae6

SHA1
hash

Malicious spam delivering
DarkTortilla

981aa83b2d33cca994021197237ac5ee
 3ad3402f7d25f04f4e76985f4ec8744c

SHA256
hash

Malicious spam delivering
DarkTortilla

84872b60072011eab8940f3b49bdb582 MD5 hash DarkTortilla initial loader

3da0f44d45a1d6676d52ce691d2f6d75
 4eb3097e

SHA1
hash

DarkTortilla initial loader

5e03556be992d23088a3c49d24c45b1c
 21cd275bffb4e536348e8128d50374b6

SHA256
hash

DarkTortilla initial loader

2d74df3ce221f6ff48d20bac158a3e78 MD5 hash Malicious document delivering
DarkTortilla

0563e691801251cdfd363eee31858ead
 5ee3928b

SHA1
hash

Malicious document delivering
DarkTortilla

4f15b28c91fa0e8d0dd9e86481bad04f
 a34fcaf564d08de7c4c0c513fc6e122d

SHA256
hash

Malicious document delivering
DarkTortilla

827258f907c5087f498c413d28e2203e MD5 hash DarkTortilla initial loader

5e0cb6076002b11a39636e07a217b493
 835e5bce

SHA1
hash

DarkTortilla initial loader

55d7d9bd9d4a511417033b6c14ce93f9
 62d6a6e6c6414f0cb7e455baee1d3ab7

SHA256
hash

DarkTortilla initial loader

c37aae0ff565a2e44f144f837b750279 MD5 hash DarkTortilla initial loader

dde386911b091e894746b0f12d88a1fd
 18761fb9

SHA1
hash

DarkTortilla initial loader

a0b96236bfd79d2ebeadb8e3deb9448a
 f3ec8edd1ea9672b7ad4793934bb4c47

SHA256
hash

DarkTortilla initial loader

93fe6600c51014d7d6c2afedf8398f92 MD5 hash DarkTortilla initial loader

32/33

Indicator Type Context

8f7340704745f3d53b284c101e93c42f
 8d4c2adc

SHA1
hash

DarkTortilla initial loader

45ef054bca2ae4d67e6623bf28ff75e5
 d178924602674c654e1b569aa74601cd

SHA256
hash

DarkTortilla initial loader

6e91ad0972e104a277505104abe39d1e MD5 hash DarkTortilla initial loader

261d699c3bb1a0042b88a45ed340f2d8
 6149464f

SHA1
hash

DarkTortilla initial loader

b3754c6ecc445e9a3b37c5ebe68adb96
 30ca4aa89a8e8515468f39ae8131f141

SHA256
hash

DarkTortilla initial loader

cd49f7c3c4e82dee128eedea9879bc33 MD5 hash DarkTortilla initial loader

619bf90a8ea219e34bf57dda1a322914
 b9fa1c81

SHA1
hash

DarkTortilla initial loader

0a5dc3b6669cf31e8536c59fe1315918
 eb4ecfd87998445e2eeb8fed64bd2f2c

SHA256
hash

DarkTortilla initial loader

851816aa8cf45ba769f0d9420acfb3e5 MD5 hash DarkTortilla initial loader

4178d5efa388caf2d0ffd4539cf285b1
 de5ffab6

SHA1
hash

DarkTortilla initial loader

083acce46cb8cf35e37c778d1f4aee68
14bca72d2874b793a47f9823f51df0fe

SHA256
hash

DarkTortilla initial loader

f44695a8febb2a35576a59fa984629d2 MD5 hash DarkTortilla initial loader

37ec57e5da46dc1990941a1bb3ffab9e
 74db346a

SHA1
hash

DarkTortilla initial loader

53b3b37b7d1e40c80fcda2c424cd8373
 79ac2ce93023de6c22ba3e2d94679671

SHA256
hash

DarkTortilla initial loader

8d8c551dd572a1dc158de239b37eaa9a MD5 hash DarkTortilla initial loader

6d4b4bcd107b09af37996c73a6448379
 a31aaac4

SHA1
hash

DarkTortilla initial loader

5be86cfca25e295f88b5aab42a6f604d
 2f1bb97f3c73b01df664c137908e2ec4

SHA256
hash

DarkTortilla initial loader

0f89a2015ed9c1be5522e27c00276e52 MD5 hash DarkTortilla core processor
(PVCore1)

33/33

Indicator Type Context

5ad5b35f6cc093067c6f219f2d2107f4
 4248c5bb

SHA1
hash

DarkTortilla core processor
(PVCore1)

93dd1202697dbaed9ef4f4707f262821
 2bf13aad096de29c14924b1dae1d6d5b

SHA256
hash

DarkTortilla core processor
(PVCore1)

0e362e7005823d0bec3719b902ed6d62 MD5 hash DarkTortilla watchdog executable

590d860b909804349e0cdc2f1662b37b
 d62f7463

SHA1
hash

DarkTortilla watchdog executable

2d0dc6216f613ac7551a7e70a798c22a
 ee8eb9819428b1357e2b8c73bef905ad

SHA256
hash

DarkTortilla watchdog executable

https://pastebin.pl/view/raw/60b6b03b URL DarkTortilla encoded core
processor download

Table 9. Indicators for this threat.

References

Arntz, Pieter. "Explained: Packer, Crypter, and Protector." Malwarebytes Labs. March 27,
2017. https://blog.malwarebytes.com/cybercrime/malware/2017/03/explained-packer-crypter-
and-protector/

Hasherezade. "Rainbows, Steganography and Malware in a new .NET cryptor."
Malwarebytes Labs. March 30, 2016. https://blog.malwarebytes.com/threat-
analysis/2015/08/rainbows-steganography-and-malware-in-a-new-net-cryptor/

"RATs Crew." Hack Forums. June 21, 2021. https://wiki.hackforums.net/RATs_Crew

GoSecure Titan Labs. "New Malware ‘Gameloader' in Discord Malspam Campaign."
GoSecure. November 2, 2021. https://www.gosecure.net/blog/2021/11/02/new-malware-
gameloader-in-discord-malspam-campaign-identified-by-gosecure-titan-labs/

https://blog.malwarebytes.com/cybercrime/malware/2017/03/explained-packer-crypter-and-protector/
https://blog.malwarebytes.com/threat-analysis/2015/08/rainbows-steganography-and-malware-in-a-new-net-cryptor/
https://wiki.hackforums.net/RATs_Crew
https://www.gosecure.net/blog/2021/11/02/new-malware-gameloader-in-discord-malspam-campaign-identified-by-gosecure-titan-labs/

