
1/12

Cleartext Shenanigans: Gifting User Passwords to
Adversaries With NPPSPY

huntress.com/blog/cleartext-shenanigans-gifting-user-passwords-to-adversaries-with-nppspy

While investigating an intrusion, Huntress stumbled on something rather fascinating to do
with adversarial credential gathering.

Threat actors are often retrospectively gathering credentials by dumping what’s already on
the system (like Mimikatz). Some tools, like Responder, let the threat actor listen network-
wide and pick up some hashes that are whizzing around the Active Directory.

But it isn’t too common that we at Huntress see threat actors proactively manipulate a
system not just to gather credentials, but to gather cleartext passwords*. Normally, we only
see this proactive effort via UseLogonCredential registry manipulation.

And yet, while investigating a recent intrusion, we found an unusual technique to steal
cleartext creds.

A threat actor had gained access to a complex network, dwelled in dark corners of the
environment, and then deployed Grzegorz Tworek's NPPSPY technique to ‘man in the
middle’ the user logon process, and squirrel away the user’s name and password in an
unassuming file.

https://www.huntress.com/blog/cleartext-shenanigans-gifting-user-passwords-to-adversaries-with-nppspy
https://www.csoonline.com/article/3438824/how-to-detect-and-halt-credential-theft-via-windows-wdigest.html
https://twitter.com/0gtweet
https://github.com/gtworek/PSBits/tree/master/PasswordStealing/NPPSpy

2/12

It seems that the community has documented this NPPSPY technique in theory, but so far it
seems like no one has documented when they have encountered it maliciously deployed in
the wild.

In this article, let’s have a look at when the Huntress team encountered this technique IRL.

What Does NPPSPY Do?

Before we go into the details of this tradecraft, I recorded a short video of how this technique
works. The TLDR here: it’s possible to man-in-the-middle the login process and save a
user’s password cleartext into a file on the file system:

I am simplifying the technique because I am a simpleton from Grzegorz’s notes [1, 2] and
Microsoft documentation. Many have already written about this technique and incorporated it
into security frameworks, like Atomic Red’s suite of tests, so I won’t dwell too much on the
granularity of this explanation.

When you sit down to sign onto your machine and type in your password to authenticate, a
bunch of different things are done on the back end with your credentials: hashing, checking,
flying back and forth to a domain controller, etc.

The conversation between Winlogon and Local Security Authority Subsystem Service
(LSASS) is most relevant for our instance. Winlogon is both the graphical user interface that
we use to put our credentials in, as well as the conversational partner with LSASS for letting
you sign in.

It’s more of a challenge to mess with LSASS to try and gather credentials, and so the
NPPSPY technique takes the path of least resistance by focusing on Winlogon.

When you give your password to Winlogon, it opens up an (RPC) channel to a mpnotify.exe
and sends it over the password. Mpnotify then goes and tells some DLLs what’s up with this
credential.

NPPSPY comes alive here. Mpnotify is maliciously told about a new adversarial network
provider to consider. This network provider is attacker-controlled and comes with a
backdoored DLL the adversary has created. This slippery DLL simply listens for this clear
text credential exchange from winlogon down to mpnotify and then saves this clear text
credential exchange.

https://www.youtube.com/watch?v=ggY3srD9dYs
https://twitter.com/0gtweet/status/1465282548494487554?s=20&t=Hp4bI4d0cIuZGtl8Ulm0TQ
https://www.scip.ch/en/?labs.20220217
https://github.com/redcanaryco/atomic-red-team/blob/master/atomics/T1003/T1003.md#atomic-test-2---credential-dumping-with-nppspy

3/12

What Did We Find in the Wild?

Let me take you back to the case.

During this intrusion, the Godparents of DFIR, Jamie Levy and Harlan Carvey, used their
forensic wizardry to point the team to find and give some attention to a
‘C:\Windows\System32\lsass.dll’. They had identified that this had been associated with a
compromised account and advised us to go and determine what it was.

Now, we’re all good noodles on the ThreatOps team, and if a Big Boss gives an order, you
bet we’ll go get it DONE. We got the DLL, dissected it, hypothesized it was NPPSPY and
then deployed it in our local lab to verify this theory.

https://twitter.com/gleeda
https://twitter.com/keydet89

4/12

After having tested locally, we then looked at the compromised system. Very satisfyingly, we
could account for the exact techniques the threat actor had leveraged.

The network provider in this instance was named logincontroll (typo intentional)
It occupied HKLM\SYSTEM\CurrentControlSet\Control\NetworkProvider\Order and
created value logincontrol
And then pointed logincontroll with the path C:\Windows\System32\lsass.dll at
registry
HKLM\SYSTEM\CurrentControlSet\Services\logincontroll\NetworkProvider

5/12

Below are screenshots from the compromised system:

In our lab and then on the compromised host, we identified that
C:\Windows\Temp\tmpCQOF.tmp was the hardcoded file that the threat actor had
designated to listen and record the credentials as Username -> Password:

Now I can’t show you what was in that file on the compromised system—only what was re-
created in our testing environment. But trust me, seeing a tonne of cleartext usernames and
passwords was WILD.

Outstanding Oddities

6/12

You know, something always interesting with investigations is that even when you reach one
conclusion, there is always one thread out of place, waiting for you to pull, unravel and get
further lost in the sauce.

We identified this tradecraft on a compromised Exchange server.

Remember C:\Windows\Temp\tmpCQOF.tmp, the file that kept a record of the cleartext
creds? Evidence suggested that email addresses and their corresponding clear text
passwords made it into the dump.

This was me upon that realization. Now, keeping in mind that I am a mere mindless
marmoset, I get easily confused. How did backdooring the local login process end up
rounding up the email addresses and passwords for users authenticating to gather their
emails, from this Exchange machine?

To try and wrap my head around what the evidence was showing, we sought counsel with
Huntress’ Researcher Tech Lead and Leader of the Council of the Wise, Dave Kleinatland
🧙.

Dave agreed it was odd, but suggested

https://twitter.com/davekleinatland

7/12

Exchange-related authentications CAN be swept up in NPPSPY’s net for catching
cleartext credentials in transit… If you're capturing creds on an Exchange box, you're
doing well.

This suggests that for NPPSPY, there are under-documented benefits to targeting specific
servers in an Active Directory. We saw the evidence firsthand that hitting an Exchange box
also gathered the clear text creds for users just trying to access their emails.

Investigating and Defending

A worry we had when putting this blog together is that by shining the spotlight on an
interesting, lesser deployed offensive security technique, Huntress would be partially
responsible for a spike in near future usage.

As such, we wanted to spend some time on how defenders can investigate and detect this.

For my red team colleagues, some places advise how to deploy NPPSPY. The default DLL
that Grzegorz kindly provides will get flagged by Defender, but Grzegorz’s kindness knows
no bounds, and he provides the C code to compile it yourself.

Checking Live Systems

Grzegorz provides this script to look at the Network Providers and their associated DLL file
paths.

From a registry point of view, it’s a ‘service’, but it is not really a service and thus cannot be
detected as such. In the screenshot below, you can see NPPSPY comparison to the other
legitimate ones ‘logincontroll’ is relatively light on signatures, version numbers, or
descriptions. But it is considered trivial for threat actors to add many of these, so don’t rely
on the absence of these for detection.

https://github.com/gtworek/PSBits/blob/master/PasswordStealing/NPPSpy/Get-NetworkProviders.ps1

8/12

Forensics

Like a lot of things in infosec, Harlan seems to have already had all bases covered, no
matter how novel the technique.

By leveraging the services plugin for RegRipper v3.0, we will see the very suspicious service
name we have already identified with our threat actor’s implementation of NPPSPY.

Monitoring and Detecting

https://github.com/keydet89/RegRipper3.0

9/12

The file name that records the cleartext credentials is hardcoded from the source, and
therefore we do not have detection opportunities here.

Although the NPPSPY docs advise dropping the DLL in C:\windows\System32, you don’t
have to. The example below demonstrates how an adversary can drop the required DLL
in any directory, like C:\windows\temp. Therefore, we do not have detection opportunities
here for any required directories.

This NPPSPY technique is noisy. And detecting this is possible with various security
monitoring tools that monitor the processes and commands being run on a machine. You
could use Sysmon as a free option. At Huntress, we have our Process Insights listener that
makes parent-child process lineage easy to follow.

https://docs.microsoft.com/en-us/sysinternals/downloads/sysmon
https://www.huntress.com/platform/process-insights

10/12

There are several detection opportunities for NPPSPY, as adversaries have to

Be a privileged user
Create and manipulate a number of registry entries
Bring a DLL on disk
And then write clear text creds to a file somewhere

Elastic has a rule query for this kind of network provider manipulation. They assign it a
severity medium... personally, I’d assign this kind of activity to be a super nuclear critical...
but that’s just me.

IOCs and Behavior

OS Credential Dumping - ATT&CK T1003
Values under HKLM\SYSTEM\CurrentControlSet\Control\NetworkProvider\Order

For our case: logincontroll
Unexplained entries in HKLM\SYSTEM\CurrentControlSet\Services\
<here>\NetworkProvider

For our case: logincontroll
Unexplained DLLS in folders (very difficult to detect)

For our case: C:\windows\system32\lsass.dll
Files being continually written too (essentially impossible to detect this IMO)

For our case: C:\Windows\Temp\tmpCQOF.tmp

Remediating

To remediate and eradicate this wickedness, we tested furiously with our virtual machine
snapshots.

Deleting only C:\windows\system32\<attacker.dll> stops the credential file being
written to
Deleting only the key HKLM:\SYSTEM\CurrentControlSet\Services\<Attacker
provider name>\NetworkProvider stops the credential file being written to

Therefore deleting both the attacker-controlled DLL and the registry entry will stop the
cleartext credential gathering activity for sure.

Below is an extract of the report the partner received from us, which allowed one-click
automatic remediations to undo the ensnarement NPPSPY had placed the machine under.

https://www.elastic.co/guide/en/security/current/network-logon-provider-registry-modification.html
https://attack.mitre.org/techniques/T1003/

11/12

So, the Bad Actors Won?

Some may point the blame at security researchers in these instances. It’s easy to assume
that because they create techniques and share proofs of concept, that they are the root of
evil in the cybercriminal ecosystem.

This couldn’t be further from the truth. The problem is not offensive security research. The
problem is cybercriminals.

While this technique was cooked up by a security researcher, the threat actor could have
leveraged a whole plethora of other malicious techniques to achieve their goals—this was
just one of them, albeit a spicy one.

Offensive security research helps us defenders stay sharp, and motivate us to constantly
improve our tradecraft. Those attackers got in somehow, and there are always lessons to
learn about hardening defenses and imposing cost on dipsh*t adversaries.

Techniques like NPPSPY have probably been deployed in the wild before. From what we can
tell, Huntress seems to be the first at sharing and documenting its IRL usage by threat
actors. Offensive tools do not remain elusive and mysterious for long once the defensive
community gives them some attention.

We hope this article is a small contribution that helps the community fight back and conjure
better defenses! And speaking of conjuring, digital forensics, Jamie Levy and Harlan Carvey,
you won't want to miss the September 2022 episode of Tradecraft Tuesday.

https://cta-redirect.hubspot.com/cta/redirect/3911692/9a647ae3-ff72-4027-9e81-f319760a7014

12/12

• • •

Addendum: cleartext vs. plaintext

*I consulted NIST docs to conclude what NPPSPY is. A rough overview is that cleartext
means un-encrypted text, whereas plaintext is the text involved in a more complicated
cryptographic exchange.

Of course, if a password is about to be input into a cryptographic authentication like one
does for a Windows login, wouldn’t that make it plaintext? Potentially. But NPPSPY
seemingly takes place before cryptography really gets involved, and therefore it seems more
appropriate to weigh in on the side of cleartext.

If anyone has any strong feelings otherwise, please @ me on Twitter.

https://twitter.com/Purp1eW0lf

