
1/8

August 11, 2022

CopperStealer Distributes Malicious Chromium-based
Browser Extension to Steal Cryptocurrencies

trendmicro.com/en_us/research/22/h/copperstealer-distributes-malicious-chromium-browser-extension-steal-
cryptocurrencies.html

Malware

We tracked the latest deployment of the group behind CopperStealer, this time stealing
cryptocurrencies and users’ wallet account information via a malicious Chromium-based
browser extension.

By: Jaromir Horejsi, Joseph C Chen August 11, 2022 Read time: (words)

We published our analyses on CopperStealer distributing malware by abusing various
components such as browser stealer, adware browser extension, or remote desktop.
Tracking the cybercriminal group’s latest activities, we found a malicious browser extension
capable of creating and stealing API keys from infected machines when the victim is logged
in to a major cryptocurrency exchange website. These API keys allow the extension to
perform transactions and send cryptocurrencies from victims’ wallets to the attackers’
wallets.

Similar to previous routines, this new component is spread via fake crack (also known as
warez) websites. The component is usually distributed in one dropper together with a
browser stealer and bundled with other unrelated pieces of malware. This bundle is
compressed into a password-protected archive and has been distributed in the wild since
July.

Dropper/Extension installer

This component uses the same cryptor described in previous posts in the first stage,
followed by the second stage wherein the decrypted DLL is Ultimate Packer Executables-
(UPX) packed. After decrypting and unpacking, we noticed a resource directory named CRX
containing a 7-Zip archive. Malicious Chrome browser extensions are usually packaged this
way.

 Figure

1. Extension installer called CRX containing a 7-Zip archive

https://www.trendmicro.com/en_us/research/22/h/copperstealer-distributes-malicious-chromium-browser-extension-steal-cryptocurrencies.html
https://www.trendmicro.com/en_us/research/22/f/websites-hosting-fake-cracks-spread-updated-copperstealer.html
https://www.trendmicro.com/en_us/research/21/c/websites-hosting-cracks-spread-malware-adware.html
https://www.trendmicro.com/en_us/research/22/f/websites-hosting-fake-cracks-spread-updated-copperstealer.html

2/8

The archive contains a JSON file with settings and another 7-Zip archive with the code of the
extension installer itself.

 Figure 2. Unpacked content of CRX

The extension installer first modifies the files Preferences and Secure Preferences in the
Chromium-based browser‘s User Data directory. The file, named Preferences, is in JSON
format and contains individual user settings. The extension installer switches off browser
notifications.

Meanwhile, the file named Secure Preferences is also in JSON format and contains the
installed extension’s settings. For a newly installed extension, the content of crx.json file is
inserted into this Secure Preferences settings file. A newly installed extension is also added
to the extension installation allow list located in the registry.

The files from the crx.7z archive are then extracted into the extension’s directory located in
<User Data\Default\Extension>. Finally, the browser restarts so the newly installed extension
becomes active. We analyzed that the targeted browsers are Chromium-based and include:

Chrome
Chromium
Edge
Brave
Opera
Cốc Cốc
CentBrowser
Iridium
Vivaldi
Epic
Coowon
Avast Secure Browser
Orbitum
Comodo Dragon

We also noted that the extension was installed to the victims’ browsers with two different
extension IDs, and neither can be found on the official Chrome Web Store:

cbnmkphohlaaeiknkhpacmmnlljnaedp
jikoemlnjnpmecljncdgigogcnhlbfkc

Analysis of the extension

After the extension’s installation, we also noticed the following newly installed extension in
chrome://extensions/.

3/8

 Figure 3. Installed malicious

extension
The extension manifest defines two Java Scripts. The background script is named
background.js and runs inside the extension itself in only one instance. Meanwhile, the
content script is called content.js and runs in the context of coinbase.com, as shown in
snippet from the extension manifest.

 Figure 4. Settings of the

content script as specified in the extension manifest
Script obfuscation

Both Javascript files are heavily obfuscated. In the first obfuscation step, all strings are split
into substrings, stored in a single array, and access to the array is achieved by calling
multiple hexadecimal-named functions with five hexadecimal integer parameters.

 Figure 5. The first layer of
obfuscation
Looking at the second obfuscation step, all the strings, logic operators (+, -, *, /), function
calls, among others are inserted into an array of objects. Each object has a random string as
a name, and either another string or function as a value. In the example we analyzed,
_0x1f27e3['PFPYr'] corresponds to string “set”, and _0x1f27e3['LYLfc'](0,1) corresponds to
the logic expression 0!=1.

 Figure 6. The second

layer of obfuscation
Both obfuscation steps can be deobfuscated by using custom automation scripts.

Background script analysis

4/8

Analyzing the scripts, this section breaks down how the cybercriminals are able to steal the
account information of legitimate cryptocurrency wallet users. When the extension starts, the
background script makes two queries. The first one is a GET request to http://<C&C
server>/traffic/chrome, likely for statistical purposes. The second query is a POST request to
http:// <C&C server>/traffic/domain, wherein the data contains the domains of
cryptocurrency-related websites based on the cookies found in the machine:

blockchain.com
coinbase.com
binance.com
ftx.com
okex.com
huobi.com
kraken.com
poloniex.com
crypto.com
bithumb.com
bitfinex.com
kucoin.com
gate.io
tokocrypto.com
tabtrader.com
mexc.com
lbank.info
hotbit.io
bit2me.com
etoro.com
nicehash.com
probit.com

Then the extension defines an array of the threat actor’s addresses for various
cryptocurrencies and tokens for:

Tether (USDT, specifically in Ethereum ERC20 and TRON TRC20)
Ethereum (ETH)
Bitcoin (BTC)
Litecoin (LTC)
Binance coin (BNB)
Ripple (XRP)
Solana (SOL)
Bitcoin Cash (BCH)
Zcash (ZEC)
Stellar Lumens (XLM)

5/8

Dogecoin (DOGE)
Tezos (XTZ)
Algorand (ALGO)
Dash (DASH)
Cosmos (ATOM)

For ETH addresses, the script hardcodes about 170 additional ERC20-based tokens.
Afterward, the extension starts onMessage listener to listen for messages sent from either an
extension process or a content script. The message is in JSON format, with one of the
name-value pair called method. The background script listens for the following methods:

Method “homeStart”

This method tries to obtain the API key (apiKey) and API secret (apiSecret) from Chrome’s
local storage if these key-secret pairs were previously obtained and saved. These
parameters are needed for the following steps:

Uses the API to get information about wallets, addresses, and balances by requesting
/api/v2/accounts. The result of this request is also exfiltrated to http://<C&C
server>/traffic/step.
If the request is successful, the API sends “okApi” message to content script and starts
parsing for wallet information. If the wallet balance is non-zero, it attempts to send 85%
of the available funds to the attacker-controlled wallet.

 Figure

7. Looking for wallets with non-zero balance

 Figure 8. Stealing 85% of

available funds
The result of the transaction request is also exfiltrated to http://<C&C server>/traffic/step.

If not successful, the API sends a “errorApi” message to the content script. The
“errorApi” message contains a CSRF token from https://www.coinbase.com/settings/api
as one parameter, and a response to the new API key creation request.

https://developer.chrome.com/docs/extensions/reference/runtime/#event-onMessage
https://developer.chrome.com/docs/extensions/reference/storage/
https://www.coinbase.com/settings/api

6/8

Method “createApi”

This message is received from the content script and contains a two-factor authentication
(2FA) code as one of the parameters. This code is used for opening a new modal window for
creating API keys. Typically, when you click on “+New API Key” in the Coinbase API settings,
a 2FA code is requested and if the code is correct, the modal window appears.

In the second step of the new API creation, one needs to select wallets and their
permissions. The malicious extension requests all the available permissions for all accounts.

 Figure

9. Selecting all accounts and permissions
Afterward, one needs to insert one more authentication code and a form with the newly
generated API keys is displayed. If successful, the background script then continues with
extracting two API keys (API Key and API Secret) from the “API key details” form, saves
them to Chromium’s local storage for later use, and exfiltrates them to http://<C&C
server>/traffic/step. If API authentication is not successful, a “retryApi” message is sent to
content script.

Content script analysis

We looked further into the content script to analyze the routine responsible for stealing the
2FA passwords from the victims. The content script contains a list of messages in the
following languages:

English (en)
German (de)
Spanish (es)
French (fr)
Japanese (jp)
Indonesia (id)
Italian (it)
Polish (pl)
Portuguese (pt)
Russian (ru)
Thai (th)
Turkish (tr)

Each message contains a title, description, and error message for both phone and
authenticator.

For “phone,” displayed messages in English appear as:

7/8

“title”: “Please enter the verification code from your phone.”
“description”: “Enter the two-step verification code provided by SMS to your phone.
“message”: “That code was invalid. Please try again.”

For “authenticator,” displayed messages in English look like:

“title”: “Please enter the verification code from your authenticator.”
 “description”: “Enter the 2-step verification code provided by your authentication app.”
 “message”: “That code was invalid. Please try again.”

The content script initially makes a request to /api/v3/brokerage/user_configuration to see if a
user is logged in or not. The script then sends a “homeStart” message to the background
script and starts listening using onMessage to listen for “method” attributes similar to the
background script routine. If it receives a message with a method attribute equal to “okApi”, it
hides the code loader and removes the modal window. If it receives a message with a
method attribute equal to “errorApi” it then creates a modal window.

 Figure 10. Displayed

modal window asking for entering authentication code
The modal window has input boxes and listens for oninput events. If each of the input boxes
contains one digit, they are concatenated into one “tfa” (2FA) variable and sent as a
parameter of “createApi” message to the background script. The code loader is also shown.

The modal window has six input boxes for six digits, provided when using an authenticator. If
the victim uses an authentication via SMS, then the authentication code has seven digits,
and the modal window will have one more input box. This logic is implemented in the modal
window code. The received message with method attribute equal to “retryApi” deletes all
inserted digits and displays an error message in red.

https://developer.chrome.com/docs/extensions/reference/runtime/#event-onMessage
https://www.w3schools.com/jsref/event_oninput.asp

8/8

 Figure 11. After the authentication

code is entered, an error message appears
Conclusion

The cybercriminals behind CopperStealer are far from stopping anytime soon, and we
continue monitoring their deployments as they find more ways to target unwitting victims.
While analyzing this routine, we found multiple similarities between this extension and the
previously reported malware components, one of which is that the malicious extension and
CopperStealer were distributed from the same dropper and by the same delivery vector that
we have documented previously.

Another striking similarity is the malicious extension’s command and control (C&C) domain
having the same format as the Domain Generation Algorithm (DGA) domains tracked back
as belonging to the previous versions of CopperStealer. The format is a string composed of
16 hexadecimal characters. Moreover, both of their C&C servers were constructed with the
PHP framework “CodeIgniter.” These attributes hint to us that the developers or operators
behind the malware and the extension could be associated.

Users and organizations are advised to download their software, applications, and updates
from the official platforms to mitigate the risks and threats brought by malware like
CopperStealer. Teams are advised to keep their security solutions patched to ensure that
detection and prevention solutions can protect systems from possible multiple attacks and
infections.

Indicators of Compromise (IOCs)

You will find the list of the IOCs here.

https://www.trendmicro.com/content/dam/trendmicro/global/en/research/22/h/copperstealer-distributes-malicious-chromium-based-browser-extension-to-steal-cryptocurrencies/IOCs-CopperStealer-distributes-malicious-Chromium-browser-extension-steal-crypto.txt

