
1/15

Hido Cohen & Arnold Osipov

APT-C-35: New Windows Framework Revealed
blog.morphisec.com/apt-c-35-new-windows-framework-revealed

APT-C-35 Gets a New Upgrade

Posted by Hido Cohen & Arnold Osipov on August 11, 2022
Find me on:
LinkedIn

Tweet

The DoNot Team (a.k.a APT-C-35) are advanced persistent threat actors who’ve been active since at least 2016.
They’ve targeted many attacks against individuals and organizations in South Asia. DoNot are reported to be the
main developers and users of Windows and Android spyware frameworks [1][2][3].

Morphisec Labs has tracked the group’s activity and now exclusively details the latest updates to the group’s
Windows framework, a.k.a. YTY, Jaca. In this blog post, we briefly discuss the history of the DoNot team and shed
light on updates revealed by the latest samples found in the wild.

APT-C-35/DoNot Background

The DoNot Team is consistent with their TTPs, infrastructure, and targets. They’re also well known for their
continuous updates and improvements to their toolkit.

The group mainly targets entities in India, Pakistan, Sri Lanka, Bangladesh, and other South Asian countries. They
focus on government and military organizations, ministries of foreign affairs, and embassies.

For initial infection, the DoNot Team uses spear phishing emails containing malicious attachments. (Related: spear-
phishing campaigns have become the preferred delivery method for ransomware.) To load the next stage they
leverage Microsoft Office macros and RTF files exploiting Equation Editor vulnerability and remote template injection.

Known TTPs, or malware commonalities, include:

Modular architecture where each module is delivered in a separate file
Functionalities: file collection, screenshots, keylogging, reverse shell, browser stealing, and gathering system
information
Various programming languages such as C++, .NET, Python, etc.
Utilizing Google Drive to store command and control (C2) server addresses
Multiple domains are used for different purposes throughout the infection chain

All previously known framework variants attributed to the DoNot Team share similar attributes.

https://blog.morphisec.com/apt-c-35-new-windows-framework-revealed
https://blog.morphisec.com/author/hido-cohen-arnold-osipov
https://www.linkedin.com/in/hido-cohen-78b5a0127/
https://twitter.com/share
https://csrc.nist.gov/glossary/term/advanced_persistent_threat
https://www.netscout.com/blog/asert/donot-team-leverages-new-modular-malware-framework-south-asia
https://mp.weixin.qq.com/s?__biz=MzUyMjk4NzExMA==&mid=2247486186&idx=1&sn=efafc115ec7c9e8f589725de2c73cf69
https://www.welivesecurity.com/2022/01/18/donot-go-do-not-respawn/
https://engage.morphisec.com/the-ultimate-ransomware-strategy
https://csrc.nist.gov/glossary/term/tactics_techniques_and_procedures
https://www.welivesecurity.com/2022/01/18/donot-go-do-not-respawn/
https://blog.morphisec.com/three-trends-ransomware-attacks-more-dangerous

2/15

Morphisec Labs has identified a new DoNot infection chain that introduces new modules to the Windows framework.
In this post we detail the shellcode loader mechanism and its following modules, identify new functionality in the
browser stealer component, and analyze a new DLL variant of the reverse shell.

Mapping a Malware Route

Delivery pathway to infect a machine

DoNot’s latest spear phishing email campaign used RTF documents and targeted government departments, including
Pakistan’s defense sector. When the RTF document is opened, it tries to fetch a malicious remote template from its
C2 by sending an HTTP GET request in the form: <domain>/<X>/<Y>.php. If the User-Agent for that request doesn’t
contain MSOffice, which is case sensitive and added by default in Office applications, the C2 returns a decoy
document with empty content. Otherwise, it downloads and injects a macro weaponized document. This technique
may trick a security solution that tries to scan the URL without the MSOffice User-Agent header and mark it as clear.
The remote template URLs are active for a limited period of time which makes analysis difficult.

Pre-Shellcode Execution

3/15

When a remote template is injected, it lures the victim to enable editing and content to allow the malicious macros to
execute. Once macros are enabled, the Document_open routine executes and starts with a for loop to delay the
malicious code execution, and then calls to the appropriate function based on the Winword.exe bitness.

Document_open routine code

The function injects a shellcode (32-bit/64-bit) into the process memory and invokes it. The shellcode is injected using
the following three WinAPI functions:

1. ZwAllocateVirtualMemory—Allocates virtual memory with Execute/Read/Write permission
2. MultiByteToWideChar—Maps the shellcode character string to UTF-16
3. EnumUILanguagesA—Passes the shellcode as a callback parameter. Other variants also use the

Internal_EnumSystemCodePages WinAPI

WinAPI calls used for the shellcode execution

Delivering the Payload

Before the execution of the payload, the shellcode decrypts itself using a simple decryption routine—not followed by
xor with a two-byte key, which changes between stages. After the shellcode is invoked, it starts execution by
decrypting the rest of the shellcode bytes and passing the execution to the next stage.

4/15

Shellcode decryption routine before decrypting the next chunk

Next, the shellcode downloads an encrypted blob from its C2: <domain>/<X>/<Y><Z>.ico (for the 32-bit shellcode) or
<domain>/<X>/<Y><Z>.png (for the 64-bit shellcode) and decrypts it. The decrypted blob is the second-stage
shellcode, and like the first-stage shellcode, it starts by decrypting the rest of the bytes in the shellcode before
passing execution to the next stage.

In the 64-bit version of the first stage shellcode, the actor left what seem to be strings belonging to the configuration
of the shellcode builder:

5/15

'sm\\INCLUDE\\PCOUNT\\SHELL32.INC'

include 'c:\\Fasm\\INCLUDE\\WIN32AXP.INC'

include 'Shellcodes\\MyAssemblyMacros\\MyAssemblyMacrosMain.INC'

;if debugging turn this bit on

debug = 0

xor_key_main = 0xAD

xor_key_payload = 0xFE

xor_key_url = 0xCE

expiry_year_date = 0x7e6070f

mcafee_expiry_year_date = 0

avg_expiry_year_date = 0

norton_expiry_year_date = 0

bitdefender_expiry_year_date = 0x7e6070f

eset_expiry_year_date = 0x7e60717

define_real_variable local_path_exe_env, '%tmp%\\..\\winsvsc.exe',0

define_real_variable tmp_env_path, '%tmp%\\document.doc',0

define_real_variable clear_registry, 'reg delete \"HKCU\\Software\\Microsoft\\Office\\12.0\\Word\\Resili

These configurations include XOR keys used in the second-stage shellcode, and expiry dates for security products
such as McAfee, Norton, and Bitdefender. Some strings appear to be the attacker's local paths and debugging flags.

Next, the shellcode checks for security solutions by validating the existence of their drivers’ .sys, located under
C:\Windows\System32\drivers. If security solutions are present, the shellcode compares the current date to an expiry
date configured in the shellcode builder and operates accordingly.

For instance, in the researched sample, [1] - [7] denote the following values:

6/15

[1]
hxxp://mak.logupdates.xyz/DWqYVVzQLc0xrqvt/HG5HlDPqsnr3HBwOKY0vKGRBE7V0sDPdZb09n7xhp0klyT5X.mp3

[2]
hxxp://mak.logupdates.xyz/DWqYVVzQLc0xrqvt/HG5HlDPqsnr3HBwOKY0vKGRBE7V0sDPdZb09n7xhp0klyT5X.doc

[3] %tmp%\syswow64.dll

[4] %tmp%\document.doc

[5] Qoltyfotskelo

[6] schtasks.exe /create /tn wakeup /tr \"rundll32 %tmp%\syswow64.dll, HPMG\" /f /sc DAILY /st 11:00 /ri 10 /du 24:00

[7] cmd.exe %tmp%\\syswow64.dll

The malware will execute values depending on whether it finds a security solution. For example, the following table
demonstrates the operation performed based on the driver found and the comparison between the current date and
expiry date:

Driver
Name

Affiliate Expiry
Date

Sets Action 1 Action 2

gzfit.sys BitDefender
Antivirus

0x7E6070F
->
2022/07/15

if current_date <=
expiry: Action1
else: Action2

Downloads from [1] to [3],

modifies 3 first bytes,

and calls exported function
[5]

Downloads from
[1] to [3]

Downloads from
[2] to [4]

Executes
cmd.exe, and [7]
via WinExec

klif.sys Kaspersky
Antivirus

0x7E6070B
->
2022/07/11

if current_date <=
expiry: Action1
else: Action2

Injects shellcode to bcrypt.dll
shellcode performs the same
as above

Downloads from
[1] to [3]

Downloads from
[2] to [4]

Executes
cmd.exe, and [7]
via WinExec

aswsp.sys Avast 0x7E6070F
->
2022/07/15

if current_date <=
expiry: Action1
else: Action2

Downloads from [1] to [3],

modifies 3 first bytes, and
calls exported function [5]

Downloads from
[1] to [3]

Downloads from
[2] to [4]

and executing
[6] and [7] via
WinExec

7/15

ehdrv.sys ESET
NOD32
Antivirus

0x7E60717
->
2022/07/23

if current_date <=
expiry: Action1
else: Action2

Downloads from [1] to [3],

modifies 3 first bytes, and
calls exported function [5]

Downloads from
[1] to [3]

downloads from
[2] to [4]

and executing
[6] and [7] via
WinExec

bsfs.sys QuickHeal
Antivirus

0x7E60711
->
2022/07/17

if current_date <=
expiry: Action1
else: Action2

Downloads from [1] to [3]

Downloads from [2] to [4]

and executing [6] and [7] via
WinExec

int 3 and exit

360AvFlt.sys Qihoo360 0x7E60713
->
2022/07/19

if current_date <=
expiry: Action1
else: Action2

Nothing

downloads from
[1] to [3]

downloads from
[2] to [4]

and executing
[6] and [7] via
WinExec

Security solutions and corresponding actions according to the expiry date

If none of the drivers are found on the victim’s machine, the shellcode executes the default routine which downloads
from [1], and modifies the three first bytes back to their original form. This technique is used to evade security
solutions and keep them from scanning the executable. It then executes the exported function [5].

Morphisec Labs hasn’t found a clear motive for the included expiry date and driver check. When malware checks for
security solutions in conjunction with a certain date, it’s often because the authors tested their bypass against the
latest version. Future updates would react differently as they’re not tested. Another common malware behavior after
finding security solutions is to evade or abort execution. In this case, the malware slightly modifies its behavior but
mostly continues its malicious activity.

Module Delivery and Execution

The initial infection executes the main DLL. This DLL is responsible for beaconing back to the C2 server that the
infection was successful and downloading the next component in the framework. The following figure outlines the
high-level relationships between the components in the rest of the execution:

8/15

Component relationships with new/updated components highlighted

Main DLL (pgixedfxglmjirdc.dll) Beaconing

Delivered by the shellcode, the main DLL usually contains two exported functions. In our case, Qoltyfotskelo
(referred to as the first exported function) and Yolueorgw (referred to as the second exported function).

The first exported function is responsible for installing persistence and checking for security solutions. Persistence is
achieved by setting a new Scheduled Task (via COM objects) that runs every three minutes. The action assigned to
the task is to run the second exported function—Yolueorgw.

The second exported function is responsible for beaconing back to the C2 server. Before it does so, it creates a
mutex to avoid multiple instances running at the same time, and performs VM detection using WMI queries:

9/15

Looking for VMware, VMware Virtual Platform, and VirtualBox in csproduct name

The malware then uses Windows Management Instrumentation (WMI) to collect basic system information such as the
name, operating system caption, build number, and processor ID:

Beaconing information sent to the server before encryption

To that information, it concatenates the victim’s ID and the folder names under C:\Program Files and C:\Program
Files (x86) to learn which software is installed on the system. What we refer to as victim ID is a concatenation of
Username-ComputerName-ProcessorId. This string identifies the victim in later communication with the C2 server.

Once this is done the malware can encrypt the victim’s data and beacon back to its C2 server. The malware and
server encryption is AES-256 with two sets of embedded keys and IVs. The encrypted data is then encoded using
Base64.

The beaconing process is divided into two steps shown below:

10/15

Beaconing messages for downloading the next component

The first message to the server is sent as a POST request to the first URL path (<first_path>) embedded in the
binary. The body contains the following encrypted information:

Name: CPU Name>Caption: OS Version>Build: Build Number V:|||Username-ComputerName-
ProcessorId||||||O|||3|||Folder #1 Name?Folder #2 Name…

Depending on the server’s response, the malware will either stay idle and keep the beaconing loop, or download the
next stage. If the latter, the malware sends another POST request to a second URL path (<second_path>) on the
same server. This message contains the following encrypted information: Username-ComputerName-
ProcessorId|||Next stage DLL name

The response to that request is the next stage DLL. To execute the next stage, the malware creates another
scheduled task and removes the previous one using a clean-up .bat file (see ms.bat in the Appendix section).

Module Downloader (WavemsMp.dll)

The main purpose of this stage is to download and execute the modules used to steal the user’s information. To
understand which modules are used in the current infection, the malware communicates with another C2 server. The
malware fetches the new address from an embedded link that refers to a Google Drive document containing the
encrypted address:

Download the encrypted C2 server address from Google Drive

The decryption of the C2 address downloaded from Google Drive

This architecture allows the authors to frequently update their C2 servers without needing to redeliver the binary. After
the C2 server address is decrypted, the malware sends a POST request to it with the encrypted victim’s ID in the
request body. The response is the modules’ configuration:

11/15

This framework’s modularity stands out. The configuration controls which modules to download and execute without
needing to update the binary. Morphisec Labs witnessed how this functionality came into play when a single binary
communicated with different C2 servers and downloaded different modules across multiple runs over time.

The response specifies information about the modules, delimited by | (pipeline) where each part has the following
format:

Module name>Module size>Should download?>Export name to execute>Additional parameters

Additionally, there are special characters the malware looks for such as:

T?<file_name>?<file_data>—creates a file at %Temp%\usdata and writes the content
M?<module_name>?<module_size>—downloads another file from the server to %ProgramData%\MJDpnd
D?—unknown

The following figure illustrates the various modules and the interactions between them:

ieflagKlo.dll—Keylogger module
ieflagUl.dll—File uploader module which uploads the modules’ output
ieflagSp.dll—Screenshot module
ieflagTr.dll—File collection module
ieflagUsd.dll—Removable disk file collection module
ieflagBr.dll—Browser information stealer module
ieflagRvso.dll—Reverse shell module

For more information about each module, refer to this analysis.

Upgraded Browser Stealer Module

https://mp.weixin.qq.com/s?__biz=MzUyMjk4NzExMA==&mid=2247486186&idx=1&sn=efafc115ec7c9e8f589725de2c73cf69

12/15

While Morphisec Labs was researching the previously known modules, one module caught our attention—the
browser stealer. The browser stealer was first introduced to the framework in late 2020 and since then, we haven’t
seen any significant changes. Until now.

Instead of implementing the stealing functionality inside the DLL, the module uses four additional executables
downloaded by the previous stage (WavemsMp.dll). Each additional executable steals information from Google
Chrome and/or Mozilla Firefox. The following table summarizes what data is stolen from each browser:

Name Stolen Data Plain text file Encrypted file

WinBroGogle.exe Google Chrome
credentials

C:\ProgramData\ucredgogle_qrty %base%\usagoglyse.rnm

WinBroGoMoH.exe Google Chrome and
Mozilla Firefox History

1. %base%\goo_bhf.txt
 2. %base%\maza_bhf.txt

1. %base%\goo_bhf.rnm
 2.

%base%\maza_bhf.rnm

WinBroMozla32.exe Firefox login (profile
data)

C:\ProgramData\usam0zlp_xcertyuqas %base%\usam0zlp.rnm

WinBroMozla64.exe Firefox login (profile
data)

C:\ProgramData\usam0zlp_xcertyuqas %base%\usam0zlp.rnm

Stolen data by each executable (%base% = C:\ProgramData\DeviceStage\usabrowatad)

The browser module executes each executable; they steal the data and store it in a temporary plain text file. The file
is then encrypted and saved as a .rnm file which is later sent back to the C2 server by the file upload module
ieflagUl.dll.

Reverse shell DLL implementation

So far the reverse shell module has been implemented as an executable file. But now the actor aligns with the rest of
the modules and recompiles the reverse shell as a DLL. The functionality remains the same, opening a socket to the
attacker’s machine (located at 162.33.177[.]41), creating a new hidden cmd.exe process, and setting the STDIN,
STDOUT, and STDERR as the socket.

The shell runs until the actor sends the string “exit\n”.

Defending Against Threats Like APT-C-35

13/15

Defending against APTs like the DoNot team requires a Defense-in-Depth strategy that uses multiple layers of
security to ensure redundancy if any given layers are breached. Any sufficiently large organization is at risk of being
attacked by an APT group such as the DoNot team. And these groups target a crucial security gap that few
organizations have plugged. This gap exists between attack surface reduction strategies—such as patching security
updates, hardening networks, firewalls, and web applications firewalls; and technologies such as data security tools,
NGAV, EDR, EPP, and XDR, etc., which focus on detecting anomalies on the disc or in the operating system. That
gap is the runtime environment in memory.

The hardest attacks to defend against are those that—like the Windows framework detailed here—target applications
at runtime. This is because popular security solutions such as NGAV, EDR, EPP, XDR, etc. focus on detecting
anomalies on the disc or operating system. Their ability to detect or block attacks in memory at runtime is limited. To
the extent they can do so, they cause major system performance issues and false alerts because they must be dialed
to their most aggressive alert settings.

However, a unique technology named Moving Target Defense (MTD) is purpose-built to defend against advanced,
runtime attacks against Windows and Linux without affecting system performance or generating false alerts. It
proactively stops supply chain attacks, code injection, defense evasion, remote code execution, privilege escalation,
credential theft, and ransomware. And it does so without needing signatures or behavior models. How? By
randomizing trusted runtime application code so no two machines look the same, and even a single system changes
over time. While trusted applications can navigate the modified runtime environment, MTD blocks any software
component oblivious to the traps left behind. And it does this without any noticeable impact on system performance.
To learn more about this revolutionary technology, read the free white paper—The Ultimate Ransomware Strategy:
Zero Trust + Moving Target Defense.

Appendix

ms.bat

https://www.morphisec.com/moving-target-defense
https://blog.morphisec.com/supply-chain-attack-mitigation
https://engage.morphisec.com/the-ultimate-ransomware-strategy
https://engage.morphisec.com/the-ultimate-ransomware-strategy

14/15

echo off

SETLOCAL

set id=%1

set pat=%2

set t_sk=%3

set t_sk_self=%4

set extra_lld=%5

::echo %id%

::echo %pat%

schtasks /delete /tn %t_sk_self% /f

taskkill /F /PID %id% /T

timeout /t 2

taskkill /PID %id% /T /F

timeout /t 2

schtasks /delete /tn %t_sk% /f

timeout /t 2

schtasks /delete /tn %t_sk_self% /f

timeout /t 2

schtasks /delete /tn %t_sk_self% /f

timeout /t 2

del %pat%

:: del batch file self

timeout /t 2

del "%~f0" & EXIT

Indicators of Compromise (IOCs)
Blog Sample

486f772d81a3b90ba76617fd5f49d9ca99dac1051a9918222cfa25117888a1d5

Docs

15/15

d566680ca3724ce242d009e5a46747c4336c0d3515ad11bede5fd9c95cf6b4ce

28c71461ac5cf56d4dd63ed4a6bc185a54f28b2ea677eee5251a5cdad07077b8

9761bae130d40280a495793fd639b2cb9d8c28ad7ac3a8f10546eb3d2fc3eefc

41c221c4f14a5f93039de577d0a76e918c915862986a8b9870df1c679469895c

Components (DLLs and EXEs)

2c84b325b8dc5554f216cb6a0663c8ff5d725b2f26a5e692f7b3997754c98d4d

a70038cdf5aea822d3560471151ce8f8bacd259655320dea77d48ccfa5b5af4f

d3a05cb5b4ae4454079e1b0a8615c449b01ad65c5c3ecf56b563b10a38ecfdef

d71fa80d71b2c68c521ed22ffb21a2cff12839348af6b217d9d2156adb00e550

7fc0e9c47c02835ecbbb63e209287be215656d82b868685a61201f8212d083d9

6e7b6cc2dd3ae311061fefa151dbb07d8e8a305aed00fa591d5b1cce43b9b0de

90cb497cad8537da3c02be7e8d277d29b78b53f78d13c797a9cd1e733724cf78

93ca5ec47baeb7884c05956ff52d28afe6ac49e7aba2964e0e6f2514d7942ef8

9b2ef052657350f5c67f999947cf8cd6d06a685875c31e70d7178ffb396b5b96

80f2f4b6b1f06cf8de794a8d6be7b421ec1d4aeb71d03cccfc4b3dfd1b037993

f0c1794711f3090deb2e87d8542f7c683d45dc41e4087c99ce3dca4b28a9e6f6

5ebee134afe192cdc7fc5cc9f83b8273b6f282a6a382c709f2a21d26f532b2d3

Domains

worldpro[.]buzz

ser.dermlogged[.]xyz

doctorstrange[.]buzz

clipboardgames[.]xyz

beetelson[.]xyz

tobaccosafe[.]xyz

kotlinn[.]xyz

fitnesscheck[.]xyz

dayspringdesk[.]xyz

srvrfontsdrive[.]xyz

globalseasurfer[.]xyz

esr.suppservices[.]xyz

