
1/11

By Baran S August 10, 2022

SpyNote – An Android Snooper
labs.k7computing.com/index.php/spynote-an-android-snooper/

Threat actors are constantly using new tricks and tactics to target users across the globe.
This blog is about SpyNote, an Android RAT targeting Indian Defense personnel. The
initial attack vector information was found on the newindianexpress website.

Let’s now get into the details of how this SpyNote works.

This RAT is propagated via WhatsApp with the name “CSO_SO on Deputation DRDO.
apk“.

Once the user falls prey to this RAT and installs this malicious “CSO_SO on Deputation
DRDO. apk”, this app pretends to be the genuine Adobe reader icon in the device app
drawer as shown in Figure 1.

https://labs.k7computing.com/index.php/spynote-an-android-snooper/
https://www.newindianexpress.com/cities/delhi/2022/jul/17/security-at-risk-whatsapp-malware-targeting-army-personnel-detected-2477529.html

2/11

Figure 1: Fake

Adobe Reader icon of the malware
Upon launching , this application opens a Google Drive URL that is hardcoded in the app’s
“strings.xml” file and displays the images as shown in Figure 2. Google Drive URL
hardcoded in the app’s “strings.xml” file as shown in Figure 3.

3/11

 Figure

2: Images from Google Drive

4/11

Figure 3: Hardcoded Google Drive URL string

Technical Analysis

Figure 4 shows that this malware refers to services in the AndroidManifest.xml file but not
defined in the classes.dex in the APK’s root folder. This indicates that the services’
classes or another dex containing the classes would be loaded in memory at run-time
using any one of the dynamic loading techniques.

Figure 4: Undefined Class Names in AndroidManifest.xml
SpyNote sample which we analyzed employs the technique of using the “base application
context” to the class “com.android.protector.ProtectApplication” as shown in Figure 5.

Figure 5: AndroidManifest.XML showing base context to
“com.android.protector.ProtectApplication”
Hence, when the application’s launcher activity is triggered, “attachbasecontext” function
from the class “com.android.protector.ProtectApplication” is executed and the other
classes.dex (carried within the APK) are loaded and functions in those classes.dex files

5/11

are invoked using reflection and MultiDex support as shown in Figure 6 and 7.

Figure 6: “attachbasecontext” using reflection to load the secondary dex files in the APK

Figure 7: classLoader API loading secondary dex files using MultiDex support
Looking at the logcat at runtime, with MultiDex support, secondary dex files are loaded as
base.apk.classes1.zip and converted as executable ‘base.apk.classes1.odex’ as shown in
Figure 8.

Figure 8: The logcat image showing the base.apk.classes1.odex file at runtime

Analyzing the Payload

The payload file base.apk.classes1.zip as shown in Figure 9 has the references to
services’ classes declared in the AndroidManifest.xml.

6/11

Figure 9: Defined

Class Name from AndoridManifest.xml
This malware collects location information like altitude, latitude, longitude, precision and
even the speed at which the device is moving as shown in Figure 10.

Figure 10: Collects the device location information
SpyNote then proceeds to combine all the aforementioned data and compresses (using
gZIPOutputStream API) them before forwarding it to the C2 server as shown in Figure 11.

7/11

Figure

11: DATA compression using gZIPOutputStream

C2 Communication

This RAT contacts the C2 server at IP 213.136.80[.]208, which is hardcoded in the
“strings.xml” file (refer Figure 3). Figure 12 shows the connection established with the C2.

Figure 12: TCP connection with the C2 server
After the connection is established, the malware sends the gzip compressed data to the
C2 as evident from the network packet’s header in Figure 13.

8/11

Figure 13: gzip data sent

by the device after establishing the connection with the C2 Server
The decompressed content of the data is shown below in Figure 14.

Figure 14: Decompressed gzip data showing IP address

Decode packets from the C2

The C2 responds by sending a series of compressed data, which when decompressed, is
revealed to be system commands and the related APK payload as shown in Figure 15. In
our case, the APK was extracted using Cyberchef.

9/11

Figure 15: Getting commands and APK file from C&C server
We analyzed the C&C command ‘info’ and the associated APK. This command collects the
clipboard data and verifies the victims’ device for the presence of a hardcoded list of
mobile security products, may be with the aim of disabling them or forwarding the info to
the C2.

Figure 16: Collects the clipboard information

10/11

Figure 17:

Checks for the presence of security related products
The structure of the commands sent from the C2 to victims’ device is as follows:

Figure 18: Commands sent by C2

11/11

At K7, we protect all our customers from such threats. Do ensure that you protect your
mobile devices with a reputable security product like K7 Mobile Security and also
regularly update and scan your devices with it. Also keep your devices updated and
patched against the latest vulnerabilities.

Indicators of Compromise (IoC)

Package Name Hash K7 Detection
Name

com.editorpdf.acrobat F115C634016A9199054358515C19B40B Trojan (005652621
)

C2

213.136.80[.]208

vmi876244.contaboserver[.]net

MITRE ATT&CK

Tactics Techniques

Defense Evasion Application DiscoveryObfuscated Files or Information,
Virtualization/Sandbox Evasion

Discovery Security Software Discovery, System Information Discovery

Collection Email Collection, Data from Local System

Command and
Control

Encrypted Channel, NonStandard Port

