
1/7

Malware sandbox evasion in x64 assembly by checking
ram size - Part 1

accidentalrebel.com/malware-sandbox-evasion-in-x64-assembly-by-checking-ram-size-part-1.html

During my malware sandbox evasion research, I stumbled upon the Unprotect Project
website. It is a community-contributed repository of evasion techniques used by malware. I
saw that the the Checking Memory Size technique doesn't have a example snippet yet so I
figured this would be a good first contribution to the project.

What to expect

In this blog post I'll be making a code snippet that showcases how to get the size of a
computer's RAM in C. I will then convert this code into x64 assembly, mostly for me to
practice writing in it, but also so that we can understand it better.

Checking the memory

The idea behind this evasion technique is simple. Most modern user machines will have at
least around 4GB of RAM. Anything lower than that can be an indication that the machine is
probably a sandbox (To save costs). While it's not exactly fool-proof, it can be used with
other techniques to have a better idea of the machine.

https://www.accidentalrebel.com/malware-sandbox-evasion-in-x64-assembly-by-checking-ram-size-part-1.html
https://unprotect.it/
https://unprotect.it/technique/checking-memory-size/
https://unprotect.it/category/sandbox-evasion/

2/7

There are two available APIs to get the memory size of a computer on Windows:
GetPhysicallyInstalledSystemMemory and GlobalMemoryStatusEx . The former lists

the physically installed RAM from the BIOS, while the latter lists the amount available for
the operating system to use. Note that the values returned from these two functions will be
different but from my tests the difference is only a few hundreds of bytes. Any of these two
we can use for our purpose.

Using GetPhysicallyInstalledSystemMemory

Calling GetPhysicallyInstalledSystemMemory in C is simple:

#include <stdio.h>
#include <windows.h>

int main(void)
{
 unsigned long long memory_size = 0;
 GetPhysicallyInstalledSystemMemory(&memory_size);
 printf("Memory size: %lld\n", memory_size);
}

Running the above code shows the following result:

And this is what my memory settings is set to on VMWare:

https://docs.microsoft.com/en-us/windows/win32/api/sysinfoapi/nf-sysinfoapi-getphysicallyinstalledsystemmemory
https://docs.microsoft.com/en-us/windows/win32/api/sysinfoapi/nf-sysinfoapi-globalmemorystatusex

3/7

You'll immediately notice that the returned value is not exactly the same as the memory
settings. I, too, wondered about this so I did a couple of tests.

Investigating the results

What I found was that the values that are returned by the
GetPhysicallyInstalledSystemMemory in hex format always have the last 3 bytes set

to zero. To test this I changed the VM settings and noted the values returned by the
program. Here's a table of the results:

VM Settings Returned Value In Hex

2000MB 2048000 0x1F4000

3324MB 3403776 0x33F000

4096MB 4194304 0x400000

4338MB 4493312 0x449000

5675MB 5816320 0x58C000

4/7

Before you think that this is a VM thing, here is the same behavior with a Windows system
that is not on a VM:

Installed RAM Returned Value In Hex

16384MB 16777216 0x1000000

According to the MSDN docs, the value returned is taken from the SMBIOS firmware tables.
I tried to dig further and found the SMBIOS standard manual and saw that the value in the
memory size field is returned in MB. This still doesn't explain why the last 3 digits are
always zero though. I'm guessing that the API just truncates the last 3 values and saves the
higher bytes?

EDIT(2022-08-15): Twitter user @Endeavxor pointed out that the returned value of
"GetPhysicallyInstalledSystemMemory" is expressed in kibibytes instead of kilobytes.
This means the result 4194304 when divided by 1024 is 4096 and is exactly the
Memory value set in the VM settings. This means the value returned by the function is
correct. It's so simple and I missed it!

Before we get hopelessly trapped in the rabbit hole that is OS internals, let's continue by
converting our code above to x64 assembly.

Converting to x64 Assembly

Before we can call the GetPhysicallyInstalledSystemMemory function, we first need to
reserve space on the stack that will serve as the memory_size local variable. This is
where the result of the function will be placed.

 xor rax, rax ; Clear rax
 push rax ; Push rax to the stack
 lea rcx, [rsp] ; Argument 1; Load the memory location of memory_size to rcx

We then call the GetPhysicallyInstalledSystemMemory function making sure that we
reserve and release the shadow space.

 sub rsp, 32 ; Reserve shadow space
 call GetPhysicallyInstalledSystemMemory
 add rsp, 32 ; Release shadow space

Aside: Shadow space

The concept of "Shadow Space" is important in x64 assembly. I've already discussed
it briefly in a previous post but you can read up more about it here and then here.

https://docs.microsoft.com/en-us/windows/win32/api/sysinfoapi/nf-sysinfoapi-getphysicallyinstalledsystemmemory
https://www.dmtf.org/sites/default/files/standards/documents/DSP0134_3.5.0.pdf
https://twitter.com/Endeavxor
https://www.accidentalrebel.com/converting-a-malware-dropper-to-x64-assembly.html
https://retroscience.net/x64-assembly.html
https://devblogs.microsoft.com/oldnewthing/20160623-00/?p=93735

5/7

The result on whether GetPhysicallyInstalledSystemMemory succeeded or not is
placed in the ax register. It's good practice to add code to handle if a failure occurs, but
we won't be bothering with that for our example.

What we are interested in is the value placed in the memory location pointed to by
memory_size . We can confirm this by checking the value on the stack, as shown below

where 58C000h converts to 5816320 which is roughly near the 5.5 GB setting we have
set in VMWare.

A much easier way to confirm is that we can also use the printf function to display the
value of memory_size on the console. But before we can do that we first need to declare
the format string so we can pass it later as the first argument.

segment .data
 msg_memory_size db "Memory size: %lld", 0xd, 0xa, 0

We then call printf making sure we load the correct argument data to the respective
registers.

6/7

 mov rdx, [rsp] ; Argument 2; Result of
GetPhysicallyInstalledSystemMemory
 lea rcx, [msg_memory_size] ; Argument 1; Format string
 sub rsp, 32 ; Reserve shadow space
 call printf
 add rsp, 32 ; Release shadow space

Running that we can now display the value of the memory.

Here's the full assembly code:

 bits 64
 default rel

segment .data
 msg_memory_size db "Memory size: %lld", 0xd, 0xa, 0

segment .text
 global main
 extern ExitProcess
 extern GetPhysicallyInstalledSystemMemory
 extern printf

main:
 push rbp
 mov rbp, rsp

 xor rax, rax ; Clear rax
 push rax ; Push RAX to the stack
 lea rcx, [rsp] ; Argument 1; Load the memory location of memory_size to rcx

 sub rsp, 32 ; Reserve shadow space
 call GetPhysicallyInstalledSystemMemory
 add rsp, 32 ; Release shadow space

 mov rdx, [rsp] ; Argument 2; Result of GetPhysicallyInstalledSystemMemory
 lea rcx, [msg_memory_size] ; Argument 1; Format string
 sub rsp, 32 ; Reserve shadow space
 call printf
 add rsp, 32 ; Release shadow space

 add rsp, 0x8 ; Release the space of memory_size local variable
 xor rax, rax
 call ExitProcess

Up next

In the next blog post I'll be showing how to get the size RAM size via an alternative method
using GlobalMemoryStatusEx . The code is also straightforward but we'll be exploring
how it's values differ from GetPhysicallyInstalledSystemMemory and also how to deal
with C structures on the stack in x64 assembly.

7/7

For now, you can view the C and Assembly code along with the build scripts on the
repository here.

Feel free to reach out to me on Twitter or LinkedIn for any questions or comments.

Comments

https://github.com/accidentalrebel/sandbox-evasion-by-checking-ram-size
https://twitter.com/accidentalrebel
https://www.linkedin.com/in/juan-karlo-licudine/

