
1/8

Vulnerabilities in E-Commerce Solutions - Hunting on Big
Apples

resecurity.com/blog/article/vulnerabilities-in-e-commerce-solutions-hunting-on-big-apples

Back
Vulnerability Intelligence

7 Aug 2022
WEB-appication security, vulnerability, bugs, payment systems

https://resecurity.com/blog/article/vulnerabilities-in-e-commerce-solutions-hunting-on-big-apples
https://resecurity.com/blog


2/8

Resecurity is working on numerous penetration testing and red teaming exercises for
major Fortune 500, the security used by web applications still remains one of the key
components which often leaves the door wide open for attackers.

The exploitation of certain vulnerabilities by experienced bad actors may lead to fatal
events which leads to a data breaches.

Such issues can be especially meaningful for online-services and e-commerce whom work
with customers globally, this is also what creates a compliance risk.

Even big technology companies are affected by the insecurity of web applications and
invest in timely identification of vulnerabilities to mitigate potential risks.

In this research post, Ahmad Halabi will share some of the recent vulnerability findings
which have been timely reported to Apple Security for further patching. Similar issues have
been identified on multiple projects providing online-shopping functions and e-commerce.

The Target

When you come across a big Asset like Apple or Microsoft, you have to know from where
to start and what to check. For us, we were looking for a target that is considered an
important asset to Apple and contains valuable private information so the bounty will be
worthy.

For example: https://applepaysupplies.com/

 

https://applepaysupplies.com/

Apple Pay Supplies: allows you to order Apple related Kits such as `Apple Pay Decals Kit`
and `Apple Pay Signage Kit`.

https://applepaysupplies.com/
https://resecurity.com/uploads/post/120/4e47fb791ca32569bd1a31f70a9d5752.png


3/8

Studying The Application Structure

We began with checking the target website as a normal user who wants to order a kit. By
turning on Burp Suite, we were able to intercept all the traffic of this website and
proceeded with an order by navigating to `Place Order`.

After that we filled the Shipping Information and submitted the order.

The shipping Information included: Full name, Company, Address information (Country,
City, Street, Zip code) and Phone Number.

There's a track order feature so after submitting your order you're able to track it.

To track the order, we have to put our email address and the order number that gets
assigned once the order is created.

We noticed here two interesting variables that required investigation, Order Number  and
Email  .

Identifying The Vulnerability - Chaining IDOR With Rate Limit Discloses
Shipping Information.

1  Step:

After hitting the Submit  button to track the Order Status, the page showed my Order
details, we noticed this URL in the browser tab:

https://applepaysupplies.com/trackorder?
order_id=APP1162306&email=my.test.email@gmail.com&language_id=1

 

Tracking Your Order

2  Step:

Here we thought about an IDOR vulnerability chained with a Rate Limit mechanism to
guess the order_id  of an Apple user, we already know the users email ID.

st

nd

https://applepaysupplies.com/trackorder?order_id=APP1162306&email=my.test.email@gmail.com&language_id=1
https://resecurity.com/uploads/post/120/81916354bfde8255cf5d21c6e647c853.png


4/8

We start analyzing the order_id  value: APP1162306  by generating multiple Orders and
comparing their order_id  values.

APP  characters are fixed.
We have 7 numbers after APP  which can be brute forced.

3  Step:

We then navigated to the target URL https://applepaysupplies.com/trackorder?
order_id=APP1162306&email=my.test.email@gmail.com&language_id=1 but the
surprising thing was how it displayed a blank page rather than the Order Details that were
shown after hitting the Submit  button.

 

Blank Page

 

We were not able to perform the attack by hitting Submit  button nor were we able to
intercept the request as the Application was using a front-end fetching mechanism via a
JavaScript thus no backend request was related to the target URL. So, we needed to
analyze the JavaScript Files / Burp History and check for an API to see how the data is
being fetched and retrieved.

4  Step:

After some Recon and Analysis, we found an API that interacts with the backend,
it fetches the Order Information.

Alternative Request: https://applepaysupplies.com/api/Home/GetOrderStatus?
orderno=APP1162306&email=my.test.email@gmail.com

This API Request is responsible for Fetching the Order Status Details.

 

Get Order Status Details

5  Step:

rd

th

th

https://applepaysupplies.com/trackorder?order_id=APP1162306&email=my.test.email@gmail.com&language_id=1
https://resecurity.com/uploads/post/120/75f6165694fa38b58a36cf448b70d3b7.png
https://applepaysupplies.com/api/Home/GetOrderStatus?orderno=APP1162306&email=my.test.email@gmail.com
https://resecurity.com/uploads/post/120/64d24d8659d5dae42b3794e823d01385.png


5/8

Now it was easy to proceed, we can now start generating 7 numbers wordlist to brute force
the Order number in a numerical order to get the Valid Order Status Details.

 

Setting up Attack in Intruder

 

Luckily there was no Rate Limit Protection in place so we could brute force the Order
Number of any valid Apple User, we then disclose their Shipping Address Information.

 

Found Valid orderno and disclosed Shipping

Information

Reporting

We made a detailed PoC and Reported this Vulnerability to Apple.
After a while, Apple Fixed the Vulnerability and Requested us to check the Fix.

Checking The Fix

Apple fixed the Vulnerability by removing the API call responsible for fetching the Order
Status Details (/api/Home/GetOrderStatus). So now users can only use the main
Functionality "Track Order".

 

Removing /api/Home/GetOrderStatus

https://resecurity.com/uploads/post/120/97fa860fe043b69f088c94b54db580ae.png
https://resecurity.com/uploads/post/120/e6410a4a764d66971da19fc0f36459d5.png
https://resecurity.com/uploads/post/120/54c877c51b7609d50ba203026beefffa.png


6/8

 

Instead of the removed API endpoint, they used the Track Order request
(https://applepaysupplies.com/trackorder?
order_id=APP1162306&email=my.test.email@gmail.com) to fetch the status details.

However they enhanced the Track Order Functionality. They used CryptoJS Library to
encrypt the values since now they are being sent and fetched from the Client Side.

 

Bypassing The Fix

1  Step:

We checked the website again. we already knew the main endpoint to track orders
(https://applepaysupplies.com/trackorder) that accepts GET request with the following
parameters: order_id  which stands for the Order Number and email .

2  Step:

We start by analyzing the Request.

Using Burp Suite, we tried sending a GET request to the target URL:

https://applepaysupplies.com/trackorder?
order_id=APP1162306&email=my.test.email@gmail.com

This time the response was not showing the Order Status nor did it display the Shipping
details of this valid order.

 

No Order Status Details in the Response

 

This was protection implemented by Apple when they Fixed the old bug. Now,
we're unable to use Intruder to brute force the `Order Number` as before with the previous
bug and the API Endpoint.

3  Step:

st

nd

rd

https://applepaysupplies.com/trackorder?order_id=APP1162306&email=my.test.email@gmail.com
https://applepaysupplies.com/trackorder%60
https://applepaysupplies.com/trackorder?order_id=APP1162306&email=my.test.email@gmail.com
https://resecurity.com/uploads/post/120/f91128207fc05559b4e77c239c5b8ba6.png


7/8

Now we analyzed the Client Side Behavior.

We opened the request (https://applepaysupplies.com/trackorder?
order_id=APP1162306&email=my.test.email@gmail.com) in the browser.

Once opened we noticed a delay while showing the order details. It took 1–2 seconds after
loading to display the order details.

 

 

This behavior explains why we were not able to see the shipping details on the request
level in Burp Suite.

4  Step:

Next, we started analyzing the JavaScript Files.

After checking JavaScript files, we could see how the application was using a Library
called CryptoJS  to encrypt the Email  and the Order Number  while requesting an
order status. By using this technique, Apple has made it difficult to brute force the Order
Number.

We analyzed how the Encryption is implemented within the Application, and with the help
of our Friend Max (h1 Profile), We wrote a script to encrypt the required values using the
CryptoJS library as the Application did, we could then brute force the Order Number again.

 

Script to Encrypt the values with CryptoJS

and Brute Force the Order Number
 

th

https://applepaysupplies.com/trackorder?order_id=APP1162306&email=my.test.email@gmail.com
https://hackerone.com/executor
https://resecurity.com/uploads/post/120/50ccfd0fbe6f5dc083be5091ab3bacda.png


8/8

With the advantage of the absence of Rate Limit protection against this GET endpoint, we
could brute force the Order Number successfully and once again disclose the Shipping
Information.

 

Brute Force Succeeded and Disclosure of

Shipping Information

Reporting

Apple requested us to send the Bypass Details in a New Report since the Old Fix is
Successful and the Vulnerability is now found in a different Endpoint.
Apple confirmed the Vulnerability.
Apple Took some time to implement a new Fix.

Confirming The Fix

Apple kept the Crypto JS Library in place, They just enhanced and increased the
Encryption Level to make it even harder to break.

Apple didn’t implement a Rate Limit Protection, but they Increased the Length of the Order
Number.

Before, the Order Number was made up of: APP + 7 numbers.

Now, the Order Number is made up of: APP + 28 Characters & Numbers.

Example: `APPF68CAA9D1F174F91B61ECC7568D7`

Brute Forcing 28 Random Characters is unfeasible even if you were able to decrypt their
Encryption.

We can now consider the vulnerability is fixed and Reported back to Them.

 

https://resecurity.com/uploads/post/120/82ea73f1ea9d9517be807660a0328549.png

