
1/15

muzi August 6, 2022

A Look Back at BazarLoader’s DGA
malwarebookreports.com/a-look-back-at-bazarloaders-dga/

I was recently asked a question about DGA and I was unsatisfied with my explanation, so I
wanted to write a quick post on DGA, what it is, and how it works. I learned a lot going
through this exercise and I hope you enjoy it.

What is DGA?

A Domain Generation Algorithm (DGA) is a technique used by malware authors to generate
new domain names for malware command and control. Typically malware will contain a
configuration which will house any number of things, including the Command and Control
(C2) domains/IPs. While these configurations are typically encrypted within the binary,
malware analysts and reverse engineers can often extract these C2s through sandboxes or
configuration extractors. This makes it fairly easy, if not trivial, to extract these C2s and put in
network blocks. To combat this, malware authors use DGAs to generate domains over time,
allowing for a sometimes infinite stream of C2s. This allows for increased persistence if C2
infrastructure is taken down and makes it more difficult to block network traffic.

How Does a DGA Work?

DGAs generate domains over time according to the particular algorithm written in the
malware. DGAs often produce their own distinct patterns in the domains they generate.
Some DGAs may generate domains by combining multiple words or numbers from a
hardcoded dictionary included in the malware. Others will use a seed value to generate a
more random looking domain name. Once the domain name has been created, the DGA will
then add a top-level domain (TLD), such as .com or .net, to finalize the DGA C2.

 Because a DGA is capable of producing infinite domains, threat actors do not need to
register every domain potentially generated. The threat actor holds the algorithm and
therefore can identify when a domain would be generated according to the routine and can
register that domain as needed, such as a situation where previous C2 infrastructure is taken
down and communication to the implant is lost.

Defend Against DGAs

DGAs can pose a difficult problem to the blue team. Extracting configurations and putting in
network blocks is often times trivial, but DGAs present the challenge of preventing virtually
infinite combinations of C2 addresses. DGAs embedded in malware can be reverse
engineered, the DGA emulated and network blocks put into place, but that task is time
consuming and network blocks will quickly get out of hand. The main advantage of DGAs in
the modern era is longer lasting infrastructure, as host-based firewalls and EDR products

https://malwarebookreports.com/a-look-back-at-bazarloaders-dga/

2/15

make network containment of endpoints significantly easier. Threat Researchers and law
enforcement often work together to reverse engineer the C2 network protocols and C2 DGA
in order to register future domains. In some cases, commands can be sent to the botnet to
uninstall the malware, remove critical files, etc. to takedown particular botnets.

BazarLoader Domain Generation Algorithm

A while back I wrote a blog post about BazarLoader, which had been quite prevalent in those
days. In more recent times, BazarLoader as all but disappeared in favor of the newer
BumbleBee malware. In that blog post, I briefly highlighted the existence of the domain
generation algorithm included with BazarLoader, but I did not dive into how it works. Let’s
take a look at the algorithm and see if we can replicate the algorithm in Python.

BazarLoader’s DGA

https://blogs.microsoft.com/on-the-issues/2020/03/10/necurs-botnet-cyber-crime-disrupt/
https://blog.google/threat-analysis-group/exposing-initial-access-broker-ties-conti/

3/15

Figure 1: Generate Emercoin – BazarLoader’s DGA Algorithm

Algorithm Breakdown

Before I break this down, I want to give credit where credit is due. I’m not experienced when
it comes to reversing DGAs and working through this algorithm was tough. I came across
this blog post and the author does an incredible job breaking down the algorithm. I heavily
relied on it as a reference as I debugged and learned how the algorithm works. I highly
recommend reading that post, and others by the author, for an in-depth understanding of
BazarLoader’s DGA and how it has evolved over time. With that said, let’s dive into the
algorithm.

https://bin.re/blog/a-bazarloader-dga-that-breaks-during-summer-months/

4/15

1. BazarLoader first separates the 26 letter alphabet into two characters classes
containing 25 characters total. (j is omitted)

6 vowels aeiouy
19 consonants bcdfghklmnpqrstvwxz

2. The two sets are then combined into 2 * 6 * 19 ordered pairs that contain one vowel
and one consonant (Cartesian Product).

3. The 228 resulting pairs are then rearranged with a permutation that is hard-coded into
BazarLoader. This permutation is the seed of the BazarLoader DGA.

4. Four pairs are chosen from the 228 pairs and appended together to create the second
level domain. The pairs are selected based on the current date (MM-YYYY), where the
2 month digits and last 2 digits of the year are significant. For example, given August 5,
2022, 0822 would be the significant digits used to select the pairs.

Character Pool Pairs

Before we jump into our pair selection, let’s take a look at our embedded pairs so we
understand the character pool pairs the algorithm selects from. When pairs are being
selected, bytes are selected from the following two structures, with the two selections being
XORed to produce an ASCII character. Each of the two structures were of length 0x1C8
(456), the length expected for 228 character pairs. In order to generate the total character
pool, the two structures can be extracted and XORed to produce the pool of character pairs.

5/15

ciphertext =
bytearray(b'\x10\x9C\x57\xCD\x64\xB2\x33\xCA\x51\xF1\x1E\xF6\x55\xAF\x48\xDC\x4D\x87\
x76\xFE\x17\x91\x2E\x89
\x35\xC9\x58\xF6\x25\xDB\x25\xB8\x69\xA9\x56\x8F\x1D\x9B\x67\xC9\x33\x83\x72\x86\x66\
x92\x68\xBD\x46\x96\x2F\xB4\x1F\xC8\x1B\xE6\
x72\x8B\x1C\xFB\x1A\xF1\x52\x9D\x62\xE9\x33\xBD\x59\x98\x0B\xAB\x4E\xF5\x42\xA7\x51\x
EC\x70\xBF\x1E\xCC\x2A\xFF\x38\xAF\x5C\xBA\x
2F\x82\x3E\xC7\x79\xC4\x5F\xD0\x09\xCA\x79\xB2\x22\xE3\x77\xD3\x72\xD5\x78\xD3\x5E\xF
5\x25\xF2\x0D\x8D\x0D\x9C\x79\xED\x00\xBF\x0
E\xB4\x4B\xED\x77\x87\x2A\xE9\x59\xC1\x09\xCC\x49\x81\x59\xED\x4D\xB6\x65\xDE\x14\xB7
\x2F\xB0\x30\xFE\x4F\xC4\x2D\xF2\x25\x91\x7F
\x9E\x5D\xBE\x1B\xA8\x6D\xE9\x22\xB2\x6E\xA8\x74\xA8\x7F\x9A\x49\xB3\x28\x8C\x1C\xEB\
x0B\xC1\x6C\xA8\x18\xD4\x05\xDE\x58\xA7\x74\
xDA\x3B\x92\x58\xA8\x18\x8C\x4D\xDB\x4D\x9F\x43\xCD\x62\x93\x0D\xF6\x2A\xC0\x3C\x92\x
5B\x83\x3D\xBD\x25\xF2\x70\xEF\x5E\xFA\x1E\x
E8\x7D\x9A\x34\xDC\x6A\xEA\x6C\xEB\x6A\xF7\x51\xC1\x3F\xC6\x19\xA5\x0B\xBB\x74\xDB\x0
4\x80\x04\x96\x4C\xD2\x65\xB9\x3D\xD0\x51\xF
8\x06\xEA\x5B\xA6\x5C\xC0\x5D\x8A\x72\xF1\x09\x87\x32\x8D\x3F\xDC\x55\xFF\x25\xC7\x34
\xB6\x74\xAA\x4D\x88\x07\x97\x6A\xC3\x2B\x80
\x78\x8E\x7A\x84\x75\xA5\x5F\x88\x3B\xAA\x12\xCA\x12\xF6\x78\x88\x1B\xE6\x0D\xF7\x44\
x9A\x77\xEB\x27\xA1\x5D\x9C\x0A\xA3\x50\xE9\
x4C\xAA\x53\xFE\x78\xA8\x12\xC7\x20\xF0\x20\xBC\x51\xA3\x21\x8A\x3E\xDE\x7F\xCA\x5C\x
DF\x07\xC9\x7A\xB8\x26\xF4\x6A\xDB\x6F\xCE\x
6E\xDA\x49\xF5\x25\xF1\x17\x87\x07\x92\x79\xE1\x17\xAD\x0E\xB9\x4E\xE3\x70\x8A\x3E\xF
F\x5F\xCD\x11\xD4\x52\x8D\x55\xF2\x42\xAD\x6
B\xCB\x04\xAA\x28\xB2\x20\xEB\x46\xDD\x27\xF3\x31\x9B\x7D\x8E\x4B\xBA\x15\xA8\x65\xFD
\x3E\xAC\x62\xAF\x7A\xB5\x74\x8A\x59\xA6\x28
\x84\x0D\xE6\x09\xD5\x63\xAB\x1F\xDA\x1D\xC5\x58\xAB\x73\xCA\x2F\x9D\x48\xA4\x13\x80\
x5E\xCC\x5C\x94\x5B\xD8\x7A\x9A\x13\xF7\x38\
xC6\x36\x9B\x43\x9B\x23\xA0\x20\xE4\x66\xE9\x4D\xEF')

key =
bytearray(b'\x68\xF9\x2D\xA8\x0A\xDD\x49\xBF\x38\x8B\x6E\x9F\x3A\xDE\x3E\xA9\x28\xEC\
x1F\x98\x6F\xE8\x5B\xFA\x5A\xA
F\x39\x9A\x5C\xAF\x4E\xD9\x0D\xCC\x3F\xED\x68\xF9\x1E\xBA\x5E\xFA\x1E\xEF\x1F\xFE\x1E
\xDC\x2F\xFD\x5A\xD8\x6B\xBD\x7C\x8F\x19\xFE
\x69\x9F\x7E\x9E\x2B\xEC\x0E\x88\x5D\xD8\x2F\xFD\x69\xCA\x3F\x9A\x2B\xDF\x3E\x8B\x19\
xDC\x6B\xBD\x4F\x9D\x4D\xD9\x3E\xCF\x59\xEB\
x5B\xAF\x1B\xAB\x39\xA9\x6C\xAC\x0A\xDD\x49\x8C\x19\xBA\x1A\xBA\x0B\xAA\x39\x9A\x5C\x
9C\x6F\xE8\x68\xE8\x0E\x88\x6E\xCA\x7B\xDA\x
3E\x9A\x18\xEF\x5B\x9C\x2B\xA8\x7D\xAD\x28\xEC\x2C\x8A\x3B\xCF\x0C\xAA\x7D\xDA\x49\xD
9\x49\x8C\x2A\xA8\x4E\x9D\x5C\xFA\x1E\xEF\x2
C\xDF\x7A\xCB\x0C\x99\x4D\xD9\x0D\xDD\x0D\xCC\x0C\xFF\x3C\xDE\x49\xEA\x79\x8F\x6E\xAC
\x0A\xDD\x7A\xAD\x6C\xAC\x39\xCF\x1D\xAB\x4E
\xEA\x3D\xCF\x7B\xE9\x2C\xB9\x38\xED\x2C\xB9\x0B\xFF\x78\x9E\x5C\xAF\x5F\xEB\x2C\xEC\
x4A\xC8\x48\x9D\x09\x99\x2B\x8A\x7F\x8F\x19\
xEF\x5B\xBE\x0B\x99\x09\x99\x18\x98\x2B\xA8\x4E\xBF\x7C\xCB\x7B\xDA\x1C\xBA\x7C\xE9\x
68\xF9\x2D\xA8\x0A\xDD\x49\xBF\x38\x8B\x6E\x
9F\x3A\xDE\x3E\xA9\x28\xEC\x1F\x98\x6F\xE8\x5B\xFA\x5A\xAF\x39\x9A\x5C\xAF\x4E\xD9\x0
D\xCC\x3F\xED\x68\xF9\x1E\xBA\x5E\xFA\x1E\xE
F\x1F\xFE\x1E\xDC\x2F\xFD\x5A\xD8\x6B\xBD\x7C\x8F\x19\xFE\x69\x9F\x7E\x9E\x2B\xEC\x0E
\x88\x5D\xD8\x2F\xFD\x69\xCA\x3F\x9A\x2B\xDF

6/15

\x3E\x8B\x19\xDC\x6B\xBD\x4F\x9D\x4D\xD9\x3E\xCF\x59\xEB\x5B\xAF\x1B\xAB\x39\xA9\x6C\
xAC\x0A\xDD\x49\x8C\x19\xBA\x1A\xBA\x0B\xAA\
x39\x9A\x5C\x9C\x6F\xE8\x68\xE8\x0E\x88\x6E\xCA\x7B\xDA\x3E\x9A\x18\xEF\x5B\x9C\x2B\x
A8\x7D\xAD\x28\xEC\x2C\x8A\x3B\xCF\x0C\xAA\x
7D\xDA\x49\xD9\x49\x8C\x2A\xA8\x4E\x9D\x5C\xFA\x1E\xEF\x2C\xDF\x7A\xCB\x0C\x99\x4D\xD
9\x0D\xDD\x0D\xCC\x0C\xFF\x3C\xDE\x49\xEA\x7
9\x8F\x6E\xAC\x0A\xDD\x7A\xAD\x6C\xAC\x39\xCF\x1D\xAB\x4E\xEA\x3D\xCF\x7B\xE9\x2C\xB9
\x38\xED\x2C\xB9\x0B\xFF\x78\x9E\x5C\xAF\x5F
\xEB\x2C\xEC\x4A\xC8\x48\x9D\x09\x99\x2B\x8A')

for i in range(len(ciphertext)):
 ciphertext[i] ^= key[i%len(key)]

Resulting Char Pool:
xezenozuizpioqvuekifxyusofalytkadeibubysmyliylvaikultugikuuddoyqlanevebaqoixogicuqebu
vbuviehbofyefsokonihosygoynbeetwenuunuwohquritaamugvyitimfiyrelcoykaqqaacapokcuydseum
afedemfubyirahiquxegceaburotiluhvocywowumoyvupagduobaserroziqyenpahaxiloazodtoishuaxb
iufmifoiwesleyhzoyfreontyuzfaezkypuarywnyavrysiovyczyraciosgumuatyzommeolxaeqdaevkepe
oxsauteppoymxoozwiygucpyheectelyzayxybgaypakigluinmacageocidsuorwyxuexantigyivewqiadn
aawukhirudywaqekidiipowihhyopfe

Date Seed

As mentioned above, the current date is used to select character pairs. The analysis below
was performed August 04, 2022, meaning 0822 will be used to calculate the pairs.

First Pair

The first pair is selected by splitting the character pool pairs into groups of 19. The first digit
of the date is then used as the index of the groups to select. Since the first digit of a month
will either be a 0 or 1 (01, 02, 03…10, 11, 12), only two groups can be selected from.

Note: I will use a DGA domain generated during a debugging session as a visual example.
To denote which character pair was chosen during this session, the pair will be highlighted in
bold font.

 xe ze no zu iz pi oq vu ek if xy us of al yt ka de ib ub
 ys my li yl va ik ul tu gi ku ud do yq la ne ve ba qo ix

Below is what this selection looks like in the debugger.

7/15

Figure 2: Calculate first char of first pair == ‘p’

Figure 3: Calculate second char of first pair == ‘i’
Second Pair

The second pair is selected in the same way as the first pair, but groups are picked based on
the second digit. The second digit can range from 0-9, so ten different groups are possible.

 xe ze no zu iz pi oq vu ek if xy us of al yt ka de ib ub
 ys my li yl va ik ul tu gi ku ud do yq la ne ve ba qo ix
 og ic uq eb uv bu vi eh bo fy ef so ko ni ho sy go yn be
 et we nu un uw oh qu ri ta am ug vy it im fi yr el co yk
 aq qa ac ap ok cu yd se um af ed em fu by ir ah iq ux eg
 ce ab ur ot il uh vo cy wo wu mo yv up ag du ob as er ro
 zi qy en pa ha xi lo az od to is hu ax bi uf mi fo iw es
 le yh zo yf re on ty uz fa ez ky pu ar yw ny av ry si ov
 yc zy ra ci os gu mu at yz om me ol xa eq da ev ke pe ox
 sa ut ep po ym xo oz wi yg uc py he ec te ly za yx yb ga

Figure 4: Calculate first char of second pair == ‘p’

8/15

Figure 5: Calculate second char of first pair == ‘e’
Third Pair

The third pair is selected from groups with a size of 4 pairs. The third digit can range from 0-
9, so ten different groups are possible. This digit represents the current decade and therefore
the group of 4 pairs ek if xy us will remain the same for quite some time.

 xe ze no zu
 iz pi oq vu
 ek if xy us
 of al yt ka
 de ib ub ys
 my li yl va
 ik ul tu gi
 ku ud do yq
 la ne ve ba
 qo ix og ic

9/15

Figure 6: Calculate first char of third pair == ‘x’

Figure 7: Calculate second char of third pair == ‘y’
Fourth Pair

10/15

The fourth and final pair are selected in the same manner as the third pair. Again, there are
10 potential groups of 4 pairs.

 xe ze no zu
 iz pi oq vu
 ek if xy us
 of al yt ka
 de ib ub ys
 my li yl va
 ik ul tu gi
 ku ud do yq
 la ne ve ba
 qo ix og ic

Figure 8: Calculate first char of fourth pair == ‘e’

Figure 9: Calculate second char of fourth pair == ‘k’
Combine Second Level Domain with Top Level Domain

Now that the second level domain of pipexyek as been generated, the top level domain of
.bazar is appended to complete the DGA. “.bazar” can be seen in the above figure as a “tight
string.” The two hex-values of 0x57E6691A and 0x2D877955 are combined and XORed with

11/15

0x2D870B34, resulting in .bazar.

Figure 10: Bazar tight string XOR decrypted

Algorithm Replication in Python

12/15

Once again, I would like to link this blog post that contained a Python script to emulate this
DGA. I learned a ton from this blog and look forward to reading and reversing more DGAs in
the future.

https://bin.re/blog/a-bazarloader-dga-that-breaks-during-summer-months/

13/15

from binascii import hexlify, unhexlify
import argparse
import logging
import traceback
import os
from datetime import datetime
from collections import namedtuple
from itertools import product

def configure_logger(log_level):
 log_file = os.path.join(os.path.dirname(os.path.realpath(__file__)),
'bazardga.log')
 log_levels = {0: logging.ERROR, 1: logging.WARNING, 2: logging.INFO, 3:
logging.DEBUG}
 log_level = min(max(log_level, 0), 3) #clamp to 0-3 inclusive
 logging.basicConfig(level=log_levels[log_level],
 format='%(asctime)s - %(name)s - %(levelname)-8s %
(message)s',
 handlers=[
 logging.FileHandler(log_file, 'a'),
 logging.StreamHandler()
])

class DGA:

 def __init__(self, date: datetime):
 self.logger = logging.getLogger('BazarLoader DGA Generator')
 self.seed = datetime.strftime(date, '%m%Y')

 def decrypt_permutation(self):

 ciphertext =
bytearray(b'\x10\x9C\x57\xCD\x64\xB2\x33\xCA\x51\xF1\x1E\xF6\x55\xAF\x48\xDC\x4D\x87\
x76\xFE\x17\x91\x2E\x89\x35\xC9\x58\xF6\x25\xDB\x25\xB8\x69\xA9\x56\x8F\x1D\x9B\x67\x
C9\x33\x83\x72\x86\x66\x92\x68\xBD\x46\x96\x2F\xB4\x1F\xC8\x1B\xE6\x72\x8B\x1C\xFB\x1
A\xF1\x52\x9D\x62\xE9\x33\xBD\x59\x98\x0B\xAB\x4E\xF5\x42\xA7\x51\xEC\x70\xBF\x1E\xCC
\x2A\xFF\x38\xAF\x5C\xBA\x2F\x82\x3E\xC7\x79\xC4\x5F\xD0\x09\xCA\x79\xB2\x22\xE3\x77\
xD3\x72\xD5\x78\xD3\x5E\xF5\x25\xF2\x0D\x8D\x0D\x9C\x79\xED\x00\xBF\x0E\xB4\x4B\xED\x
77\x87\x2A\xE9\x59\xC1\x09\xCC\x49\x81\x59\xED\x4D\xB6\x65\xDE\x14\xB7\x2F\xB0\x30\xF
E\x4F\xC4\x2D\xF2\x25\x91\x7F\x9E\x5D\xBE\x1B\xA8\x6D\xE9\x22\xB2\x6E\xA8\x74\xA8\x7F
\x9A\x49\xB3\x28\x8C\x1C\xEB\x0B\xC1\x6C\xA8\x18\xD4\x05\xDE\x58\xA7\x74\xDA\x3B\x92\
x58\xA8\x18\x8C\x4D\xDB\x4D\x9F\x43\xCD\x62\x93\x0D\xF6\x2A\xC0\x3C\x92\x5B\x83\x3D\x
BD\x25\xF2\x70\xEF\x5E\xFA\x1E\xE8\x7D\x9A\x34\xDC\x6A\xEA\x6C\xEB\x6A\xF7\x51\xC1\x3
F\xC6\x19\xA5\x0B\xBB\x74\xDB\x04\x80\x04\x96\x4C\xD2\x65\xB9\x3D\xD0\x51\xF8\x06\xEA
\x5B\xA6\x5C\xC0\x5D\x8A\x72\xF1\x09\x87\x32\x8D\x3F\xDC\x55\xFF\x25\xC7\x34\xB6\x74\
xAA\x4D\x88\x07\x97\x6A\xC3\x2B\x80\x78\x8E\x7A\x84\x75\xA5\x5F\x88\x3B\xAA\x12\xCA\x
12\xF6\x78\x88\x1B\xE6\x0D\xF7\x44\x9A\x77\xEB\x27\xA1\x5D\x9C\x0A\xA3\x50\xE9\x4C\xA
A\x53\xFE\x78\xA8\x12\xC7\x20\xF0\x20\xBC\x51\xA3\x21\x8A\x3E\xDE\x7F\xCA\x5C\xDF\x07
\xC9\x7A\xB8\x26\xF4\x6A\xDB\x6F\xCE\x6E\xDA\x49\xF5\x25\xF1\x17\x87\x07\x92\x79\xE1\
x17\xAD\x0E\xB9\x4E\xE3\x70\x8A\x3E\xFF\x5F\xCD\x11\xD4\x52\x8D\x55\xF2\x42\xAD\x6B\x
CB\x04\xAA\x28\xB2\x20\xEB\x46\xDD\x27\xF3\x31\x9B\x7D\x8E\x4B\xBA\x15\xA8\x65\xFD\x3
E\xAC\x62\xAF\x7A\xB5\x74\x8A\x59\xA6\x28\x84\x0D\xE6\x09\xD5\x63\xAB\x1F\xDA\x1D\xC5

14/15

\x58\xAB\x73\xCA\x2F\x9D\x48\xA4\x13\x80\x5E\xCC\x5C\x94\x5B\xD8\x7A\x9A\x13\xF7\x38\
xC6\x36\x9B\x43\x9B\x23\xA0\x20\xE4\x66\xE9\x4D\xEF')

 key =
bytearray(b'\x68\xF9\x2D\xA8\x0A\xDD\x49\xBF\x38\x8B\x6E\x9F\x3A\xDE\x3E\xA9\x28\xEC\
x1F\x98\x6F\xE8\x5B\xFA\x5A\xAF\x39\x9A\x5C\xAF\x4E\xD9\x0D\xCC\x3F\xED\x68\xF9\x1E\x
BA\x5E\xFA\x1E\xEF\x1F\xFE\x1E\xDC\x2F\xFD\x5A\xD8\x6B\xBD\x7C\x8F\x19\xFE\x69\x9F\x7
E\x9E\x2B\xEC\x0E\x88\x5D\xD8\x2F\xFD\x69\xCA\x3F\x9A\x2B\xDF\x3E\x8B\x19\xDC\x6B\xBD
\x4F\x9D\x4D\xD9\x3E\xCF\x59\xEB\x5B\xAF\x1B\xAB\x39\xA9\x6C\xAC\x0A\xDD\x49\x8C\x19\
xBA\x1A\xBA\x0B\xAA\x39\x9A\x5C\x9C\x6F\xE8\x68\xE8\x0E\x88\x6E\xCA\x7B\xDA\x3E\x9A\x
18\xEF\x5B\x9C\x2B\xA8\x7D\xAD\x28\xEC\x2C\x8A\x3B\xCF\x0C\xAA\x7D\xDA\x49\xD9\x49\x8
C\x2A\xA8\x4E\x9D\x5C\xFA\x1E\xEF\x2C\xDF\x7A\xCB\x0C\x99\x4D\xD9\x0D\xDD\x0D\xCC\x0C
\xFF\x3C\xDE\x49\xEA\x79\x8F\x6E\xAC\x0A\xDD\x7A\xAD\x6C\xAC\x39\xCF\x1D\xAB\x4E\xEA\
x3D\xCF\x7B\xE9\x2C\xB9\x38\xED\x2C\xB9\x0B\xFF\x78\x9E\x5C\xAF\x5F\xEB\x2C\xEC\x4A\x
C8\x48\x9D\x09\x99\x2B\x8A\x7F\x8F\x19\xEF\x5B\xBE\x0B\x99\x09\x99\x18\x98\x2B\xA8\x4
E\xBF\x7C\xCB\x7B\xDA\x1C\xBA\x7C\xE9\x68\xF9\x2D\xA8\x0A\xDD\x49\xBF\x38\x8B\x6E\x9F
\x3A\xDE\x3E\xA9\x28\xEC\x1F\x98\x6F\xE8\x5B\xFA\x5A\xAF\x39\x9A\x5C\xAF\x4E\xD9\x0D\
xCC\x3F\xED\x68\xF9\x1E\xBA\x5E\xFA\x1E\xEF\x1F\xFE\x1E\xDC\x2F\xFD\x5A\xD8\x6B\xBD\x
7C\x8F\x19\xFE\x69\x9F\x7E\x9E\x2B\xEC\x0E\x88\x5D\xD8\x2F\xFD\x69\xCA\x3F\x9A\x2B\xD
F\x3E\x8B\x19\xDC\x6B\xBD\x4F\x9D\x4D\xD9\x3E\xCF\x59\xEB\x5B\xAF\x1B\xAB\x39\xA9\x6C
\xAC\x0A\xDD\x49\x8C\x19\xBA\x1A\xBA\x0B\xAA\x39\x9A\x5C\x9C\x6F\xE8\x68\xE8\x0E\x88\
x6E\xCA\x7B\xDA\x3E\x9A\x18\xEF\x5B\x9C\x2B\xA8\x7D\xAD\x28\xEC\x2C\x8A\x3B\xCF\x0C\x
AA\x7D\xDA\x49\xD9\x49\x8C\x2A\xA8\x4E\x9D\x5C\xFA\x1E\xEF\x2C\xDF\x7A\xCB\x0C\x99\x4
D\xD9\x0D\xDD\x0D\xCC\x0C\xFF\x3C\xDE\x49\xEA\x79\x8F\x6E\xAC\x0A\xDD\x7A\xAD\x6C\xAC
\x39\xCF\x1D\xAB\x4E\xEA\x3D\xCF\x7B\xE9\x2C\xB9\x38\xED\x2C\xB9\x0B\xFF\x78\x9E\x5C\
xAF\x5F\xEB\x2C\xEC\x4A\xC8\x48\x9D\x09\x99\x2B\x8A')

 # XOR decrypt to reveal char pool
 for i in range(len(ciphertext)):
 ciphertext[i] ^= key[i%len(key)]
 self.logger.debug(f"Character Pair Pool: \n {ciphertext.decode('utf-8')}")
 return ciphertext

 def generate_domains(self):
 """
 Generate DGA domains using BazarLoader DGA algorithm.
 """

 # Calculate pairs (ciphertext and key are hardcoded into Bazarloader)
 charpool = self.decrypt_permutation().decode('utf-8')

 # Print out seed
 self.logger.critical(f'Seed is: {self.seed}')
 print(f'Seed is: {self.seed}')

 # Generate Possible Ranges
 Param = namedtuple('Param', 'mul mod idx')
 params = [Param(19, 19, 0), Param(19, 19, 1), Param(4, 4, 4), Param(4, 4, 5)]
 ranges = []
 for p in params:
 s = int(self.seed[p.idx])
 lower = p.mul * s

15/15

 upper = lower + p.mod
 ranges.append(list(range(lower, upper)))

 self.logger.debug(ranges)

 # Generate Domains looping indices of Cartesian product
 domains = set()
 for indices in product(*ranges):
 self.logger.debug(indices)
 domain = ""
 for index in indices:
 domain += charpool[index * 2 : index * 2 + 2]
 domain += '.bazar'
 domains.add(domain)

 for domain in domains:
 print(domain)

if __name__ == '__main__':
 parser = argparse.ArgumentParser(description='BazarLoader String Decryptor')
 parser.add_argument('-v', '--verbose', action='count', default=0,
 help='Increase verbosity. Can specify multiple times for more verbose
output')
 parser.add_argument('-d', '--date', default=datetime.now().strftime('%Y-%m-%d'),
 help='Date used for seeding. (e.g. 2022-08-05)')
 args = parser.parse_args()
 configure_logger(args.verbose)
 date = datetime.strptime(args.date, '%Y-%m-%d')
 dga = DGA(date)
 try:
 dga.generate_domains()
 except Exception as e:
 print(f'Exception generating DGA domains.')
 print(traceback.format_exc())

Finally, now that we have a list of all the domains and know the algorithm used to generate
them, a simple regex can be used to identify any network communications:

 [a-ik-z]{8}\.bazar

bazar bazarloader dga

https://malwarebookreports.com/tag/bazar/
https://malwarebookreports.com/tag/bazarloader/
https://malwarebookreports.com/tag/dga/

