
1/46

Anandeshwar Unnikrishnan August 4, 2022

Technical Analysis of Bumblebee Malware Loader
cloudsek.com/technical-analysis-of-bumblebee-malware-loader/

Malware loaders are essentially remote access trojans (RATs) that establish communication
between the attacker and the compromised system. Loaders typically represent the first
stage of a compromise. Their primary goal is to download and execute additional payloads,
from the attacker-controlled server, on the compromised system without detection.

https://cloudsek.com/technical-analysis-of-bumblebee-malware-loader/

2/46

Researchers at ProofPoint have discovered a new malware loader called Bumblebee. The
malware loader is named after a unique user agent string used for C2 communication. It has
been observed that adversaries have started using Bumblebee to deploy malware such as
CobaltStrike beacons and Meterpreter shells. Threat group TA578 has also been using
Bumblebee the loader in their campaigns.

This article explores and decodes Bumblebee malware loader’s:

Technical features
Logic flow
Exploitation process
Network maintenance
Unique features

Campaign Delivery

Adversaries push ISO files through compromised email (reply) chains, known as thread
hijacked emails, to deploy the Bumblebee loader. ISO files contain a byte-to-byte copy of
low-level data stored on a disk. The malicious ISO files are delivered through Google Cloud
links or password protected zip folders.

ISO file retrieved from Google Cloud (“storage.googleapis.com”)

ISO

file retrieved from password protected zip files
The ISO files contain a hidden DLL with random names and an LNK file. DLL (Dynamic Link
Library) is a library that contains codes and data which can be used by more than one
program at a time. LNK is a filename extension in Microsoft Windows for shortcuts to local
files.

The LNK file often contains a direct link to an executable file or metadata about the
executable file, without the need to trace the program’s full path. LNK files are an attractive
alternative to opening a file, and thus an effective way for threat actors to create script-based

3/46

attacks. The target location for the LNK files is set to run rundll32.exe, which will call an
exported function in the associated DLL. If the “show hidden items” option is not enabled on
the victim’s system, DLLs may not be visible to the user.

Bumblebee Loader Analysis

The analyzed sample
(f98898df74fb2b2fad3a2ea2907086397b36ae496ef3f4454bf6b7125fc103b8) is a DLL

file with exported functions.

Exported functions in the sample DLL file

Both the exported functions, IternalJob and SetPath, execute the function sub_180004AA0.

InternalJob executing the function sub_180004AA0 SetPath executing the function
sub_180004AA0

Entropy of the DLL

The entropy of a file measures the randomness of the data in the file. Entropy can be used to
determine whether there is hidden data or suspicious scripts in the file. The scale of entropy
is from 0 (not random) to 8 (totally random). High entropy values indicate that there is
encrypted data stored in the file, while lower values indicate the decryption and storage of
payload in different sections during runtime.

4/46

Entropy of the Malware Sample
The peak is spread across the data segments of the DLL file. It is highly possible that this
peak was caused by the presence of packed data in the data segments of the sample DLL.
This indicates that the malware, at some point in runtime, will fetch the data from the data
segment and unpack it for later use.

Unpacking and Deploying Payload (Function sub_180004AA0)

The exported function sub_180004AA0 is a critical component in unpacking and deploying
the main payload on the target system.

Exported Function sub_180004AA0
The function sub_180003490 serves as the unpacker for the main payload.

5/46

Function sub_180003490

Function sub_180003490

Function sub_180003490 contains 2 functions of interest:

sub_1800021D0: This function routine is responsible for allocating heap memory.

Function sub_1800021D0
sub_1800029BC: This function writes the embedded data, in the data segment of the DLL
sample, into the newly allocated heap memory. The packed payload is fetched from the data
segment and written into allocated heap memory. The code segment highlighted in the
image below is responsible for transferring the data.

6/46

Function sub_1800029BC

Function sub_1800029BC

Assembly code representation of function sub_1800029BC
The assembly code highlighted yellow transfers the embedded data (packed payload)
from the data segment of DLL to an intermediate CL register.
The assembly code highlighted red transfers the data from CL to the allocated heap.
During runtime, the heap memory continues to get filled with the packed payload
embedded within the DLL samples.

7/46

Heap memory during run time

Function sub_180002FF4

After dumping the packed payload in the allocated memory, the control goes back to
sub_180004AA0 and function sub_180002FF4 is executed.

8/46

Function sub_180002FF4

Function sub_180002FF4 performs the following operations:

Allocates new heap memory.
Transfers previously dumped packed payload into newly allocated memory.
Deallocates previously allocated memory.

After the control returns to sub_180004AA0 function sub_180004180 is executed.

9/46

Function sub_180004180

Function sub_180004180

Three functions encapsulated in Function sub_180004180

Function sub_180004180 has 3 functions:

sub_180001670: This function is responsible for allocating multiple heap memories to
the malware. The malware later dumps the unpacked MZ file into one of the allocated
memories.
sub_180003CE4: This function is responsible for unpacking previously dumped
packed payload in the process heap and dumps it into one of the memories allocated
by sub_180001670.
sub_180001A84: This function is responsible for deallocating memory.

10/46

Unpacked MZ artifact in the memory

Hook Implementation

Hooking refers to a range of techniques used to modify the behavior of an operating system,
software, or software component, by intercepting the function calls, events, or
communication between software components. The code which handles such intercepted
function calls, events, or communication is called a hook.

Right after the Bumblebee loader unpacks the main payload in the memory, it hooks a few
interesting functions exported by ntdll.dll (a file containing NT kernel functions, susceptible to
cyberattacks) through an in-line hooking technique. The in-line hooks play a significant role
in the execution of the final payload. The trigger mechanism, for the deployment of the
payload, shows the creativity of the malware developer. Function sub_180001000 is
responsible for implementing the in-line hooks.

11/46

Function sub_180001000
Function sub_180001000 initially saves the addresses of 3 detour functions used for
hooking. The detour functions are responsible for hijacking control flow in hooked Windows
functions. After storing the addresses, sub_1800025EC is executed to resolve the addresses
of the target API (Application Programming Interface) functions for hooking.

Detour functions in sub_180001000 function

sub_1800025EC loads ntdll.dll in the address space of the loader process using function
LoadLibraryA. Following the loading of the ntdll, function GetProcAddress is used to resolve
the addresses of functions:

NtOpenFile
NtCreateSection
NtMapViewOfSection

12/46

LoadLibraryA and GetProcAddress functions

After obtaining the addresses to memory pages of the detour functions for hooking, the
loader uses function VirtualProtect to change the memory permissions of the target pages.
After changing the permissions, the loader writes the in-line hooks in sub_180002978. Then
VirtualProtect is called again to restore the page permissions.

VirtualProtect and sub_180002978 functions

The data passed to VirtualProtect at runtime is shown in the image below. The call to
VirtualProtect changes the ntdll.NtOpenFile page permission to 0x40
(PAGE_EXECUTE_READWRITE).

13/46

Data passed/call to VirtualProtect function

After changing the page permissions of ntdll.NtOpenFile, the loader modifies the initial
sequence of bytes in the NtOpenFile API by executing function sub_180002978.

sub_180002978 function modifying the NtOpenFile API

In-line hooking involves the following steps:

ntdll.NtOpenFile before (hooking) execution of sub_180002978 function

After sub_180002978 is executed, a call to NtOpenFile makes the malware code jump
to location 1800023D4 (detour). This is how malicious in-line hooks change the
execution flow of APIs.

14/46

Call to NtOpenFile making the malware jump to 1800023D4

After writing the hook, VirtualProtect is used again to restore the page permission of
ntdll.NtOpenFile to 0x20 (PAGE_EXECUTE_READ).

VirtualProtect function used to restore page permission of ntdll.NtOpenFile

The process of changing memory permission and writing in-line hooks is repeated in a
do-while loop, for the rest of the target functions, NtCreateSection and
NtMapViewOfSection.

Do-while loop repeating the permission and hooks process for other target functions

Summary of Hooked Functions

After successful hooking, whenever target functions are called in the address space of the
loader process, the control flow is transferred to the in-line the respective hook addresses:

Target Function In-line Hook (Detours)

ntdll.NtOpenFile 1800023D4

ntdll.NtCreateSection 1800041EC

ntdll.NtMapViewOfSection 180001D4C

Loading gdiplus.dll is Unique to Bumblebee

15/46

The final function executed by the loader is sub_1800013A0. The malware uses the function
LoadLibraryW to load the DLL module. It then uses the function GetProcAddress to obtain
the address of a specific function exported by the library loaded.

This plays a crucial step in deployment of the main payload on the victim system. Unlike
TTPs (Tactics, Techniques, and Procedures) of common malware loaders, this is where the
Bumblebee loader gets creative.

Function sub_1800013A0 with LoadLibraryW and GetProcAddress functions

The module gdiplus.dll is loaded into the process memory address space. Gdiplus.dll is an
important module, containing libraries that support the GDI Window Manager, in the
Microsoft Windows OS.

Runtime execution of function sub_1800013A0

The module gdiplus.dll is executed in the last function of the malware loader. This is the first
instance in which the unpacked MZ payload is used directly by the loader. Hence, the
loading of this module appears suspicious. Also, an unusual base address (0x1d54fd0000) is

16/46

assigned to the loaded gdiplus.dll module.

Unusual base address assigned to gdiplus.dll

By further examining the suspicious memory, it was found that the address is a mapped
page with RWX permission in the loader address space. This is a classic use case of
hollowing where the module content is replaced with unpacked malicious artifacts.

Address as a mapped page with RWX permission

But in our analysis so far we have not come across any code that does the hollowing. Then
how did the malware change the contents of the gdiplus.dll? Interestingly this is where the
malware developer decided to get creative! The hooking seen earlier is responsible for
hollowing the loaded module with the unpacked payload. More details about the same are
covered in the following section.

Investigating the Hooks and the Trigger

17/46

As seen in the previous section, the malware hooks 3 specific APIs:

NtOpenFile
NtCreateSection
NtMapViewOfSection

The API selection is not random. The internal working of loading any DLL via LoadLibrary
API uses the 3 functions mentioned above. Hooking these functions gives the malware the
flexibility to deploy the unpacked payload covertly. This feature makes it difficult for
researchers to hunt the main payload.

The detour function at 0x180001D4C is used to hook function NtMapViewOfSection, which
lays the groundwork for hollowing the loaded module (in this case, gdiplus.dll) with the
unpacked Bumblebee binary. The detour function is capable of the following actions:

Section object creation via NtCreateSection API
Mapping of the view of gdiplus.dll to loader address space via NtMapViewOfSection
Writing the unpacked payload into the mapped view of gdiplus.dll
Deallocating heap memory that holds unpacked payload from earlier steps

The implementation of the detour function at 0x180001D4C, shows the use of a pointer to
the NtCreateSection API, for creating a section object to be used later in mapping the
gdiplus.dll module.

Pointer to NtCreateSection API

After creating a section object, the detour function calls NtMapViewOfSection, via a pointer.
Now the view for the section is created by the system. The function sub_180002E74 is
responsible for filling the mapped view with an unpacked payload.

18/46

Pointer to NtMapViewOfSection along with sub_180002E74 function

The address of the mapped view, returned by NtMapViewOfSection pointer in the loader
process, which is 0x1D54F5D0000, is the same address seen while examining the process
modules.

Address of the mapped view returned by NtMapViewOfSection

Unusual base address assigned to “gdiplus.dll” as seen earlier

The mapped view starts from 0x1D54F5D0000. The loader dumps the unpacked payload
here, hollowing gdiplus.dll. Hence, the final Bumblebee payload stays hidden inside the
loaded module gdiplus.dll.

Right after mapping the view, the detour function executes sub_180002E74 to initiate the
writing of the unpacked binary.

19/46

Function sub_180002E74 responsible for filling the mapped view with the final payload

The hooks get activated as soon as the loader loads the gdiplus.dll module via LoadLibraryW
API. Then the payload is covertly loaded into the gdiplus.dll module. The final payload is a
DLL, hence the loader has to explicitly call an exported function to trigger the execution.

In this case, the loader obtains the address of exported function SetPath via function
GetProcAddress. The control is then transferred to the final payload by the final call to
SetPath, by providing the loader program name as argument.

Loader obtains the address of exported function “SetPath” via GetProcAddress

The image below shows the function SetPath exported by the unpacked Bumblebee
payload.

20/46

SetPath Function

Bumblebee Main Payload Analysis

The core malicious component of the bumblebee is executed in the memory, when the
hollowed gdiplus.dll is loaded via the LoadLibrary API. When the module is loaded into
memory, the function DllMain creates a new thread and executes sub_180008EC0 routine.

21/46

The DllMain function of the bumblebee payload

sub_180008EC0 routine is quite a large function that is responsible for all the malicious
activities performed by Bumblebee on the compromised system.

22/46

23/46

Function sub_180008EC0 logic flow

Anti VM Checks

The first activity performed by sub_180008EC0 is to check for a virtual machine (VM)
environment. If the function returns True, then Bumblebee shuts itself down by executing the
ExitProcess function.

sub_18003DA0 performs VM check

The VM checking routine is. Rigorous. It employs various techniques to ensure that the
malware is not running in a sandbox environment used by security researchers. Some of the
interesting features are:

Iterating through running processes via functions CreateToolHelp32Snapshot,
Process32FirstW, and Process32NextW.

24/46

Malware functions which help in iterating through running processes

Each running process is compared to a list of program names.

Running process being compared to the list of program names

The malware also checks for specific usernames used in sandboxed environments to
confirm the absence of a VM.

25/46

Malware checking for specific usernames

The VM check routine also enumerates active system services running via the
OpenSCManagerW API. The names of common services used by VM softwares are
stored in an array.

26/46

Enumerating active system services running via OpenSCManagerW

It also scans the system directory for common drivers and library files used by VM
applications.

27/46

System check for common drivers and library files used by popular VM applications

The routine also checks for named pipes to identify the presence of VM.

Checking for named pipes

These are a few examples of techniques employed by the malware to identify analysis
environments. It also has other functionalities built such as the use of WMI and registry
functionalities to identify hardware information to check for the presence of VM environments
installed on the target system.

Event Creation

28/46

After VM checks, if it is secure to continue, the malware creates an event. The event ID is
3C29FEA2-6FE8-4BF9-B98A-0E3442115F67. This is used for thread synchronization.

The event created by the malware

Persistence

The malware uses wsript.exe as a persistence vector to run the malware each time the user
logs into the system. The VB instruction is written into a .vbs file. This is performed when the
C2 sends the “ins” command as a task to execute on the system.

Wsript.exe

VB instruction written into a .vbs file

Token Manipulation

The malware performs token manipulation to escalate its privilege on the target system by
granting the malware process a SeDebugPrivilege. With this privilege the malware can
perform arbitrary read/write operations.

29/46

Malware is given the “SeDebugPrivilege”

The malware is capable of performing code injections to deploy malicious code in running
processes using various APIs. The malware dynamically retrieves the addresses of the APIs
needed for the code injection. The core bumblebee payload comes with embedded files
which areinjected into the running process to further attack the victim.

List of APIs used to perform code injections

Code Injection Via NtQueueApcThread

When the malware receives the command along with a DLL buffer, which gets injected, the
malware starts scanning for a list of processes on the system. One of the executables in the
list is randomly chosen to inject the malicious DLL.

30/46

Malware looking for the list of processes on the system

List of executables

Following the code injection, the malware:

Creates a process from the previously selected executable image via COM
(Component Object Model), in which access to an object’s data is received through
interfaces, in a suspended state.
Enumerates through the running process via the CreateToolhelp32Snapshot API to find
the newly spawned process created in the previous step.
When the process is found, the malware manipulates the token and acquires the
SeDebugPrivilege token to perform further memory manipulation.
If token manipulation is successful, the malware injects a shellcode into the process to
make it go to sleep.

31/46

Malware creating a process and injecting shellcode into it

Function sub_180037A80 is responsible for performing the shellcode injection into the
spawned process in the suspended state.

Function sub_180037A80

After injecting the shellcode into the process, the malware resumes the process. It then
executes function sub_18003A9BC to finally inject malicious DLL by creating multiple
memory sections and views.

Executing sub_18003A9BC function to inject malicious DLL

The DLL code is executed via the NtQueueApcThread API, which is dynamically resolved
during the execution.

32/46

DLL code executed via NtQueueApcThread API

C2 Network

Command and Control Infrastructure, also known as C2 or C&C, is a collection of tools and
techniques used to maintain contact with a compromised system of devices after the initial
access has been gained. The IP address of the C2 can be retrieved from the payload code
as shown below.

Retrieving the IP address of C2

33/46

The C2 periodically sends out tasks to the agent to be executed on the system. The malware
extensively uses WMI (Windows Management Infrastructure) to collect basic victim
information like domain name and user name, and sends the compromised information to the
C2. The C2 distinguishes active agents based on the client ID assigned to each one.

Data transferred in C2 communication

Interestingly, the user agent string used by the malware for communication is “bumblebee”.

Outbound Traffic

Data transferred out of the compromised system

Client Parameters

client-id
group_name
sys_version
User name
client_version

Inbound Traffic

Commands received by the compromised system

Client Parameters

response_status
tasks

Commands Supported

34/46

The task field in the C2 response will contain one of the following commands:

Command Description

dex Downloads executable

sdl Kill Loader

ins Persistence

dij DLL inject

A Tale of Bundled DLLs and Hooks

The core payload comes with two DLLs embedded in the binary. The purpose and function of
both the DLLs are the same, but one is 32 bit and the other is 64 bit. These are used to
perform further hooking and control flow manipulations.

DLL Signatures (SHA256)

32 bit:
B9534DDEA8B672CF2E4F4ABD373F5730C7A28FE2DD5D56E009F6E5819E9E9615
64 bit:
1333CC4210483E7597B26042B8FF7972FD17C23488A06AD393325FE2E098671B

In this section we will look into the inner workings of embedded 32 bit DLL. The module looks
for a specific set of functions in ntdll.dll, kernel32.dll, kernelbase.dll, and advapi32.dll to later
remove any hooks present in the code. This will also remove any EDR/AV (Endpoint
Detection and Response/ Antivirus) implemented hooks used for monitoring.

35/46

Functions in ntdll.dll checked for existing hooks

36/46

Functions in kernel32.dll checked for existing hooks

In kernelbase32.dll following functions are checked for any already existing hooks:

Functions in kernelbase32.dll checked for existing hooks

37/46

Functions in advapi32.dll checked for existing hooks

The Unhooking Mechanism

The unhooking process involves the following steps:

The module retrieves handles to target DLLs via the GetModuleHandleW API. The
handle returned by the API is for the DLL loaded in the memory by the malware
process, i.e. the process responsible for executing the bumble loader, which is
rundll32.exe.
Then the malware constructs the absolute path for target DLLs via the
LetSystemDirectoryA API, to access the system32 directory, where all system DLLs are
located.
A pointer to NtProtectVirtualMemory is computed following the DLL path generation.
Function sub_10005B90 is called to do the unhooking. Parameters passed to the
function are:

First Arg: Absolute path to target DLL
Second Arg: Handle to already loaded target DLL
Third Arg: Offset to array holding target functions exported by the target DLL
Fourth Arg: Null
Fifth Arg: Pointer to NtProtectVirtualMemory

38/46

Steps for Unhooking Mechanism

Function sub_10005B90 performs the following operations:

Maps fresh copy of the target DLL from the hard disk to address space of the malware
process via functions CreateFileA, CreateFileMappingA, and MapViewOfFile.
Calls function sub_10005D40 to perform unhooking. The following data is passed to
the function:

First Arg: Mapped Address of fresh copy of DLL
Second Arg: Same as sub_10005B90
Third Arg: Same as sub_10005B90
Fourth Arg: Same as sub_10005B90
Fifth Arg: Same as sub_10005B90

39/46

After unhooking, the mapped view is released via the UnMapViewOfFile API.

Operations performed by function sub_10005B90

The logic used for unhooking is straightforward. The malware compares the target function in
the loaded module in memory against the function defined in the mapped module via
MapViewOfFile. If both the codes don’t match, the content from the mapped module is
written to the loaded module, to restore the state to that of the mapped version from the hard
disk.

The malware goes through the exports of the loaded DLL and performs a string match
against the set of function names stored as an array in a loop. The sub_10005930 is
responsible for string matching.

String match against the set of function names

40/46

When the function name in the array of the malware matches the exported function from the
loaded module, the flag is set to [v8] and breaks from the loop. This occurs in the following
steps:

The malware stores the addresses of functions from both modules(loaded and
mapped).
Then the loaded and mapped function codes are checked for hooks, by identifying
dissimilarities in the code. If the loaded code is the same as the mapped one, it breaks
from the loop and continues to iterate through the remaining functions.

Malware matches the exported function

If the loaded code is not the as same as the mapped code, then the following operations are
performed by the malware for unhooking:

41/46

VirtualQueryEx API is called to retrieve the base address of the page containing the
target function.
Then NtProtectVirtualMemory API is used for changing permissions of the page
containing the function code (READ_WRITE_EXECUTE).
VirtualQuery is used again to check for permission; whether the page is writable or not.
Function sub_10005890 is called to restore the loaded module with the contents of the
mapped module. Now the functions in the mapped and loaded modules are in the
same state.

Malware does not match the exported function

After clearing all the hooks in the selected functions, the malware installs hooks.

Functions RaiseFailFastException from kernel32.dll and api-ms-win-core-errorhandling-l1-1-
2.dll are hooked. Then the detour function sub_100057F0 hijacks the control flow when the
above functions are called by the system after hooking is done by the malware.

42/46

Installing hooks

Function sub_100057F0 simply returns the call.

Function sub_100057F0

The embedded DLL has a hooking strategy similar to that of the Bumblebee loader. Various
functions used by the system, while loading a DLL module, are hooked and wups.dll is
loaded to trigger the chain.

Hooking of the functions used while loading DLL and loading of wups.dll

Target API Detour Function

ZwMapViewOfSection sub_10004C50

ZwOpenSection sub_10004FF0

ZwCreateSection sub_10004BC0

ZwOpenFile sub_10004F20

Code Upgrades In The Wild

After analyzing many samples in the wild we observed code modifications in the loader.

43/46

Prominent code modifications done in Bumblebee loader ever since its discovery

The extreme left sample in the image above is the one we have covered in this report. As we
can see from the logic flow of the loader, the malware developer has modified the loader
code in the other two samples. All the samples observed in the wild are 64 bit DLL modules
with an exported function that has a randomly generated string as the function name. This
can be justified by the fact that code plays a major role in whether the malware is detected
by security products. To circumvent this hurdle, malware developers make changes to the
code and the malware design.

Newer loader samples in the wild contain various payloads, such as cobaltStrike beacons
and Meterpreter shells, unlike the custom bumblebee payload seen in the first generation.

Indicators of Compromise (IoCs)

Binary

f98898df74fb2b2fad3a2ea2907086397b36ae496ef3f4454bf6b7125fc103b8

IPv4

45.147.229.23:443

Author Details

44/46

Anandeshwar Unnikrishnan
Threat Intelligence Researcher , CloudSEK
Anandeshwar is a Threat Intelligence Researcher at CloudSEK. He is a strong advocate of
offensive cybersecurity. He is fuelled by his passion for cyber threats in a global context. He
dedicates much of his time on Try Hack Me/ Hack The Box/ Offensive Security Playground.
He believes that “a strong mind starts with a strong body.” When he is not gymming, he finds
time to nurture his passion for teaching. He also likes to travel and experience new cultures.

Aastha Mittal
Total Posts: 0
Technical Writer at CloudSEK
×

https://cloudsek.com/author/anadeshwar-unnikrishnan/
https://cloudsek.com/
https://cloudsek.com/author/aastha-mittal/

45/46

Anandeshwar Unnikrishnan
Threat Intelligence Researcher , CloudSEK
Anandeshwar is a Threat Intelligence Researcher at CloudSEK. He is a strong advocate of
offensive cybersecurity. He is fuelled by his passion for cyber threats in a global context. He
dedicates much of his time on Try Hack Me/ Hack The Box/ Offensive Security Playground.
He believes that “a strong mind starts with a strong body.” When he is not gymming, he finds
time to nurture his passion for teaching. He also likes to travel and experience new cultures.

Latest Posts

https://cloudsek.com/author/anadeshwar-unnikrishnan/
https://cloudsek.com/
https://cloudsek.com/technical-analysis-of-the-redline-stealer/
https://cloudsek.com/technical-analysis-of-bluesky-ransomware/
https://cloudsek.com/technical-analysis-of-medusalocker-ransomware/

46/46

https://cloudsek.com/recordbreaker-the-resurgence-of-raccoon/

