
1/16

Gustavo Palazolo August 4, 2022

Ousaban: LATAM Banking Malware Abusing Cloud
Services

netskope.com/blog/ousaban-latam-banking-malware-abusing-cloud-services

Summary

Ousaban (a.k.a. Javali) is a banking malware that emerged between 2017 and 2018, with the
primary goal of stealing sensitive data from financial institutions in Brazil. This malware is
developed in Delphi and it comes from a stream of LATAM banking trojans sourced from
Brazil, sharing similarities with other families like Guildma, Casbaneiro, and Grandoreiro.
Furthermore, the threat often abuses cloud services, such as Amazon S3 to download
second stage payloads, and Google Docs to retrieve the C2 configuration.

Netskope Threat Labs came across recent Ousaban samples that are abusing multiple cloud
services throughout the attack flow, such as Amazon or Azure to download its payloads and
log the victim’s IP, and Pastebin to retrieve the C2 configuration. The malware is downloaded
through MSI files either by a JavaScript or a Delphi DLL, and is targeting more than 50
financial institutions in Brazil. Furthermore, we also found Telegram abuse in the malware
code, likely used for C2 communication via Webhooks.

https://www.netskope.com/blog/ousaban-latam-banking-malware-abusing-cloud-services
https://malpedia.caad.fkie.fraunhofer.de/details/win.ousaban
https://securelist.com/the-tetrade-brazilian-banking-malware/97779/
https://www.welivesecurity.com/2021/05/05/ousaban-private-photo-collection-hidden-cabinet/
https://www.botconf.eu/wp-content/uploads/2019/12/B2019-Soucek-Hornak-DemystifyingBankingTrojansFromLatinAmerica.pdf
https://malpedia.caad.fkie.fraunhofer.de/details/win.astaroth
https://malpedia.caad.fkie.fraunhofer.de/details/win.metamorfo
https://malpedia.caad.fkie.fraunhofer.de/details/win.grandoreiro
https://seguranca-informatica.pt/latin-american-javali-trojan-weaponizing-avira-antivirus-legitimate-injector-to-implant-malware/


2/16

In this blog post, we will analyze Ousaban, showing its delivery methods, obfuscation
techniques, and C2 communication.

Delivery methods

Ousaban is delivered through malicious MSI files spread in phishing emails. In this
campaign, we found that the MSI file downloads and executes the second stage either
through JavaScript or a PE file.

Delivery by JavaScript

In the first scenario, the JavaScript is executed via CustomAction.

MSI file executing JavaScript.

The JavaScript code is obfuscated, likely in an attempt to slow down analysis.

https://docs.microsoft.com/en-us/windows/win32/msi/customaction-table


3/16

JavaScript code extracted from the MSI file
Looking at the deobfuscated code, these are the steps executed by the malware:

1. Creates an empty file to be used as a flag in case the MSI is executed twice (similar
concept as Mutex usage);

2. Downloads the second stage from the cloud, either from Amazon or Azure;
3. Decompress the ZIP file downloaded from the cloud and renames the main executable;
4. Sends a simple GET request to another URL (Azure or another attacker-controlled

server), alerting the attacker and logging the victim’s IP;
5. Executes the main file via WMIC.

Deobfuscated JavaScript extracted from the MSI file.

https://lolbas-project.github.io/lolbas/Binaries/Wmic/


4/16

Delivery by File

We also found Ousaban being delivered without JavaScript. In this case, we can see a file
named “avisoProtesto.exe” being executed via MSI CustomAction.

MSI executing a PE file.
“avisoProtesto.exe” is a signed and non-malicious binary exploited to execute the malicious
DLL via DLL search order hijacking.

Non-malicious binary used to load the malicious DLL.

https://docs.microsoft.com/en-us/windows/win32/msi/customaction-table
https://attack.mitre.org/techniques/T1574/001/


5/16

This is possible because the non-malicious binary loads a DLL named “crashreport.dll”
without specifying the real path of the library. Therefore, the attacker places a DLL with the
same name in the same folder of the executable, making it load the malicious DLL instead.

Binary vulnerable to DLL

hijacking.
In this case, both next-stage and tracker URL are loaded from a text file, named “FileLinks”.

Malicious URLs loaded by the

malware.
All the files we analyzed were downloading the next stage from the cloud, either Amazon or
Azure. In some cases, the URL used to log the victim’s IP address was also from Azure. All
the URLs can be found in our GitHub repository.

Loading the second stage

The binary downloaded from the cloud is a ZIP file containing the next stage payload, which
is a Delphi DLL executed by a non-malicious binary.

https://github.com/netskopeoss/NetskopeThreatLabsIOCs/tree/main/Ousaban


6/16

Files downloaded from the cloud.
The file executed by the malware is a non-malicious executable with a valid signature
(“Securityo6Z3.exe”).

Certificate found in the file executed

by the malware.



7/16

The malicious DLL is then loaded by the non-malicious binary through a DLL search order
hijacking vulnerability, the same technique that is used by some of the downloaders.

Non-

malicious binary loading the next stage DLL.

Second stage

The second stage is a Delphi malware responsible for decrypting and loading Ousaban’s
payload in the following flow:

1. Loads the encrypted bytes of Ousaban from disk;
2. Decrypts Ousaban payload using a key stored in the “.data” section;
3. Decrypts the code that runs Ousaban using the same key, stored in the “.data” section.

Decryption

key and encrypted code stored in the “.data” section of the second stage.
The encrypted payload of Ousaban is located among the files downloaded from the cloud,
named “ZapfDingbats.pdf”.

https://attack.mitre.org/techniques/T1574/001/


8/16

Third stage encrypted

among files downloaded from the cloud.
Once running, the second stage loads Ousaban’s encrypted bytes, which will be decrypted
using the key stored in the PE “.data” section.

Encrypted Ousaban payload being loaded.
Aside from decrypting the payload, the second stage also decrypts the code that will execute
Ousaban in runtime, probably to slow down reverse engineering.



9/16

Second stage decrypting and loading Ousaban payload.
We created a Python script that can be used to statically decrypt Ousaban payloads, using
the same algorithm found in the malware. The code can be found in our GitHub repository.

Important API calls used by this stage are also dynamically resolved, another common
technique to slow down reverse engineering.

APIs dynamically loaded by the malware.

https://github.com/netskopeoss/NetskopeThreatLabsIOCs/tree/main/Ousaban/script


10/16

Ousaban payload

Ousaban is a Delphi banking trojan, mainly focused on stealing sensitive data from financial
institutions in Brazil. As previously mentioned, Ousaban shares many similarities with other
Brazilian banking malware, such as the algorithm to decrypt the strings and overlay
capabilities.

Ousaban commonly packs/protects its payloads with UPX or Enigma.

Ousaban payload packed with UPX.
One of the most characteristic aspects of Brazilian-sourced banking malware is the algorithm
used to encrypt/decrypt important strings.

https://upx.github.io/
https://enigmaprotector.com/


11/16

Ousaban encrypted

strings.
The algorithm used as a base by these trojans was originally demonstrated in a Brazilian
magazine called “Mestres Da Espionagem Digital” in 2008. Simply put, it parses the
hexadecimal string and uses a chained XOR operation with the key and the previous byte of
the string.

https://www.amazon.com.br/Mestres-Espionagem-Digital-Master-Zion/dp/856048079X


12/16

Part of the algorithm to decrypt the strings, commonly found in Brazilian banking malware.
We created a Python script that can be used to decrypt strings from malware that uses this
algorithm, such as Ousaban, Guildma, Grandoreiro, and others. The code can be used to
decrypt a single string:

Decrypting a single string from the malware.
Or to decrypt multiple strings at once, saving the result in a JSON file and also providing the
option to show in the console.

https://github.com/netskopeoss/NetskopeThreatLabsIOCs/tree/main/Ousaban/script


13/16

Decrypting multiple strings from the malware.
Like other Brazilian-sourced malware, Ousaban monitors the title text from the active window
and compares it with a list of strings, to verify if the victim is accessing the website or an
application of one of its targets.

Malware monitoring windows titles.
In the files we analyzed, we found Ousaban targeting over 50 different financial institutions. If
the window title matches one of the targets, Ousaban starts the communication with the C2
address, providing the option to the attacker to access the machine remotely.

C2 communication

Ousaban stores the C2 address remotely. In this case, the malware is using Pastebin to fetch
the data. In 2021, this malware was also spotted using Google Docs to fetch this information.

https://seguranca-informatica.pt/latin-american-javali-trojan-weaponizing-avira-antivirus-legitimate-injector-to-implant-malware/#.YuP-zuzML0o


14/16

Within the files downloaded from the cloud by the first stage, there’s a file named “Host”,
which stores the external location of the C2 configuration. The information is encrypted with
the same algorithm used in the strings.

C2 configuration stored on Pastebin.
The data is stored in a dictionary, where the C2 host is also encrypted with the same
algorithm used in the strings.

Retrieving and decrypting the C2 server address.
Ousaban only starts the communication once a targeted company is identified.

Ousaban C2 communication.

Lastly, the Ousaban samples we analyzed contain a routine to communicate via Telegram
using Webhooks, likely to be used as a secondary channel.



15/16

Part of Ousaban code to communicate via Telegram.

Conclusion

Ousaban is a malware designed to steal sensitive information from several financial
institutions, mainly based in Brazil. Ousaban shares many similarities with other Brazilian-
based banking trojans, such as Guildma and Grandoreiro. Also, as we demonstrated in this
analysis, the attackers behind this threat are abusing multiple cloud services throughout the
attack chain. We believe that the use of the cloud will continue to grow among attackers
especially due to cost and ease.

Protection

Netskope Threat Labs is actively monitoring this campaign and has ensured coverage for all
known threat indicators and payloads. 

Netskope Threat Protection
Win32.Malware.Heuristic
Win32.Infostealer.Heuristic

Netskope Advanced Threat Protection provides proactive coverage against this
threat.

Gen.Malware.Detect.By.StHeur indicates a sample that was detected using static
analysis
Gen.Malware.Detect.By.Sandbox indicates a sample that was detected by our
cloud sandbox



16/16

IOCs

All the IOCs related to this campaign and scripts can be found in our GitHub repository.

https://github.com/netskopeoss/NetskopeThreatLabsIOCs/tree/main/Ousaban

