
1/20

Positive Technologies

Flying in the clouds: APT31 renews its attacks on Russian companies through cloud
storage

ptsecurity.com/ww-en/analytics/pt-esc-threat-intelligence/apt31-cloud-attacks/

Introduction

In April 2022, PT Expert Security Center detected an attack on a number of Russian media and energy companies that used a malicious
document called «list.docx» to extract a malicious payload packed with VMProtect. Having analyzed the network packet, we found it to be
identical to the one we studied in our report on APT31 tools, suggesting that these may belong to one and the same group. The malware
samples date from November 2021 to June 2022.

Detailed analysis (see the "Attribution" section) of the unpacked malware confirmed our assumptions, as the malicious payload under
VMProtect was indeed identical to the one we examined earlier.

Further monitoring revealed a number of documents used in attacks on the same companies with content similar in terms of the techniques
used (see the "Malware analysis" section), yet differing from what we saw earlier both in the network part and the code implementation.

Detailed analysis of the tools showed the use of the Yandex.Disk service as the C2 server. This seemed a rather curious case to us, since it
involved a potentially foreign group using a Russian service specifically to make the network load look outwardly legitimate.

The technique is not new, having been deployed by the TaskMasters group in its Webdav-O malware. The point of this technique is to bypass
network defenses by connecting to a legitimate service.

This group's previous use of the Dropbox cloud service, as well as overlaps with the above-mentioned tools, suggests that here too we are
dealing with the toolkit of the APT31 group.

This report describes the tools and techniques and their features, discusses the similarities and differences, and lays out the characteristics on
which basis we assigned them to the APT31 group.

Analyzing malicious documents

The source document we started our research with (Figure 1) uses the Template Injection technique to download a template with a macro that
loads malicious components (a legitimate file, a Java component, a malicious msvcr100.dll packed with VMProtect) from a remote server.

https://www.ptsecurity.com/ww-en/analytics/pt-esc-threat-intelligence/apt31-cloud-attacks/
https://www.ptsecurity.com/ww-en/
https://www.ptsecurity.com/ww-en/analytics/pt-esc-threat-intelligence/apt31-new-attacks/
https://blog.group-ib.ru/task
https://www.secureworks.com/research/dropboxaes-remote-access-trojan

2/20

 Figure

1. External appearance of the malicious document
The template macro, a snippet of which is shown in Figure 2, creates files at the following path: C:\ProgramData\KasperskyOneDrive. The
main task of the legitimate file is to transfer control to the malicious library using the DLL Side-Loading technique and generate an initializing
packet that is sent to C2 (see the "Attribution" section).

3/20

 Figure 2. External

appearance of the loaded macro
During a further search for similar threats, a number of documents were found with the Author field equal to pc1q213 (Figure 3), containing an
identical Base64 decoding code.

 Figure 3. Properties of the detected document

Analysis of the detected documents clearly showed their external similarity (Figure 4). Moreover, the code of the macros contained in them is
identical all the way up to the names of the functions and variables (Figures 5 and 6).

4/20

Figure 4. External appearance of the detected document
A characteristic feature of all the documents is that they contain components for exploiting DLL Side-Loading to run the malicious payload
inside them, as well as the external similarity of macros embedded in the documents and the Base64 encoding of the payload inside the
documents.

5/20

Figure 5. External appearance of the macro in the detected document

6/20

Figure 6. Code of a macro from a similar document
The extracted payload also shows a number of similarities:

Most of the binary files are packed with VMProtect;
All the identified legitimate executable files are components of Yandex.Browser and signed with a valid digital signature;
winhttp.dll and wtsapi.dll were used as malicious libraries under the guise of legitimate ones (in particular, by the presence, number, and
names of exports).

Malware analysis

7/20

Our analysis identified two new types of malware, which we named YaRAT (because it has RAT functionality and uses Yandex.Disk as C2) and
Stealer0x3401 (because of the constant used in obfuscating the encryption key). What's more, we saw YaRAT in two modifications: with token
encryption inside the program code, and without it.

YaRAT

The Yandex.Browser installer signed with a valid Yandex digital signature, or its portable version, was used as a legitimate file vulnerable to the
Side-Loading DLL. The file loads and calls a function in the malicious winhttp.dll.

 Figure 7. Information about the digital signature of a legitimate executable file

And here's an example of function calls inside a legitimate binary file.

 Figure 8. Calling a malicious library function

The malicious library itself is packed and encrypted, and is unpacked by calling DllEntryPoint, which happens whenever the library is loaded. In
this case, DllEntryPoint contains code similar to UPX, which is probably borrowed but slightly modified.

The first stage also involves unpacking LZMA, after which the unpacked data is decrypted twice (code sections and other sections (imports,
data, etc.) are decrypted separately).

The data is decrypted using the RC4 algorithm; both encryption keys are embedded in the code. A distinctive feature of both data decryption
blocks is the type of code obfuscation (Control Flow Flattening), which hinders static analysis. Alongside this technique, an extra byte (0xB9) is
inserted inside the function body, which confuses the disassembler and prevents it from generating the function's decompiled form.

An example of the code responsible for data decryption after the PRNG stage is given in Figure 9.

8/20

 Figure 9. Snippet of an obfuscated block that

handles code and data decryption
The subsequent code for restoring imports and their addresses (resolving function and library addresses), as well as changing attributes for
virtual memory blocks (VirtualProtect calls), is identical to regular UPX (Figure 10 shows a snippet of packer code, Figure 11 shows regular
UPX). Note also the distinctive, UPX-specific push and pop calls at the start and end, respectively, of the unpack function. After unpacking,
control passes to the payload.

9/20

 Figure 10. Snippet of packer code

 Figure 11. Snippet of regular UPX code

10/20

Payload

At the first stage, a mutex named YandexDisk is created, and the malware adds itself to startup via a registry key.

 Figure 12. Creating a mutex and securing it in

the system
Next, the malware generates string requests to Yandex.Disk with the Authorization: OAuth parameter, to which the token for this account is
concatenated (Figure 13). The token itself is stitched into the code. We found several keys belonging to three accounts: jethroweston,
Poslova.Marian, upy4ndexdate.

 Figure 13. Generating a request to

Yandex.Disk
After that, two lines are generated according to the pattern: pcname + /a.psd and pcname + /b.psd, for example: DESKTOP-IM5NM8R/a.psd,
DESKTOP-IM5NM8R/b.psd.

The first request sent by the malware to C2 is a PUT to

https://cloud-api.yandex.net:443/v1/disk/resources?path=

(Figure 14 shows an example of generating it). It can be seen as an initializing request to be used to create a directory on Yandex.Disk (a
working remote directory).

11/20

 Figure 14.

Generating a PUT request and sending it to the server
If the connection is successful, the malware downloads a file (Figure 15) whose name consists of the following strings: the name generated in
the previous step and the string modifier a.psd, which ends (is concatenated to the end of) the string name. For example,

https://cloud-api.yandex.net/v1/disk/resources/download?path=DESKTOP-IM5NM8R%2Fa.psd

 Figure 15. Contents of the file downloaded from C2

The downloaded file contains a list of commands to be executed by the malware in order to retrieve basic information about the infected
machine.

The commands are executed in a standard Windows shell (cmd.exe); the malware concatenates their results, forms them into a response, and
sends them to Yandex.Disk as a b.psd file. Note that the result of the execution of each command is separated from the others by the line
==============\r\n (Figure 16 clearly shows the results of execution separated by this line).

12/20

 Figure 16. Contents of the file with the collected data

Next, the malware switches to command execution mode. Malware-executed commands:

DIR — retrieves the list of files in the directory;
EXEC — executes the command (in fact, calls the WinExec function of the kernel32.dll library);
SLEEP — calls the Sleep function with a parameter (0x3E8 multiplied by the passed constant);
UPLOAD — uploads a file to Yandex.Disk;
DOWNLOAD — downloads a file from Yandex.Disk.

All network communication is via cURL. In turn, data is transferred in JSON format, so the nlohmann/json, library is used to handle it; both
libraries are statically compiled with the project.

Second YaRAT modification

Also found were a number of samples covered by VMProtect and not packed with the packer described above. A distinctive feature of all the
samples is that only DllEntryPoint is covered by the protector, while the exports, which contain the main functionality, were not virtualized
(except for some WinAPI calls).

Another distinguishing feature of such malware samples is the Blowfish-encrypted token with a key embedded in the code.

Figure 17. Decryption key inside the malware
Despite the virtualized API calls, the application lends itself to static analysis and has a functionality quite similar to the one discussed above.
The names of the built-in commands have not changed, and some commands may be missing.

As in the previous case, communication is via cURL; the same library is used to process JSON.

Stealer0x3401

The infection mechanism in this case is identical to the one examined in in our report: the legitimate binary file dot1xtray.exe downloads the
malicious msvcr110.dll. In this instance, the __crtGetShowWindowMode export was malicious.

https://github.com/nlohmann/json
https://www.ptsecurity.com/ww-en/analytics/pt-esc-threat-intelligence/apt31-new-attacks/

13/20

In the first step, the malware checks the name of the running process, which should not be qip.exe, aim.exe, or icq.exe. Otherwise, control will
not pass to the main functionality.

Next, the address of the C2 server is decrypted (Figure 18). This algorithm is clearly identical to the one discussed in the previous report. Both
the encryption key and the format of its location remained unchanged.

Figure 18. Decryption algorithm for the C2 server address
Next, the malware harvests the necessary information about the system by group. A list of these groups is shown in Figure 20 Note that this
list is highly detailed and we have not seen such a list before. What's more, earlier tools used by the group collected other data. The fact that
the malware contains lines in Russian is also curious (Figure 19).

 Figure 19. Example of a

command contained in malware

14/20

 Figure 20.

Information harvested about the system

15/20

All collected data is RC4-encrypted and Base64-encoded before being sent. In contrast to what we saw earlier, an encryption key is generated
for each new run; the key generation algorithm is as follows (Figure 21): based on the current time, 16 pseudo-random numbers of qword type
are generated (the loop adds 64-bit numbers up to the specified address; the difference between them is 128 bytes; accordingly, 16 qword
values are obtained as per the data type), to which the standard key expansion procedure for RC4 is then applied. After that, the collected data
is encrypted using the expanded key.

 Figure 21. Generating the encryption key

When transmitting encrypted data, the encryption key is not sent in cleartext; to obfuscate it, the previously unseen, so-called checksum
procedure (Figure 22) is used for each qword value used in the key expansion procedure.

The procedure itself consists of two stages: generating a hash calculation table and directly calculating the result. The first stage involves
cyclically computing the remainders from dividing the initializing constant (in this case 0x3401) using modulo 2 (until it becomes zero), that is,
the number of rounds at each step of the checksum calculation will be identical.

At the second stage, the initial value is modified (_inputVal in Figure 22) in accordance with two variables initially equal to 0 and 1
(temValDword_1 and tempvalDword2 in Figure 22), from which at each step a value of type __int64 modulo 0x90c9bff is generated
(result_x64Val in Figure 22). The constants themselves are also modified in each round.

As we see, the initial value is modified in each specific round as per the table of remainders created in the first stage. If the remainder is equal
to 1, the hash, the variables themselves used in calculating the intermediate values, and the final value are all modified. Hence, a final value is
generated for the specified 14 rounds (known in advance as regards modifying the initial value, since the table for all rounds is identical).

The generated hash for each of the qword components of the encryption key, the malware transmits to the server side.

Figure 22. Encryption key obfuscation procedure
Thus, the structure describing the encoded data is fairly simple:

struct Message{
 QWORD key[16]; // hash array of qword components of the RC4 key
 char encrData[sizeOfData];
};

The generated data is Base64-encoded, after which it is prepended with the data= string and transmitted in this form to the server (Figure 23).

16/20

 Figure 23.

Data sent to the server
The malware sends the generated data to the C2 server ramblercloud[.]com, which is disguised as a legitimate Rambler cloud drive, but is not.

Attribution

While examining a document that used Template Injection (see the "Analyzing malicious documents" section) and infected the system when
run, we detected traffic described by us in our previous report (see Figure 24).

 Figure 24.

Fragment of detected traffic (the transmission format resembles that of previously investigated malware)
After infecting the system, the malware exchanges data with C2, then executes commands from it.

Analysis of the unpacked sample revealed similarities with the samples we found earlier. In particular, the names of RTTI objects (including the
names of the vtbl tables used for communication with C2) turned out to be identical, as did the functionality of both applications. No changes to
the architecture, executable commands, or packet generation methods were identified, nor had the traffic encryption key embedded in the
program code been modified. The sole difference between the malware samples is the partial virtualization of API calls inside the protected
application (which is typical for any program covered by VMProtect). A snippet of the function for processing commands from the server is
given in Figure 25.

17/20

 Figure 25.

External appearance of the function for executing commands
Also unchanged are the service strings and format strings used to generate packages and data structures within the application, the names of
the APIs used, and the order in which they are called.

Analysis of various malicious components revealed a characteristic sign that points to a single code base. In all cases, the malware harvested
information about network adapters, and the function code and call sequence were identical: a call to GetAdaptersInfo, then retrieval of the
value of the NetCfgInstanceId and Characteristics keys in the SYSTEM\\CurrentControlSet\\Control\\Class\\{4D36E972-E325- 11CE-BFC1-
08002BE10318} registry hive.

These calls by themselves are quite standard; that said, we found no other examples of using this technique.

The code generated by the compiler was also identical, snippets of which (see Figure 26) we found in all unpacked malware components used
in the campaign.

18/20

 Figure 26. Code snippet present in

all malware found
Confirms our assumption that this malware belongs to the APT31 group.

All the malicious components we detected can be divided into several groups:

Documents with the same stub;
Source documents have the same Author field;
Malicious components have unique (within the scope of our coverage) code snippets that we have not seen elsewhere;
Malware uses a cloud service in the role of C2.

The first point of interest is the external similarity between the stub in the documents that we attributed to the APT31 group above and the stub
in one of the documents that extracted malicious components interacting with Yandex.Disk. The second is the identical code for retrieving
information about network adapters that we encountered in both the attributed tools and in the tools described in this report.

Of particular note is the malware that harvested information about the infected system. This malicious component contains code we saw in the
previous report on APT31 activity, with the code itself identical to that which was presented there. This malware additionally installed in the
system a document with the Author field that we saw in other detected malware.

This malware thus acts as a linchpin for all the malicious components discussed above.

Having analyzed the above-mentioned tools, we can assign the malware samples studied to one group with a high degree of certainty. And
given the use of cloud services as C2 servers (in this case, Yandex.Disk), which this group had already weaponized (previously it used
Dropbox), we can assume that a single code base was used to write the malicious components.

The similar infection and persistence techniques, the numerous intersections within the code implementation framework, and the artifacts of
the compilation tools used all strongly suggest that the group may continue its attacks on organizations in Russia.

Authors: Denis Kuvshinov, Daniil Koloskov, PT ESC

Indicators of compromise (IoC)

File indicators

Name MD5 SHA-1 SHA-256

https://www.secureworks.com/research/dropboxaes-remote-access-trojan

19/20

msvcr100.dll 5897e67e491a9d8143f6d45803bc8ac8 d91ffc6d48f79e0b55918fb73365b9fca37c9efa 8148aeef6995c99c6f93

- 91965ee08504eeb01e76e17007497852 fd05e69d1f094b3a28bb5ae2a936607aa0db3866 d7c1668c903a92f20bd

WTSAPI32.dll 0c1e1fd94383efc5a3de8f0117c154b2 3785d9c4bdf6812f753d93b70781d3db68141ce7 aee1bf1f7e70f5cbd34a

Анкета по результатам
тестирования.doc

85f8bfb3b859a35e342e35d7c35e8746 ff5e78218198dd5ca5dc2eb46ec8afdd1b6260e9 a56003dc199224113e9

О заседании.doc 0c993a406be04b806222a130fb5a18e8 49307f1091251dd7a498cf69d0465ddd59859cf8 256d3065de2345a6bef

WINHTTP.dll dfaa28a53310a43031e406ff927a6866 c694e99f8690114c77a6099856d61a3cd4cd814d 4a5e9ab0e65e08ceb2a

Справка.doc 0c4540f659d3942a28f158bce7be1143 d1cc0f861f162dfbf9df1493fe861d02b80483f6 37e259d6564071807b7

msvcr110.dll 1d65ef16d1f161ae3faa5ed7896734cd 144493b13df06bab3f290b260b997b71164a25f7 0a5fb4a480b1748dc7f9

payload_1.bin 176d11c9bafac6153f728d8afb692f6f ef0f61c32a3ae2494000f36a700a151c8b10c134 ea9429fa66ba14b99ff7

5ehn6vctt.dll 5897e67e491a9d8143f6d45803bc8ac8 d91ffc6d48f79e0b55918fb73365b9fca37c9efa 8148aeef6995c99c6f93

– 50eb199e188594a42262a5bbea260470 af33573bc8e507875acdb3db52bcfea13bb1286e 0afeef5a4ac1b0bc778e

– c89eaa7f40fc75f9a34e0f0a3b59b88b f3c600ba1d1d0cb1f3383805dbcac19e9423bdcb 98b5cfa14dd805e1172

WTSAPI32.dll 0c1e1fd94383efc5a3de8f0117c154b2 3785d9c4bdf6812f753d93b70781d3db68141ce7 aee1bf1f7e70f5cbd34a

WTSAPI32.dll 640e6ecad629bd33c09ccec52f4aa6da 584fd63ab925c532cf40818886487714b3de317e add70042c65cd683925

libcef.dll 11010e139010697a94a8feb3704519f9 52999153cc7d3a3771a8ee9b8e55f913829109a7 c2b769f40b1ec2ee57e4

Приложение 1 к исх
письмо по списку
рассылки.pdf

099c7d85d0d26a31469465d333329778 d25a68289fc1268d7c548787373a6235895716fb c3382ebff9dcd0e87768

материал-20220210.exe 8b4c1f0ff1cee413f5f2999fa21f94f9 97e19f67a8d6af78c181f05198aa7d200b243ea5 f49999f1d7327921e630

Network indicators

portal.super-encrypt.com

super-encrypt.com

portal.intranet-rsnet.com

intranet-rsnet.com

p1.offline-microsoft.com

offline-microsoft.com

cdn.microsoft-official.com

microsoft-official.com

ramblercloud.com

yandexpro.net

MITRE TTPs

ID Name Description

Initial Access

T1566 Phishing APT31 sends phishing messages to gain access to victim systems

Execution

T1204 User Execution APT31 sends MS Word documents containing malicious components

Resource
Development

20/20

T1587.001 Malware APT31 develops malware and malware components that can be used
during targeting

T1587.002 Develop Capabilities: Code Signing Certificates APT31 uses code signing to sign their malware and tools

Persistence

T1547.001 Boot or Logon Autostart Execution: Registry Run
Keys / Startup Folder

APT31 achieves persistence by adding a program to a Registry run
key

T1574 Hijack Execution Flow APT31 executes their own malicious payloads by hijacking the way
operating systems run programs

Defense
Evasion

T1140 Deobfuscate/Decode Files or Information APT31 uses mechanisms to decode or deobfuscate information

T1036 Masquerading APT31 manipulates features of their artifacts to make them appear
legitimate to users

T1112 Modify Registry APT31 team uses the Windows registry for persistence

T1027 Obfuscated Files or Information APT31 uses encryption to make it difficult to detect or analyze an
executable file

Collection

T1560 Archive Collected Data APT31 tools encrypted the collected data before sending it to the
servers

Command and
Control

T1001 Data Obfuscation APT31 obfuscates command and control traffic to make it more
difficult to detect

T1095 Non-Application Layer Protocol APT31 group used SSL for data transmission

T1573.001 Encrypted Channel: Symmetric Cryptography APT31 used symmetric encryption algorithms to hide transmitted data

T1132.001 Data Encoding: Standard Encoding APT31 group used RC4 and Base64 to hide transmitted data

T1132.002 Data Encoding: Non-Standard Encoding The APT31 group used custom encryption key obfuscation algorithms
as well as payload encryption

T1102 Web Service APT31 group used Yandex.Disk as C&C

Exfiltration

T1020 Automated Exfiltration APT31 uses automatic exfiltration of stolen files

T1041 Exfiltration Over C2 Channel APT31 uses C&C channel to exfiltrate data

