
1/24

3 August 2022

Reversing Golang Developed Ransomware: SNAKE
0ffset.net/reverse-engineering/analysing-snake-ransomware/

Gabriele Orini
3rd August 2022
No Comments

Introduction

Snake Ransomware (or EKANS Ransomware) is a Golang ransomware which in the past
has affected several companies such as Enel and Honda. The MD5 hashing of the analyzed
sample is ED3C05BDE9F0EA0F1321355B03AC42D0. This sample in particular is
obfuscated with Gobfuscate, an open source obfuscation project available on Github.

Let’s start by quickly summarizing the functionality of the malware:

First, the sample checks the domain to which the infected host belongs to, before
continuing execution
Next, it checks whether the computer is a Backup Domain Controller or Primary
Domain Controller, and if so will only drop the ransom note, rather than encrypting the
machine
SNAKE will then isolate the host machine from the network by leveraging the netsh tool
The shadow copies on the system are deleted using WMI
SNAKE attempts to terminate any running AV, EDR, and SIEM components

https://www.0ffset.net/reverse-engineering/analysing-snake-ransomware/
https://www.0ffset.net/author/greenplan/
https://app.any.run/tasks/ad3d809f-e197-4091-9b93-b6d68368c05b/
https://github.com/unixpickle/gobfuscate

2/24

Finally, local files on the system are encrypted
For each file, a unique AES encryption key is generated, which is later encrypted
with an RSA-2048 public key and stored within the encrypted file.

Let’s start reversing this sample with IDA!

Static Analysis

There are some differences of Go from other languages to keep in mind:

Functions can return multiple values.
Function parameters are passed on the stack.
Strings are typically a sequence of bytes with a fixed length, that are not null
terminated; the string is represented by a structure formed by a pointer to a byte array,
and the length of the string.
The constants are stored in one large buffer and sorted by length.
Many stack manipulations are present within the binaries, that can make the analysis
complex.

Obfuscation

Opening the sample with IDA we immediately notice that the function names are very
obfuscated:

Gobfuscate obfuscates

almost all function names within the binary

3/24

Performing a quick search, I found that the malware is obfuscated with Gobfuscate. This
project performs obfuscation of several components: Global names, Package names, Struct
methods, and Strings.

Each string in the binary is replaced by a function call. Each function contains two arrays that
are xored to get the original string. When implementing the decryption function, keep in mind
that there are different ways in which these arrays are passed to the function
runtime.stringtoslicebyte – either via a variable, a pointer or a hardcoded value).

Analyzing the sample, you will usually find the call to a main function that contains a large
number of other calls within it, where each subroutine performs decryption of only one string.
Sometimes only the decryption operations are found within these subroutines, other times
additional operations are performed on the decrypted string.

String Decryption

Functions

String Decryption Functions

As mentioned, the string encryption is fairly basic, XORing the contents of two arrays
together to retrieve the final string.

https://github.com/unixpickle/gobfuscate

4/24

Loading the two arrays for decryption

XORing the arrays together to get the decrypted string
Due to the simplicity of the algorithm, we can develop a simple Python script utilising some
regular expressions to locate and decrypt 90% of the encrypted strings within the binary! The
script can be found at the end of this post.

startDecryptFunction = b"\x64\x8B\x0D\x14\x00\x00\x00"
sliceStr = b"(" + b"\x8D.....\x89.\$\x04\xC7\x44\$\b...." + b")"
xorLoop = b"\x0F\xB6<\)1\xFE(\x83|\x81)\xFD"

With the majority of the strings decrypted, let’s continue the analysis!

Check Environment

One of the first operations I perform when analyzing malware in GO is to jump to the
main.init function.

The main.init is generated for each package by the compiler to initialise all other packages
that this sample relies on, as well as the global variables; analysing this function is very
important because it allows us to understand a large amount of the malware’s functionality
and speed up subsequent analysis.

5/24

In the main.init function we can find, for example, references to encryption: AES, RSA,
SHA1, X509. In addition, there are several functions for decryption of strings and function
names.

Initialisations

performed within main.init function

API function decryption and loading through NewProc
Now we move on to analyze the main.main function. One of the first activities the malware
performs is to check the environment before continuing with encryption.

6/24

Call to CheckEnvironment within main.main
The function CheckEnvironment starts by attempting to resolve the hostname
mds.honda.com and compare the returned value with 172[.]108[.]71[.]153.This check is
used to confirm that the infected machine is part of the correct domain. In fact, it is important
to remember that this ransomware is deployed at the end of the infection chain by other
loaders, and thus it is likely custom-built for the victim.

Resolving hostname via DNS

7/24

Comparing resolved address to hardcoded address
After the first environment check, the malware executes the API calls CoInitializeEx,
CoInitializeSecurity and CoCreateInstance to instantiate an object of the SWbemLocator
interface. Using the SWbemLocator object, SNAKE then invokes the method
SWbemLocator::ConnectServer and obtains a pointer to an SWbemServices object.
Finally, with this object, it will execute ExecQuery with the following query:

select DomainRole from Win32_ComputerSystem

In an attempt to determine whether the infected computer is a server or a workstation.

Decryption of object used to perform WMI query

Decryption of WMI query to retrieve DomainRole
After making the query, the malware only continues execution if the DomainRole value is
equal to or less than 3.

8/24

Execution of WMI query and checking of result
According to Microsoft documentation, the integers returned by the call correspond to
different values:

VALUE MEANING

0 Standalone Workstation

1 Member Workstation

2 Standalone Server

3 Member Server

4 Backup Domain Controller

5 Primary Domain Controller

Therefore, the malware performs the infection only if the role obtained of the computer is
Standalone Workstation, Member Workstation, Standalone Server, or Member Server.

If this check is successful, the mutex Global\EKANS is created, and presuming the mutex is
created successfully, the sample continues executing.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.powershell.commands.domainrole?view=powershellsdk-1.1.0

9/24

Execution

flow depending on the result of the DomainRole
If, on the other hand, the computer role is either a backup domain controller or primary
domain controller, a ransom note is dropped to C:\Users\Public\Desktop, and files are not
encrypted. Within the ransom note is an email on how to contact the threat actors, with the
email used in this sample being CarrolBidell@tutanota.com.

10/24

Ransom note
When analyzing Go developed programs, two functions to pay attention to are NewLazyDll
(essentially LoadLibrary), and NewProc (as you may have guessed, basically
GetProcAddress). With the use of Gobfuscate to obfuscate this sample, the names of the
libraries and API functions to be passed to the described functions. Pointers to the loaded
libraries/functions are stored within DWORDs for later reference.

For example, we can see in the sample we have the function that performs the decryption of
a function name before calling LazyDLL.NewProc:

API function decryption and loading via NewProc
A pointer to the function is saved in a DWORD, so that we can trace to see where the
function is called within the binary.

11/24

Cross references for API functions

Execution of previously loaded API function

Endpoint Isolation

After the function CheckEnvironment has finished, the strings “netsh advfirewall set
allprofiles state on” and “netsh advfirewall set allprofiles firewallpolicy
blockinbound,blockoutbound” are decrypted and executed via cmd.run. The first
command enables Windows Firewall for all network profiles, while the second blocks all
incoming and outgoing connections. This is fairly unusual behaviour for ransomware, which
typically performs lateral movement across a network to infect additional machines.

12/24

Decryption of netsh commands to alter the firewall

Execution of above commands through os.exec

Terminate Process and Services

Prior to encryption, the ransomware terminates a number of processes, to reduce the
amount of interference with the encryption (for example any open file handles), as well as
disable any running EDR/SIEM software on the machine.

13/24

Decryption of target processes to be terminated
Processes are terminated using syscall.OpenProcess and syscall.TerminateProcess
calls. In order for SNAKE to retrieve the PIDs of the target processes, the usual calls of
CreateToolhelp32Snapshot, Process32FirstW, and Process32NextW are performed.

Terminating processes with OpenProcess and TerminateProcess

14/24

In addition to terminating processes, the ransomware stops more than 200 services related
to EDR, SIEM, AV, etc.

Decryption of target service names to be terminated
In order to terminate services, the following API function calls are made:

OpenSCManagerA: gets a service control manager handle for subsequent calls.
EnumServicesStatusEx: enumeration of services.
OpenServiceW: gets a service handle for subsequent calls.
QueryServiceStatusEx: check the status of services.
ControlService: used to stop the service (flag SERVICE_CONTROL_STOP).

Termination of services using OpenService and ControlService

Shadow Copy Deletion

15/24

The ransomware executes the WMI query “SELECT * FROM Win32_ShadowCopy” to get
the IDs of Shadow Copies and will always use WMI for deletion (remember that there are
many ways to perform shadow copy deletion).

In addition to the Wbemscripting.SWbemLocator object,
WbemScripting.SWbemNamedValueSet is also created.

For deletion, SNAKE uses the DeleteInstance method by passing the ID of previously
obtained Shadow Copies.

Decryption of WbemScripting.SWbemNamedValueSet

Decryption of WMI Query

Decryption of WMI namespace

Encryption Process

SNAKE first encrypts all the various files by initializing 8 go-routines (runtime.newproc),
before beginning to rename the files.

16/24

The offset of the function that does the encryption is passed to runtime.newproc
(OffsetStartEncryption).

Initialisation of go-routines prior to file renaming function
Before beginning encryption of the file, it’s checked that it has not already been encrypted by
checking for the presence of the string EKANS at the end of the file.

Checking if file is

already encrypted
If the file hasn’t yet been encrypted and the files are among those to be encrypted (there is
an allowlist and a denylist), encryption is initiated, which takes care of:

17/24

Generating AES key for each file; this key is encrypted with an RSA public key in
OAEP Mode.
Encryption of file via AES in CTR mode, with Random Key (32 bytes) and Random IV
(16 bytes).
A random 5 character is appended to the file extension of encrypted files.
Adds data to the end of the file: encrypted AES Key, IV and EKANS string.

Key generation, encryption, and metadata being added to file
After instantiating the CTR cipher with cipher.NewCTR, encryption is performed with the
XORKeyStream method of that class.

The function reads 0x19000 bytes at a time and after encryption the file is rewritten using
WriteAt.

Generating the buffer to hold bytes read from the file

18/24

Encrypting buffer data and overwriting file
After finishing the encryption, three more writes are performed on the file:

Adding metadata to the file
It’s easy to see that in the last one the string EKANS is written (which is used to determine if
the file has already been encrypted), while it is much more complex to figure out what is
written in the first two. As a result, let’s jump over to a debugger.

Observing metadata being written to end of file using a debugger
The first write adds the following to the file:

The encrypted AES Key

19/24

The random IV
The path of encrypted file

The AES Key for each file is encrypted with a public RSA key. After decryption, the public
key is parsed with pem.decode and x509.ParsePKCS1PublicKey.

Decryption of RSA public key

20/24

Parsing of the RSA key
The first parameter of the EncryptOAEP function must be the hash function, which in this
case is sha1:

EncryptOAEP Function

21/24

Call to EncryptOAEP function
Various extensions, file and folders are excluded for file encryption, also using a regex.

Partially excluded Files:

Iconcache.db Ntuser.dat Desktop.ini

Ntuser.ini Usrclass.dat Usrclass.dat.log1

Usrclass.dat.log2 Bootmgr Bootnxt

Ntuser.dat.log1 Ntuser.dat.log2 Boot.ini

ctfmon.exe bootsect.bak ntdlr

Partially excluded extensions:

Exe Dll Sys

Mui Tmp Lnk

config settingcontent-ms Tlb

Olb Bfl ico

regtrans-ms devicemetadata-ms Bat

Cmd Ps1

Excluded Paths:

\ProgramData

\Users\All Users

\Temp\

\AppData\

\Boot

\Local Settings

22/24

\Recovery

\Program Files

\System Volume Information

\$Recycle.Bin

.+\\Microsoft\\(User Account Pictures|Windows\\(Explorer|Caches)|Device

And that just about wraps up this post on the SNAKE Ransomware!

Decryption Script

23/24

#!/usr/bin/env python3

import re, struct, pefile, sys

pe = None
imageBase = None

def GetRVA(va):
 return pe.get_offset_from_rva(va - imageBase)

def GetVA(raw):
 return imageBase + pe.get_rva_from_offset(raw)

def main():

 global pe, imageBase

 filename = sys.argv[1]

 with open(filename, 'rb') as sample:
 data = bytearray(sample.read())

 pe = pefile.PE(filename)
 imageBase = pe.OPTIONAL_HEADER.ImageBase

 startDecryptFunction = b"\x64\x8B\x0D\x14\x00\x00\x00"
 sliceStr = b"(" + b"\x8D.....\x89.\$\x04\xC7\x44\$\b...." + b")"
 xorLoop = b"\x0F\xB6<\)1\xFE(\x83|\x81)\xFD"

 regex = startDecryptFunction + b".{10,100}" + sliceStr + b".{10,100}" + sliceStr
+ b".{10,100}" + xorLoop
 pattern = re.compile(regex, re.MULTILINE|re.DOTALL)
 found = pattern.finditer(bytes(data))

 for m in found:

 va = GetVA(m.start())

 funcVA = GetVA(m.start())
 str1VA = struct.unpack("<L", data[m.start(1) + 2 : m.start(1) + 2 + 4])[0]
 str1Len = struct.unpack("<L", data[m.start(1) + 0xE : m.start(1) + 0xE + 4])
[0]
 str2VA = struct.unpack("<L", data[m.start(2) + 2 : m.start(2) + 2 + 4])[0]

 str1RVA = GetRVA(str1VA)
 str2RVA = GetRVA(str2VA)

24/24

 decrypted = ""
 for i in range(str1Len):
 decrypted += chr ((data[str2RVA+i] ^ (data[str1RVA+i] + i * 2)) & 0xFF)

 print(f"## (hex(funcVA)) - {decrypted}")

if __name__ == "__main__":
main()

