PART 3: How | Met Your Beacon — Brute Ratel

B mdsec.co.uk/2022/08/part-3-how-i-met-your-beacon-brute-ratel/

3 August 2022

ActiveBreach

Introduction

In part one, we introduced generic approaches to performing threat hunting of C2
frameworks and then followed it up with practical examples against Cobalt Strike in part two.

In part three of this series, we will analyse Brute Ratel, a command and control framework
developed by Dark Vortex. As the C2 is lesser known, we can see it describes itself as
follows:

Brute Ratel is the most advanced Red Team & Adversary Simulation Software in the current C2 Market. It can not only emulate different stages of an attacker
killchain, but also provide a systematic timeline and graph for each of the attacks executed to help the Security Operations Team validate the attacks and
improve the internal defensive mechanisms. Brute Ratel comes prebuilt with several opsOpec features which can ease a Red Team's task to focus more on the

analytical part of an engagement instead of focusing or depending on Open source tools for post-exploitation. Brute Ratel is a post-exploitation C2 in the end and
however does not provide exploit generation features like metasploit or vulnerability scanning features like Nessus, Acunetix or BurpSuite.

1/43

https://www.mdsec.co.uk/2022/08/part-3-how-i-met-your-beacon-brute-ratel/
https://www.mdsec.co.uk/2022/07/part-1-how-i-met-your-beacon-overview/
https://www.mdsec.co.uk/2022/07/part-2-how-i-met-your-beacon-cobalt-strike/
https://bruteratel.com/

The framework has come under close scrutiny in the past few months, having been allegedly
abused by APT29 and the ransomware group BlackCat in recent times. Having an
understanding of how we can generically detect this emerging C2 in our infrastructure is
therefore useful intelligence for defenders.

Originally, all analysis was performed on Brute Ratel v1.0.7; the latest at the time of original
review. However, a cursory update (contained at the end of this article) was performed
discussing findings pertinent to v1.1 which was released shortly after our initial x33fcon
presentation. One thing that should be noted with Brute Ratel is that the badger has only
limited malleability and primarily from the perspective of the c2 channels; with the exception
of v1.1 which added malleability for the sleep obfuscation techniques. As such it makes it
possible to create very specific detections for the tool.

Brute Ratel’s Loader

Brute Ratel's badger comes in a number of forms, including exe, DLL and shellcode. When
the badger is injected, its reflective loader will instantly load all dependencies required for the
badger. As the badger bundles a large amount of post-exploitation features, this leads to a
significant number of DLLs being loaded on initialisation:

Time of Day Process Name PID Operation Path Result Detail

SUCCESS Image Base
Image Base:
Image Base
Image Base
Image Base:
Image Base
Image Base:
Image Base
Image Base
Image Base
Image Base
SUCCESS Image Base:
SUCCESS Image Base
SUCCESS Image Base:
SUCCESS Image Base
Image Base
Image Base: [}
Image Base
Image Base:
Image Base
Image Base
Image Base:
Image Base
Image Base:
tepad exe Image Base
notepad exe Image Base
notepad exe 8 ge W rs'\ Syste J 1 ; Image Base
notepad exe 8548 Wi ; ock .) - Image Base
notepad exe 8 ge AWindows\Sy: \ 5. Image Base: (x7
tepad.exe 8 ; \Windows\System 32\berypt.dl SUCCESS Image Base

notepad.exe
notepad exe

tepad exe
notepad exe
notepad.exe
notepad exe
notepad .exe

[-=r-=1

notepad.exe
notepad exe
notepad .exe

tepad exe
notepad exe
notepad exe

00 00 €O 00 0O 00 0O €O (O €O 0O €O
©0 00 ©0 OO 0O 0O 0O CO o o

notepad exe
notepad.exe
notepad exe
notepad exe

tepad exe
notepad exe
notepad.exe
notepad exe
notepad exe

o 0 o O

GO 00 0O 0O €O GO 0O
o o
0000000 ODO0

[==]

0o 0o Co

N N Y g g

60 €0 6o 0 o 0O
oo oo

22:13:37.0402185 | notepad exe age C:\Windows"\System32\notepad exe Image Base: (x7fd...
22:13:37.0518518 | notepad.exe 8548 ¢?Load Image C:\Windows"\System32\ntdlldll SUCCESS Image Base: Ox7d...
22:13:37.0548401 | Inotepad.exe 8548 Cload Image C:\Windows\System32\kemel32.dl SUCCESS Image Base: Ox7d...
22:13:37.0561712 | Inotepad exe 8548 ¢<®Load Image C:\Windows\System32\KemelBase di SUCCESS Image Base: (x7fd..
22:13:37.0746007 | notepad exe 8548 P Load Image C:\Windows\System32\gdi32.dl SUCCESS Image Base: OxAfd...

As we can see, the DLLs highlighted are all the DLLs that are loaded when the badger is
injected. This list includes the loading of winhttp.dll and wininet.dll, which are not necessarily
nefarious but are traditional loads for an egress beacon. There are however a number of less

2/43

https://unit42.paloaltonetworks.com/brute-ratel-c4-tool/
https://www.sophos.com/en-us/press-office/press-releases/2022/07/blackcat-adds-brute-ratel-to-attack-tools

common DLLs loaded, such as dbghelp.dll, credui.dll samcli.dll and logoncli.dll amongst
others.

This behaviour allows us to create a signature for the image loads and leads to a high signal
indicator that can be hunted for through image load telemetry.

For example, using Elastic Query Language, we can search for the sequence of credui.dll,
dbghelp.dll and winhttp.dll load events occurring in a process within 60 seconds of each
other:

sequence by Image with maxspan=1m

[any where ImageLoaded == 'C:\\Windows\\System32\\credui.dll']
[any where ImageLoaded == 'C:\\Windows\\System32\\dbghelp.dll']
[any where ImageLoaded == 'C:\\Windows\\System32\\winhttp.dll']

Using the EQL tool, or Elastic’s cloud, we can search our event data, such as the following
which was extracted from sysmon logs. Note, we're explicitly excluding the badger
executable itself so we can only identify the injected badgers:

eql query -f sysmon-data.json "sequence by Image with maxspan=2m [any where
ImageLoaded == 'C:\\Windows\\System32\\credui.dll' and Image !=
"C:\\Users\\bob\\Desktop\\badger_x64_aws.exe'] [any where ImagelLoaded ==
"C:\\Windows\\System32\\dbghelp.dll' and Image !=
"C:\\Users\\bob\\Desktop\\badger_x64_aws.exe'] [any where ImagelLoaded ==
"C:\\Windows\\System32\\winhttp.dll' and Image !=
"C:\\Users\\bob\\Desktop\\badger_x64_aws.exe']"

This leads to the following which shows the detection of the badger being injected in to
notepad.exe:

This query is particularly powerful as it allows us to retrospectively hunt for indicators of
Brute Ratel badgers in the network, without directly running code on the endpoints.

Brute Ratel In Memory

As most beacons remain memory resident, it is important to understand the footprint that is
left behind in order to hunt for them. Reviewing the Brute Ratel documentation for the 1.0
release, it details its own implementation of obfuscate and sleep:

3/43

In the release v0.7, BRc4 introduced Encrypling of the RX region and sleeping with the use of ROP gadgets and APCs which used the method found by Austin Hudson. However,
upon further research, multiple other techniques were found which utilize Windows Event Creation, Wait Objects and Timers. Badger now comes with multiple anti-detection sleeping

techniques, such as not using the usual Sleep API, encrypting the RX region with and without using ROP gadgets, and various different types of Wait Object Events and Timers to
hide the badger during sleep. Each of these sleeping techniques are a part of all the badgers and the techniques are randomly switched everytime they go to sleep to avoid
detection.

According to the release post, BRc4 uses a mixture of “Asynchronous Procedure Calls,
Windows Event Creation, Wait Objects and Timers”. However, analysis of the badger was
only able to find evidence of APC based execution; more on this later.

In order to analyse the badger in memory, we first inject it to a process using the pcinject
command, then put the badger to sleep using the sleep command:

Listeners Badgers Creds

Listenar ID Listenar Host External IP ID UID Last Seen (Local) PID (Build) Payload Arch Pivot Stream

1 https https 22:443 10.211.55.24 -31] £ 3 w64 Direct

Domain $

Once the badger is sleeping, we can recover the strings from the process using Process
Hacker. Interestingly, while the badger is sleeping we can see strings such as the following:

13 results.
Address Length Result
0x1bc789705¢cc 50 [+] AMSI and ETW patched
0x 1bc7897067¢ 34 [+] Patched AMSI
0x 1bc789706a0 50 [-] Unable to patch AMSI
0x 1bc789706d4 62 [+] AMSI patching not required
Ox7ff690d6ce35 7 amsiuPI

Initially this was quite surprising given the aforementioned purported sleep and obfuscate
strategies described on the Brute Ratel blog.

4/43

Digging deeper, we can find that some interesting design decisions have been made where
by many of the strings displayed in the operator’s Ul, are populated from the badger itself.
For example, we can see the following in the memory of the badger while it is sleeping:

ge 00 &4 57 00 -I.¥. H.I.H.S.
72 00 O & -n.v.a.l.i.d.
e 00 -x.0. ._-l.o.e.
N .
-n.v.a.l.1.4. .
«E.8. .8.8.C.%.
.a.8.e, .0.b.t.
«8:8: EuX.pad.
sL:li obel.g.c.
i e [ua] avialla
d.i.s.a.b.l.e.
-H.E.5.F.8.C.E.
e e D A N
B g -
slea
M.

00 2d 00 20 00 30 00 78 00 00 00 X
00 20 00 41 00 €4 00 €4 00 3 00 73 «ds
00 34 00 6c 00 73 00 25 OO 00 6c «%.
00 00 00 54 00 79 Q0 70 00 & 64 2e He€us
00 20 00 25 00 2d 00 32 00 34 00 30 32 «4.5...
58 2d 25 30 3 25 30 32 00 32 202%.%.
0 00 00 6 00 &8 00 65 00 72 00 00 00 00 2d 00 00 73 -—.2.4.
|‘. 0002eal 5‘4 00 e I 1 00 ée 00 &% 00 €4 00 00 79 00 6e 00 €9 -y¥.n.a.
00002ec0 73 00 74 00 €% 00 €3 00 00 00 00 &b 00 & 00 €& -k.n.o.

Command $
Sentinel §

ST [input] admin => token_wvault

/29 15:15:38 BST [sent 4 by

Digging deeper in to the badger, it was quickly apparent that only the .text section was being
obfuscated on sleep, leaving the badger susceptible to all manner of signatures against
strings and data.

To illustrate this, reversing the badger we can see the entry point for the loader as
“bruteloader”:

ol
| IDA View-A 3 Hex View-1 LY
Name Address Ordinal
0000000061F8B500 1
= TIsCallback 0 Q000000061FB17FO
TlsCallback_1 0000000061F817C0
DIIEntryPoint Q000000061FB1350 [main entry]

5/43

Searching for this string in memory while the badger is sleeping, we can quickly find it inside
our notepad process:

{ B notepad.exe (9700) (0x1deT3dea000 - Gx1deT3dcbO0D) -

3, 3 3 3

Théée éfrings provide a good pdiht on'v-\)Hich to base a Yara rule for memory scanning on.
For example, the following rule will search for either the bruteloader or bhttp_x64.dll strings
in memory of a process:

rule brc4_badger_strings

{
meta:
author = "@domchell"
description = "Identifies strings used in Badger v1.0.x rDLL, even while
sleeping"
strings:
$a = "bruteloader"
$b = "bhttp_x64.d11"
condition:
1 of them
}

We can test these against our notepad process while the badger is sleeping to evidence its
effectiveness:

~a 9700

vAd.2.1-1934-winb4>
It is unlikely the strings will exist in other processes, and using a simple one liner we can
quickly find all the injected badgers on our test system:

6/43

Pluggi

ITC

16.00 KB 2022-06-22 14:55:58 U

G4nile assembly pedl

Page Permissions

Analysis of the Brute Ratel obfuscate and sleep strategy observed the badger to shuffle the
page permissions for the badger during sleep in an attempt to evade prolonging executable
permissions while the badger sleeps.

Below, we can see the badger operating on a sleep 0, the page permissions for the badger
are PAGE_EXECUTE_READ on an unmapped page; this is necessary in order to perform
tasking:

notepad.exe (1684) Properties - O X

General Statistics Performance Threads Token Modules Memory Environment Handles GPU Comment

Hide free regions Strings. .. Refresh
Base address Type Size Protect... Use ~
0x304b3ec000 Private: Commit 12kB RW+G Stack (thread 6624)
0x21586f01000 Private: Commit 156 kB RX
0x7ff7548d 1000 Image: Commit 195 kB RX C:\Windows\System32\notepad.exe
Ox 733521000 Image: Commit 1,304kB RX C:\Windows \Win5x5\amd64_microsoft.windows.gdi
Ox7ff33b2a1000 Image: Commit 540 kB RX C:\Windows\System32\efswrt.dl
0x7ff83b4a 1000 Image: Commit 256 kB RX C:\Windows\System32\oleacc.dll

Putting the badger to sleep, we can see that the obfuscate and sleep strategy obfuscates the
text section and resets the page permissions for the badger to to PAGE_READWRITE:

7/43

https://www.virustotal.com/gui/file/c70b1fd133737a21904159ed2a867e0105060ac74937472da5e4d0e1f6fa1645

/| notepad.exe (1684) Properties - () X

General Statistics Performance Threads Token Modules Memory Environment Handles GPU Comment

Hide free regions Strings... Refresh
Base address Type Size Prot;ct. . Use 4
i 4kB RW
0x21586f00000 Private: Commit 168kB RW
T r] T2 kE—RW
0x21586f3b000 Private: Commit 12kB RW
0x21586f50000 Private: Commit 980kB RW Heap segment (ID 1)
0x21587060000 Private: Commit 260kE RW Heap segment (ID 1)
0x215870a2000 Private: Commit 140kB RW Heap segment (ID 1)
0x7df55b2e0000 Private: Commit 4kB RW
Ox7ff754200000 Image: Commit 12kB RW C:\Windows\System32\notepad.exe
0x7ff3360a0000 Image: Commit 8kB RW C:\Windows\WinSxS\amdé4_microsoft.windows.gdij
0x7ff33b36000 Image: Commit 8kE RW C:\Windows\System32\efswrt.dll

Interestingly, we however note that this behaviour is not replicated while a SMB pivot is being
performed, that is when two badgers are linked. Here we can see our two badgers linked and

both on a 60 second sleep:

Analysis of the page permissions while two badgers are linked reveals that both remain
PAGE_EXECUTE_READ, irrespective of the sleep time:

0xf3f4bfan00 Private: Commit 12kB RW4G Stack (thread 5368)

0xf3f50fb000 i - it 12kE_RW4G Stadk (thread 10112}

0x1ff82d 11000 I Private: Commit 156k8 RX 156 kB 156 kB

0x7ff6da58 1000 Image: Commit 288kB RX Ci\Users\bob\Desktop'badger_x84_... 28848 288 kB 288k8
Ox7ffdc2291000 Image: Commit 1,320k RX C:\Windows\WinSxS\amdé4_microso... 20 kB 20 kB 20kE
0x7ffdc6591000 Image: Commit 1,996k RX C:\Windows\System32\wininet.dll 756 kB 756 k8 756 k8
0x7ffdcb2e 1000 Image: Commit 44k RX C:\Windows\System32\netapi32.dil 8kB 8B 88
0x7ffdce48 1000 Image: Commit S6kB RX C:\Windows\System32\srvdi.dl 12k8 1248 12k8
0x7ffdces2 1000 Image: Commit G0KB RX C:\Windows\System32\samdi.dll 16 kB 16 kB 16 kB
0x7ffdcee41000 Image: Commit 12kB RX C:\Windows\System32\version.dll 48 4B 4kB
0x7ffdceeb 1000 Image: Commit 1,368kB RX C:\Windows\System32\dbahelp.dl 60 kB 60 kB 60 kB

The conclusion is that the obfuscate and sleep strategy is only applicable to the .text section,
and while no peer-to-peer pivot is present.

Curious to how the obfuscate and sleep functionality worked, we began to reverse engineer
it. Walking through the sleep routine in windbg, we can get an initial flavour of what’s
happening; the badger is using WaitForSingleObjectEx to delay execution during a series of
asynchronous procedure calls (APC), and leveraging an indirect syscall to execute
NtTestAlert and force an alert on the thread:

8/43

¢ eeee7ffa’ b8dciefc c3 ret

8:006> k
Child-SP RetAddr Call Site
’ 90 00000000 82bc7fd8 @eee7ffa bbebeaff KERNELBASE !WaitForSingleObjectEx+8x12c
81 0eeoee8e 82bc7fed ©0OE000Q" DELEDGO ntdll!NtTerminateJobObject+@xif
0:0086> p
ntdll!NtTestAlert:
@0ee7ffa bbebe5e@ 4c8bdl mov rie,rcx

9:806> u ntdll!NtTerminateJobObject+ex1f
ntdll!NtTerminatelobObject+8x1f:

eeee7ffa” bbebedaff eedcsbdl add byte ptr [rbx+rcx*4-2Fh],cl

@eee7ffa” bbéb8503 b8cee10000 mov eax,1Ceh

@eee7ffa” bbebe508 f604250803fe7f01 test byte ptr [SharedUserData+©6x388 (@eeeoeee” 7ffe@3e3)],1
@eoee7ffa” bbébe51e 7583 jne ntdll!NtTestAlert+8x15 (@@007ffa” bb@be515)

@eee7ffa bbebes12 efes syscall

@eoe7ffa bbeéb@514 c3 ret

@e0e7ffa” bbeb@515 cd2e int 2Eh

@eee7ffa” bbeb@517 c3 ret

lal

Diving in to IDA, we can get a better feel for what is happening. First it creates a new thread
with the start address spoofed to a fixed location of TpReleaseCleanupGroupMembers+550:

9/43

e | | - (- R .)
1 | Data || Unexplored = External symbol [¥] Lumina function
@ IDA View-A [Z Pseudocode-C B [Pseudocode-B [Pseudocode-A ® Structures E Enums O

121 sub_61F8BA9@(v3, NtTestAlert);

122 sub_61F8BA9@8(v3, NtGetContextThread);

123 sub_61F8BA9@(v3, NtSetContextThread);

124 sub_61F8BA9@(v3, NtWaitForSingleObject);

125 sub_61F8BA9@(v3, NtProtectVirtualMemory);

126| }

127| v4 = *(*(__readgsqword(@x3eu) + 96) + 16i64);

128| v5 = *(v4 + 60);

129| LODWORD(TpReleaseCleanupGroupMembers) = Hashlookup(ex77DOE3B5, v3);

138| if (TpReleaseCleanupGroupMembers)

131 ThreadStartAddress = TpReleaseCleanupGroupMembers + @x550;

132| else

133 ThreadStartAddress = v4 + *(v5 + v4 + 40);

134| if (NtCreateEvent_1)

135 result = sub_61F81491(&v95, 2631619, @, 1, 8, NtCreateEvent_1);

136| else

137 result = MtCreateEvent(&v95, 2031619i64, @i64, 1i64, @);

138 if (result < @

139 || (I!NtCreateThreadEx_1 ? (result = NtCreateThreadEx(

140 &vo4,

141 2032639164,

142 eie4,

143 -1i64,

144 ThreadStartAddress,

145 ei64,

146 h £

147 9ie64,

148 81920i64,

149 81920i64,

150 @i64)) : (result = sub_61F81410(

151 &vo4,

152 2032639,

153 0,

154 1,

155 ThreadStartAddress,

156 o,

157 il

158 e,

159 81920,

160 81920,

A series of context structures are then created for a number of function calls, to
NtWaitForSingleObject, NtProtectVirtualMemory, , SystemFunction032, NtGetContextThread
and SetThreadContext:

10/43

] - - me)
v | Data | Unexplored = External symbol [Lumina function

@ IDA View-A [ZPseudocode-C & T Pseudocode-B [Pseudocode-A ® Structures B Enums @
372 {

373 *y48++ = Fudb++;

374 --v47;

375 }

376 *(v90 + 48) = CONTEXT_FULL; // CONTEXT_FULL
377 v49 = *(v85 + 152);

378 *(voe + 136) = @is4;

379 *(vo0 + 184) = @i64;

380 *(v9@ + 152) = v49 - 53248;

381 *(v98 + 248) = NtWaitForSingleObject;
382 *(v90 + 128) = v95;

383 *(v49 - 53248) = NtTestAlert;

384 *(v87 + 48) = CONTEXT_FULL;

385 v50 = *(v85 + 152);

386 *(v87 + 128) = -1i64;

387 *(v87 + 152) = v50 - 49152;

388 *(v87 + 248) = NtProtectVirtualMemory;
389 v51l = NtTestAlert;

398 *(v87 + 136) = &v99;

391 *(v87 + 184) = &viee;

392 *(v87 + 192) = 4i64;

393 *(v50 - 49152) = v51;

394 ¥(*(v87 + 152) + 40i64) = &vO2;

395 *(v12 + 48) = CONTEXT_FULL;

396 v52 = *(v85 + 152);

397 *(v12 + 128) = v96;

398 *(v12 + 136) = v97;

399 *(vl12 + 152) = v52 - 45056;

400 *¥(vi2z + 248) = SystemFunction@32;

481 *(v52 - 45@856) = NtTestAlert;

402 v53 = NtTestAlert;

403 *(v89 + 48) = CONTEXT_FULL;

404 v54 = *(v85 + 152);

485 *(v89 + 152) = v54 - 48968;

406 *(v89 + 248) = NtGetContextThread;
407 v55 = v93;

408 *(v89 + 128) = v93;

409 *(v89 + 136) = v9l;

410 *(v54 - 48960) = v53;

411 v56 = *(v85 + 152);

Next, a number of APCs are queued against the NtContinue, with the intention of using it to
proxy calls to the aforementioned context structures; this technique acts as a rudimentary

form of ROP:

11/43

1 1 1 I 1 W11
i Data Unexplared External symbel Lumina function

T IDA View-A T Pseudocode-C B T Pseudocode-B T Pseudocode-A Structures E Enums A Imports = Strings window
474 if (sub_61F8141B(vo4, NtContinue, vE9, @isd, @, y>=8)

475 {

476 LODWORD(v78) = NtQueueApcThread;

477 if (sub_61F8141B{v94, NtContinue, v88, @i64, @, v78) »>= @)

478

479 LODWORD(v729) = NtQueueApcThread;

48@ if (sub_61F8141B(v94, NtContinue, v86, @i64, @, v7/9) >= @)

481

482 LODWORD(vE8) = NtQueueApcThread;

483 if (sub_61F8141B(v94, NtContinue, v14, @i64, @, vEB) >= @)
484

485 LODWORD(vB1) = NtQueueApcThread;

486 if (sub_61F8141B(v94, NtContinue, v1e, ©i64, @, val) >= @)
4875

488 LODWORD(vE2) = NtQueueApcThread;

489 if (sub_61F8141B(v94, NtContinue, v9, @i64, @, vi2) >= @)
498 {

491 LODWORD{vE3) = NtQueueApcThread;

492 v68 = sub_61F8141B(v94, NtContinue, v11, ®i64, @, v83);
493|LABEL_76:

454 if (veB >=@)

455

496 vE2 = NtAlertResumeThread_1 ? sub_61F8142F(vo4, 9i64) : NtAlertResumeThread(vo4, @ic4);
497 if (veD »>=@)

498 {

499 = *WaitForSingleObjectEx;

588
581 w71l

582 72

i + 48) = 1B48587;

94;

w72 = v95;

583 *(vl3 + 248) = v70;

564 *({vi3 + 152) = *({__readgsqword(@x3éu) + 8);

585 if (NtsignalAndWaitForsSingleObject_1)

506 {

sa7 LODWORD(v72) = NtSignalAndWaitForSingleObject_1;
588 sub_61FB8149C(v72, v71, 0iB4, @ied4, v73);

509 }

51e else

511 {

512 NtSignalAndWaitForSingleObject({v72, v71, @is4, ©ied);
513 }

Having reverse engineered the sleeping technique, we soon realised that it it was very
similar to @ilove2pwn_’s Foliage project, with the exception of the hardcoded thread start
address.

Despite extensive debugging and reverse engineering of the badger, we unable to reveal any
evidence of the “Windows Event Creation, Wait Objects and Timers” techniques referenced
in the v1.0 blog post; indeed the APIs required for these techniques did not appear to be
imported via the badger’s hashed imports.

Brute Ratels Threads

To analyse how Brute Ratel threads look in memory, we injected the badger in to a fresh

copy of notepad. Immediately, we can see there are some suspicious indicators in the
threads used by the sleeping badger.

Firstly, we note that there is a suspicious looking thread with a 0x0 start address, and a
single frame calling WaitForSingleObjectEx in the call stack:

12/43

https://twitter.com/ilove2pwn_
https://github.com/SecIdiot/FOLIAGE/blob/master/source/sleep.c

ntdil.dil! | pheleaselleanuplroupMembers +Hxaal Mormal
dr.din—* !
ntdl.dl ™ Stack - thread 10236
ritdll.d
ntdl.d Name
[0]
ntdll.d

i kernel32. dlllWaitForSingleObjectEx

We can speculate that this thread is used for the HTTP comms based on analysis of the
thread call stack while the badger is now sleeping:

B | Stack - thread 10236 X

Marme

ntdll. dll'MtW aitForsingleObject +0x 14
KernelBase,dllWaitForSingleObjectEx +0x8e
wininet. dll! InternetFindMextFile\W +0xe 5c8
wininet. dll! InternetFindMextFileW +0x92 1f
wininet,dll!UrlCacheServer +0x3887c
wininet,dl'HttpSendRequesty +0x36

5] Ox12cad54a410

Based on the information we gained from reverse engineering the obfuscate and sleep
strategy, we noted that new threads were created with a hardcoded spoofed start address of
ntdIl'TpReleaseCleanupGroupMembers+0x550:

[, TR S Y B [s |

LODWORD(TpReleaseCleanupGroupMembers) = Hashlookup(©x77DOE3B5, v3);
if (TpReleaseCleanupGroupMembers)
ThreadStartAddress = TpReleaseCleanupGroupMembers + @x550;
else
ThreadStartAddress = v4 + *(v5 + v4 + 40);
if (NtCreateEvent_1)
result = sub_61F81491(&v95, 2031619, 0, 1, @, NtCreateEvent_1);
else
result = NtCreateEvent(&v95, 2031619i64, @0i64, 1i64, 0);
if (result < @
|| (!NtCreateThreadEx_1 ? (result = NtCreateThreadEx(
&v94,
2032639164,
0i64,
-1i64,
ThreadStartAddress,

2T N |

We were unable to find any instances of this occurring as a start address naturally, and as
such leads to a trivial indicator for hunting Brute Ratel threads. In practice this looks as
follows within our injected notepad process:

13/43

i I"CtE;Z‘-f—-C!.E"E L0 Fi'C-i:E!‘:.iEE

General Statistics Performance Threads Token Modules Memory Environment Handles GPU Comment

=3

TID CPU Cydes delta Start address Priority
512 ntdll. dliTpReleaseCleanupGroupMembers +0x450 Marmal
7178 = biSsealafla Marmal
7244 I ntdll. dill TpReleaseCleanupGroupMembers +0x 550 Marmal
3492 Ox0
2 ntdl.dilT B’ Stack - thread 7832 =
Q052 il il]
064 il il Mame

ntdll. dillNtWaitForSingleObject+0x 14
KernelBase. dll!WaitForSingleObjectEx +0x8e
ntdll. dlliMtTerminate JobObject +0x 1f

The call stack for the thread is also slightly irregular as it not only contains calls to delay

execution, but also the first frame points to ntdll.dll!NtTerminateJobObject+0x1f. A deeper
look at why NtNerminateJobObject is used highlights that this is simply a ROP gadget for
NtTestAlert and is used to execute pending APCs on the thread:

@0867ffa” b8dcli6fc c3 ret
8:806> k
Child-SP RetAddr Call Site
’ 90 00000000 82bc7fd8 @@ee7ffa bbebe4ff KERNELBASE !WaitForSingleObjectEx+8x12c
81 0eeoee8e 82bc7fed ©0OE000Q DEBLEOGO ntdll!NtTerminateJobObject+@xif
0:066> p

ntdll!NtTestAlert:
e0e07ffa bbobo5ee 4c8bdi

mov rie,rcx

9:806> u ntdll!NtTerminatelobObject+@x1f

ntdll!NtTerminatelobObject+8x1f:

eeee7ffa” bbebedaff eedcsbdl add byte ptr [rbx+rcx*4-2Fh],cl

@eee7ffa” bbéb8583 b8cee10000 mov eax,1Ceh

@eee7ffa” bbebes5e8 f604250803fe710 r _Zffe0308)],1
6e0e7ffa” bbéb8518 7583 jne ntdll!NtTestAlert+8x15 (@@007ffa” bb@be515)

@eee7ffa bbebes12 efes syscall

@e0e7ffa” bbeb@s514 c3 ret

@e0e7ffa” bbeb8515 cd2e int 2Eh

@eoe7ffa” bbeb@s517 c3 ret

Memory Hooks

In our first post in this series, we detailed two potential approaches for detecting in-memory
beacons based on memory hooks; by looking for signatures of known patches (e.g. ret to

ntdll.dll'EtwEventWrite) and by detecting copy on write operations.

Applying these concepts to Brute Ratel, we note that the badger does not apply any memory

hooks until its post-exploitation functionality is used by the operator. An example of this,
would be the sharpinline command, which runs a .NET assembly in the current process:

14/43

FERHERRERNEEE,

paysupausspunungrf((((29,99 %9995

HERRERRREATE
&6 Seatbelt %// S —
g v

Once the assembly has completed and the beacon gone back to sleep, we can get a better
understanding of whats going on by attaching a debugger and disassembling the values of
ntdll.dIl'"EtwEventWrite and amsi.dll'AmsiScanBuffer:

9:016> uf ntdll!EtWEventWrite
ntdll!EtwEventWrite:

@eee7ffa bbe5f1ad c3 ret

0:016> uf amsi!AmsiScanBuffer

DBGHELP: downstreamstore*https://msdl.microsoft.com/down
amsi!AmsiScanBuffer:
00007 ffa a78635e0 b357000780
PeBB7ffa a78635e5 3

0:816>

As shown abO\;e, these are éimple and persistent patches to disable .NET ETW data and
inhibit AMSI. As the patches are persistent, we can detect them by either of the
aforementioned techniques, since not only will we receive a high signal detection due to the
first instruction of EtwEventWrite being a ret, but also an indicator that the pages where
EtwEventWrite resides have been modified due to the clearing of the shared bit.

mov eax,80070857h
ret

Using BeaconHunter, we can rapidly detect these hooks based on resolving the exports on
the modified pages, providing a strong indicator that malicious tampering has taken place:

15/43

B8 Command Prompt

in call stack, potential delay in e

\ntdll.dll

modified

moa

n modified

een modified

C:\Tools>BeaconHunter.exe winhttp.dll 8184 -mthp

Brute Ratel C2 Server

Moving away from the endpoint, as hunters we also have an interest in detecting the
command-and-control infrastructure as this may assist in providing us with sufficient
intelligence to detect beaconing based on network telemetry.

The C2 server for Brute Ratel is developed in golang, and by default only allows the operator
to modify the default landing page for the C2. To fingerprint the C2 server, we discovered it
was possible to generate an unhandled exception when sending a POST request containing
base64 to any URI. For example, consider the following base64 POST data compared with
the the plaintext:

16/43

Request

Pretty ~ Raw Hex = U

POST / HTTP/2
2 Host: 1@.211.55.22

w

rv:11.8) like Gecko
Content-Length: 16
Cache-Control: no-cache

=T -

7] ¥na1d6v) cnFwdavs |

Request

Pretty Raw Hex \n

POST /| HTTP/2
Host: 18.211.55.22

W ok

rv:11.8) like Gecko

4 Content-Length: &

5 Cache-Control: no-cache
o

7 foobar

User-Agent: Mozilla/5.8 (Windows NT 6.3; Trident/7.0;

User-Agent: Mozilla/5.@ (Windows NT 6.3; Trident/7.9;

Response

Response

Pretty Raw Hex Render

1 HTTP/2 2008 OK

2 Content-Type: text/html; charset=utf-8
3 Content-Length: 49

4 Date: Mon, 20 Jun 2022 13:45:09 GMT

5

6 <html>

7 <body>

8 Nothing to see here

9 </body>

@ </html>

It is likely this occurs as the expected input for the base64 decoded POST data should
conform to the C2 traffic format. A simple Nuclei rule might help us in scanning for this kind

of infrastructure:
id: brc4-ts

info:

name: Brute Ratel C2 Server Fingerprint

author: Dominic Chell
severity: info
description: description
reference:
- https://
tags: tags
requests:
- raw:
- |_
POST / HTTP/1.1
Host: {{Hostname}}
Content-Length: 8

ZmovYmFy

Outside of direct interaction with the C2, it is also possible to detect C2 infrastructure where

the operator has not manually redefined the default landing page based on a hash of the

HTML (http.html_hash=-1957161625).

Using a simple Shodan query, we can quickly find live infrastructure exposed to the Internet:

17/43

https://www.shodan.io/search?query=http.html_hash%3A-1957161625
https://www.shodan.io/search?query=http.html_hash%3A-1957161625

'. SHODAN Explore Downloads Pricing & http.htmi_hash:-1957 161625 Account

Mew Service: Keep track of what you have connected to the Intermet. Check out

138.68.50.218

) SSL Cortificate
Clara

United States
Japan
Ireland
Netheriands

Brazil

64.227.11.231

B Linitiend States. Morth
Bargen

oowd selfsigned

Although only around 40 team servers were identified, we can get a better picture of where
these are located based on the geographical spread:

country

It is quite likely some of these techniques are already known, as based on reports against
our test infrastructure, defenders are actively hunting these C2 servers:

Account ID:
Account contact email:

dWs

Security contact: -
Security contact email: -

Hello,

Your instance has been reported for Command and Control (C)2 activity related to a large scale
botnet. Operation of a C2 is a violation of the AWS Acceptable Use policy.

Instance: i-07c9cae07cee3e825

Please terminate your infected resource. If you feel this abuse report was sent in error, please
provide a clear explanation with details on why your resources was reported for this activity.

Regards,
AWS Trust & Safety

Case Number: :

How can I contact a member of the AWS abuse team or the reporter?
Reply to this email with the original subject line.

Name v Instance ID Instance state v Instance type ¢ Status check Alarm

Test: BRC4 i-07¢9cael7cee3eB2s @ Running &Q t2.micro (® 2/2 checks passed No ala

Brute Ratel Configurations

Analysis of the Badger revealed that Brute Ratel maintains an encrypted configuration
structure in memory which includes details on the C2 endpoints. Being able to extract this
from either artifacts or from running processes can prove helpful for defenders. Our analysis
revealed that this configuration is held in a base64 and RC4 encrypted blob using a fixed key
of “bYXJIm/3#M?:XyMBF” in the artifacts for the badger. While the configuration is stored
plaintext in memory for the sleeping badger.

We developed the following config extractor that can be used against both on-disk artifacts
for BRC4 v1.0.x or injected sleeping badgers with Brute Ratel 1.0.x and 1.1.x:

19/43

#define _CRT_SECURE_NO_WARNINGS

#include
#include
#include
#include
#include

#pragma

<stdio.h>
<stdlib.h>
<Windows.h>
<string>
<vector>

comment(1lib, "Crypt32.1ib")

std::string HexDump(void* pBuffer, DWORD cbBuffer)

{

#define FORMAT_APPEND_1(a)

szTmp; }

#define FORMAT_APPEND_2(a,b)

szTmp; }

PBYTE pbBuffer

(PBYTE)pBuffer;

std::string strHex;

for (DWORD i =
{

0; 1 < cbBuffer;)

FORMAT_APPEND_2("0x8x ", 1);

DWORD n

= ((cbBuffer - i) < 16) ? (cbBuffer - i) : 16;

for (DWORD j = 0; j < n; j++)

{

FORMAT_APPEND_2("%02X ", pbBuffer[i + j]);

for (DWORD j = 0; j < (16 - n); j++)

{

FORMAT_APPEND_1(" "),

FORMAT_APPEND_1(" ");

for (DWORD j = 0; j < n; j++)

{

FORMAT_APPEND_2("%c", (pbBuffer[i + j] < 0x20 ||

j] > ox7f) 2 '.' : pbBuffer[i + j]);

}

FORMAT_APPEND_1("\n");

i +=n;

return strHex;

{ char szTmp[256]; sprintf(szTmp, a); strHex +=

{ char szTmp[256]; sprintf(szTmp, a, b); strHex +=

pbBuffer[i +

20/43

BOOL ReadAllBytes(std::string strFile, PBYTE*
{

BOOL bSuccess = FALSE;

PBYTE pbBuffer = NULL;

*ppbBuffer = NULL;
*puiBufferLength = 0;

FILE* fp = fopen(strFile.c_str(),

if (fp)

{
fseek(fp, 0, SEEK_END);
long 1lFile = ftell(fp);
fseek(fp, 0, SEEK_SET);

ppbBuffer, UINT*

|lrb|l);

if (!(pbBuffer = (PBYTE)malloc(lFile)))

goto Cleanup;

if (fread(pbBuffer,
goto Cleanup;

*ppbBuffer = pbBuffer;

1, 1lFile, fp)

1= 1File)

*puiBufferLength = (UINT)1lFile;

pbBuffer
bSuccess

NULL;
TRUE;

Cleanup:
if (fp) fclose(fp);
if (pbBuffer) free(pbBuffer);
return bSuccess;

void Brc4DecodeString(BYTE* pszKey,

{
BYTE szCharmap[0x100];

BYTE* pszInput,

for (UINT 1 = 0; i < sizeof(szCharmap); i++)

{

szCharmap[i] = (char)i;

UINT cchKey strlen((char*)pszKey);

BYTE 1 = 0O;

for (UINT i = 0; 1 < sizeof(szCharmap); i++)

{
BYTE x = szCharmap[i];
BYTE k = pszKey[i % cchKey];
BYTE y = x + k + 1;

puiBufferLength)

BYTE* pszOutput, int cchInput)

21/43

1=y,
szCharmap[i]
szCharmap[y]

szCharmap[y];
X

for (UINT i = 0; i < cchInput; i++)
{
BYTE x szCharmap[i + 1];
BYTE y = x + 1;
1=y;
BYTE z = szCharmapl[y];
szCharmap[i + 1] = z;
szCharmap[y] = Xx;
X X + szCharmap[i + 1];
X szCharmap[x];
X = x N pszInput[i];
pszOutput[i] = Xx;

BOOL MatchPattern(PBYTE pbInput, PBYTE pbSearch, DWORD cbSearch, BYTE byteMask)

{
BOOL bMatch = TRUE;

for (DWORD j = 0; j < chSearch; j++)

{
if (pbSearch[j] != byteMask && pbInput[j] != pbSearch[j])
{
bMatch = FALSE;
break;
}
}

return bMatch;

}

PBYTE FindPattern(PBYTE pbInput, UINT cbInput, PBYTE pbSearch, DWORD chSearch, BYTE
byteMask, UINT* pcSkipMatches)

{
if (cbInput > cbSearch)

{
for (UINT i = 0; 1 < cbInput - cbSearch; i++)
{
BOOL bMatch = MatchPattern(pbInput + i, pbSearch, cbSearch,
byteMask);

if (bMatch)

{
if (!*pcSkipMatches)
{

22/43

return N

ULL;

return &pbInput[i];

(*pcSkipMatches)--;

BOOL LocateBrc4Config(PBYTE pbInput, UINT cbInput, PBYTE* ppbConfig)

{
#define

#define
#define
#define
Oxab,

#define
#define

XOR_RAX_
PUSH_RAX
MOV_EAX_
MOV_RAX_

PUSH_IMM
MOV_EAX_

BYTE Pat
{

3
Pattern2

{

RAX

IMM32
IMM64

32
(0]

terni[] =

XOR_RAX_RAX
PUSH_RAX
MOV_EAX_IMM32
PUSH_RAX
MOV_RAX_IMM64
PUSH_RAX
MOV_RAX_IMM64
PUSH_RAX
MOV_RAX_IMM64
PUSH_RAX
MOV_RAX_IMM64
PUSH_RAX
MOV_RAX_IMM64
PUSH_RAX
MOV_RAX_IMM64

[1 =

XOR_RAX_RAX
PUSH_RAX
MOV_RAX_IMM64
PUSH_RAX
MOV_RAX_IMM64
PUSH_RAX
MOV_RAX_IMM64
PUSH_RAX
MOV_RAX_IMM64
PUSH_RAX
MOV_RAX_IMM64

0x48, 0x31, 0xCO,
0x50,
0xB8, 0Oxab, Oxab, ©xab, 0Oxab,
0x48, 0xB8, 0Oxab, O0xab, 0xab, Oxab, 0xab, 0xab, 0xab,

0x68, Oxab, Oxab, ©xab, 0xab,
OxB8, 0x00, Ox00, 0x00, 0x00,

23/43

PUSH_RAX
MOV_RAX_IMM64
PUSH_RAX
MOV_RAX_IMM64

}
UINT cSkipMatches = 0;

if (cbInput < 100)

{
return FALSE;

PBYTE pbConfigStart = FindPattern(pbInput, cbInput, Patterni,
sizeof(Patternl), Oxab, &cSkipMatches);

if (!pbConfigStart)

{
cSkipMatches = 0;

pbConfigStart = FindPattern(pbInput, cbInput, Pattern2,
sizeof (Pattern2), Oxab, &cSkipMatches);

if (!pbConfigStart)

{
return FALSE;

BYTE Pattern3[] = {
PUSH_IMM32
MOV_EAX_0
PUSH_RAX
MOV_EAX_0O
PUSH_RAX
MOV_EAX_0
PUSH_RAX

}
cSkipMatches = 0;

PBYTE pbConfigEnd = FindPattern(pbConfigStart, cbInput - (pbConfigStart -
pbInput), Pattern3, sizeof(Pattern3), Oxab, &cSkipMatches);

if (!pbConfigEnd)

{
return FALSE;

*ppbConfig = (PBYTE)malloc(pbConfigEnd - pbConfigStart);

if (!*ppbConfig)

24/43

Oxab))

Oxab))

oxab))

return FALSE;

memset (*ppbConfig, 0, pbConfigEnd - pbConfigStart);

pbConfigStart += 4; // skip: XOR_RAX_RAX / PUSH_RAX

BYTE Pattern4[] = {
MOV_EAX_IMM32
PUSH_RAX

3

Pattern5[] = {
MOV_RAX_IMM64

if (MatchPattern(pbConfigStart + i, Pattern4, sizeof(Pattern4),

pbConfigStart[i
pbConfigStart[i
pbConfigStart[i
pbConfigStart[i

+ 4];
+ 3];
+ 2];
+1];

else if (MatchPattern(pbConfigStart + i, Pattern5, sizeof(Pattern5),

pbConfigStart[i
pbConfigStart[i

= pbConfigStart[i

pbConfigStart[i
pbConfigStart[i
pbConfigStart[i

= pbConfigStart[i

pbConfigStart[i

Patterns,

9];
8],
7];
6];
5];
4];
31,
2];

+ + + + + + + o+

sizeof(Pattern3),

PUSH_RAX
}i
for (UINT uiIndex = 0, i = 0; 1 < pbConfigEnd - pbConfigStart;)
{
{
(*ppbConfig)[uiIndex++]
(*ppbConfig) [uiIndex++]
(*ppbConfig) [uiIndex++]
(*ppbConfig)[uiIndex++]
i += sizeof(Pattern4);
}
{
(*ppbConfig)[uiIndex++]
(*ppbConfig)[uiIndex++]
(*ppbConfig) [uiIndex++]
(*ppbConfig) [uiIndex++]
(*ppbConfig)[uiIndex++]
(*ppbConfig)[uiIndex++]
(*ppbConfig)[uiIndex++]
(*ppbConfig) [uiIndex++]
i += sizeof(Pattern5);
}
else if (MatchPattern(pbConfigStart + i,
{
break;
}
else
{
return FALSE;
}

25/43

std::string config = (char*)*ppbConfig;
std::reverse(config.begin(), config.end());

strcpy((char*)*ppbConfig, config.c_str());

return TRUE;

BOOL FromBase64(char* pszString, PBYTE* ppbBinary, UINT* pcbBinary)

{

DWORD cbhBinary = 0;

if (FAILED(CryptStringToBinaryA(pszString, ©, CRYPT_STRING_BASE64, NULL,

&cbBinary, NULL, NULL)))

{
return FALSE;

*ppbBinary = (PBYTE)malloc(cbBinary + 1);
if (!*ppbBinary)

{
return FALSE;

if (FAILED(CryptStringToBinaryA(pszString, ©, CRYPT_STRING_BASE64,

*ppbBinary, &cbBinary, NULL, NULL)))

{
return FALSE;

*pcbBinary = chBinary;

return TRUE;

BOOL ScanProcessForBadgerConfig(HANDLE hProcess, std::string& badgerId,
std::vector<std::wstring>& configStrings)

{

SIZE_T nBytesRead;
PBYTE lpMemoryRegion = NULL, pbBadgerStateStruct = NULL;

printf("[+] Searching process memory for badger state ...\n");
while (1)
{

MEMORY_BASIC_INFORMATION mbi = { 0 };

if (!VirtualQueryEx(hProcess, lpMemoryRegion, &mbi, sizeof(mbi)))

{

26/43

break;

}
if ((mbi.State & MEM_COMMIT) && !(mbi.Protect & PAGE_GUARD) &&
((mbi.Protect & PAGE_READONLY) || (mbi.Protect &
PAGE_READWRITE) || (mbi.Protect & PAGE_EXECUTE_READWRITE)))

{

//printf("[+] Searching process memory at Ox%p (size
0x%x)\n", lpMemoryRegion, mbi.RegionSize);

PBYTE pbLocalMemoryCopy = (PBYTE)malloc(mbi.RegionSize);

if (!ReadProcessMemory(hProcess, lpMemoryRegion,
pbLocalMemoryCopy, mbi.RegionSize, &nBytesRead))

{
//printf("[!] Unable to read memory at Ox%p\n",

1pMemoryRegion);
else

for (UINT 1 = 0; i < mbi.RegionSize - 128 &&
IpbBadgerStateStruct; i++)

if (memcmp(pbLocalMemoryCopy + i, "b-", 2) ==
)

char* pszEndPtr = NULL;
int badgerId =
strtoul((char*)pbLocalMemoryCopy + i + 2, &pszEndPtr, 10);

if (pszEndPtr I=
(char*)pbLocalMemoryCopy + i + 2 && pszEndPtr && *pszEndPtr == '\\' &&
strnlen(pszEndPtr, 100) > 16)

pbBadgerStateStruct =
lpMemoryRegion + 1i;
break;

free(pbLocalMemoryCopy);
pbLocalMemoryCopy = NULL;

1pMemoryRegion += mbi.RegionSize;

}

if (!'pbBadgerStateStruct)

{
printf("[!] Failed to find badger state\n");

27/43

return FALSE;

printf("[+] Found badger state at Ox%p\n", pbBadgerStateStruct);
BYTE BadgerState[0x1000];
memset (BadgerState, 0, sizeof(BadgerState));

if ('ReadProcessMemory(hProcess, pbBadgerStateStruct, BadgerState, 0x1000,
&nBytesRead))

{
if (GetLastError() != ERROR_PARTIAL_COPY)

{
printf("[!] Unable to read badger state at Ox%p\n",

pbBadgerStateStruct);
return FALSE;

badgerId = (char*)BadgerState;
BYTE ConfigString[1024];
memset (ConfigString, 0, sizeof(ConfigString));

for (UINT i = 0x100 + (0x10 - ((DWORD64)pbBadgerStateStruct & 0xf)); i <
sizeof(BadgerState); i += sizeof (DWORD64))

{
DWORD64 pMem = *(DWORD64*)(BadgerState + 1i);

if (pMem)

{
ConfigString[0] = 0O;

if (!'ReadProcessMemory(hProcess, (LPVOID)pMem, ConfigString,
1024, &nBytesRead) || nBytesRead != 1024)

{

continue;
BOOL bIsvValid = ConfigString[0] !'= O;
std::wstring badgerString;
#define MIN_STRING_LENGTH 5
if (bIsvalid)
{

char* pszConfigString = (char*)ConfigString;

for (UINT j = 0; j < nBytesRead && pszConfigString[j]
= 0; j++)

28/43

if (!isprint(pszConfigString[j]) && !

(pszConfigString[j] == '\t' || pszConfigString[j] == '\r' || pszConfigString[j] ==
'\n'))
{
break;
}

badgerString.push_back(pszConfigString[j]);

bIsvValid = badgerString.size() >= MIN_STRING_LENGTH;

if (!bIsvalid)

{
badgerString.clear();

bIsvalid = TRUE;
WCHAR* pwszConfigString = (WCHAR*)ConfigString;

for (UINT j = 0; j < nBytesRead / sizeof (WCHAR) &&
pwszConfigString[j] != 0; j++)

{
if (!iswprint(pwszConfigString[j]) && !
(pwszConfigString[j] == '\t' || pwszConfigString[j] == '\r' || pwszConfigString[j] ==
'\n'))
{
break;
}
badgerString.push_back(pwszConfigString[j]);
}
bIsvalid = badgerString.size() >= MIN_STRING_LENGTH;
}
if (bIsvalid)
{
configStrings.push_back(badgerString);
}
}
}
return TRUE;
}

int main(int argc, char *argv[])

{
PBYTE key = (PBYTE)"bYXJm/3#M?:XyMBF";

printf("BruteRatel vl1.x Config Extractor\n");

29/43

if (argc < 2)

{
printf(
"Usage: Brc4ConfigExtractor.exe <file> [key]\n"
" <file|pid> - file to scan for config, or running process
ID\n"
" [key] - key if not default\n"
);
return 1,
}
if (argc > 2)
{
key = (PBYTE)argv[2];
}

if (atoi(argv[1]) == 0)

{
PBYTE pbBadger = NULL;
UINT cbBadger = 0;

if (!ReadAllBytes(argv[1], &pbBadger, &cbBadger))

{
printf("[!] Input file '%s' not found\n", argv[1]);
return 1,

printf("[+] Analysing file '%s' (%u bytes)\n", argv[1l], cbBadger);
PBYTE pbConfigText = NULL;

if (!LocateBrc4Config(pbBadger, cbBadger, &pbConfigText))

{
printf("[!] Failed to locate BRC4 config\n");

return 1;

}

printf("[+] Located BRC4 config: %s\n", pbConfigText);

PBYTE pbBinaryConfig = NULL;
UINT cbBinaryConfig = 0;

if (!'FromBase64((char*)pbConfigText, &pbBinaryConfig,
&cbBinaryConfig))

{
printf("[!] Failed to decode BRC4 config from base64\n");

return 1,

Brc4DecodeString(key, pbBinaryConfig, pbBinaryConfig,

30/43

cbBinaryConfig);

else

memory\n");

printf("[+] Decoded config: %.*s\n", cbBinaryConfig, pbBinaryConfig);

DWORD dwPid = atoi(argv[1]);
printf("[+] Analysing process with ID %u\n", dwPid);
HANDLE hProcess = OpenProcess(PROCESS_ALL_ACCESS, FALSE, dwPid);

if (!hProcess)

{

printf("[!] Failed to open process\n");
return 1;

}

std::string badgerId;
std::vector<std::wstring> configStrings;

if (!ScanProcessForBadgerConfig(hProcess, badgerId, configStrings))
{

printf("[!] Failed to locate badger configuration in

return 1;

}

printf("[+] Badger '%s' found...\n", badgerId.c_str());

for (auto configString : configStrings)

{
printf(" 1 %S\n", configString.c_str());
}
CloseHandle(hProcess);
}
return 0;

Running the extractor tool on either an artifact or a running process (even while sleeping),
will extract the Brute Ratel configuration state for the process or artifact:

31/43

164; x64) AppleWebKit/537.36 (KHTML,

Updated v1.1 Analysis

Shortly after our talk on this subject at x33fcon, Brute Ratel announced a new version of the
software. As such, it seemed appropriate to analyse this to ensure defenders have accurate
advice given the recent uptake in Brute Ratel by threat actors.

Analysis of Obfuscate and Sleep Techniques

One of the things that struck us about the v1.1 release, was the declaration that the author
had discovered new sleep and obfuscate techniques. As stated in this YouTube video “Brute
Ratel C4 v/s Nighthawk and Open Source Sleep Obfuscation Techniques®, the author
says “l didn’t even knew (SIC) about this technique until Austin released the blog post on
this. However, Brute Ratel does not use either of these two techniques that we have seen
over here.” in reference to the APC technique used in Foliage and the Timer based
technique as used in MDSec’s Nighthawk and as reverse engineered here and a proof of
concept implementation released here. Noting that this video appeared a short time after the
Ekko release.

Reverse engineering of the obfuscate in sleep techniques used within Brute Ratel v1.1
reveal that three sleeping strategies are now available. The first, as we have previously
documented is an extremely similar implementation to @ilove2pwn_’s Foliage, if not an
exact copy.

The second implementation, reverse engineering revealed to be an almost identical
implementation of @c5pider’s Ekko code (and originally discovered by Peter Winter-Smith
and used in MDSec’s Nighthawk). For example, consider the following taken from Ekko:

32/43

https://www.youtube.com/watch?v=nB5QHVtN9_g&t=267s
https://github.com/SecIdiot/FOLIAGE
https://suspicious.actor/2022/05/05/mdsec-nighthawk-study.html
https://github.com/Cracked5pider/Ekko/blob/main/Src/Ekko.c
https://twitter.com/ilove2pwn_
https://twitter.com/c5pider
https://twitter.com/peterwintrsmith
https://github.com/Cracked5pider/Ekko/blob/main/Src/Ekko.c#L97

github.com;

RopProtRX.Rip
RopProtRX.Rcx
RopProtRX.Rdx
RopProtRX.R8

RopProtRX.R9

/ SetEvent(|
RopSetEvt.Rsp
RopSetEvt.Rip
RopSetEvt.Rcx

puts(" [INFO]

CreateTimer(

VirtualProtect;
ImageBase;

ImageSize;
PAGE_EXECUTE_READWRITE
&01dProtect;

SetEvent;
hEvent;

Queue timers");

Timer(&hNewTimer,

(&hNewTimer,

NtContinue,
NtContinue,

hTimerQueue,
hTimerQueue,

&RopProtRW, 108, @, WT_EXECUTEINTIMERTHREAD
WT_EXECUTEINTIMERTHREAD
WT_EXECUTEINTIMERTHREAD);
WT_EXECUTEINTIMERTHREAD);
WT_EXECUTEINTIMERTHREAD
@, WT_EXECUTEINTIMERTHREAD

CreateT &RopMemEnc, 2,

CreateTim (&hMNewTimer, hTimerQueue, NtContinue, &RopDelay,

&hNewTimer,
[&hNew

hTimerQueue, NtContinue, &RopMemDec, 40
&RopProtRX,

&RopSetEvt,

hTimerQueue,

(&hNewTimer, hTimerQueue, NtContinue,

("[INFO] Wait for hEvent");

WaitForSingleObject(hEvent, INFINITE);

Compare this with the technique implemented inside Brute Ratel:

IDA View-A Pseudocode-B J 3 Hex View-1 L) Structures 4] Enums @ Imy
8@ [17] = H
8 H ;
[31] = ;
183 [19] -= 8i64;
84 [16] = v54;
85 = *VirtualProtect_1;
: [17] = H
187 = ;
188 [31] = ;
89 = NtSetEvent;
: [19] -= 8ie4;
[16] = ;
192 [17] = 5
193 [23] = PAGE_EXECUTE_READ;
94 [24] = & H
[31] = ;

134 = ;

198 [19] -= 8ie4;

9 [16] = H

200 [17] = eie4;

201 if (== 1])

202 {

203 RtlCreateTimer(s & » NtContinue, , 188, @, WT_EXECUTEINTIMERTHREAD);
RtlCreateTimer(, & » NtContinue, , 2080, 0, WT_EXECUTEINTIMERTHREAD);
RtlCreateTimer(, & , NtContinue, , 388, @, WT_EXECUTEINTIMERTHREAD);

2 RtlCreateTimer(s & , NtContinue, , 408, 0, WT_EXECUTEINTIMERTHREAD);
RtlCreateTimer(, & , NtContinue, , 500, @, WT_EXECUTEINTIMERTHREAD);
RtlCreateTimer(, & , NtContinue, , 608, @, WT_EXECUTEINTIMERTHREAD);
RtlCreateTimer(s & , NtContinue, , 708, 8, WT_EXECUTEINTIMERTHREAD);

19 RtlCreateTimer(, & , NtContinue, , 888, 8, WT_EXECUTEINTIMERTHREAD);

211 RtlCreateTimer(, & , NtContinue, , 988, @, WT_EXECUTEINTIMERTHREAD);

33/43

As you can see, the code is almost identical; indeed the few changes include replacing the
WinApi calls for CreateTimerQueueTimer with the Rtl wrapper RtlCreateTimer, noting that
the breakpoints for Rtl wrappers were avoided (likely intentionally) in the aforementioned
video demonstration.

This brings us to the third technique used by Brute Ratel which is a variation of timers and is
not publicly documented. We can see here that this technique uses a subtle variation on
timers and instead proxies the timer through RtIRegisterWait:

[R e — S

@ IDA View-A T Pseudocode-B o =1 Hex View-1 L Structures 4] Enums Lol Imy
203 RtlCreateTimer(TimerQueue, &Timer, NtContinue, v11, 188, @, WT_EXECUTEINTIMERTHREAD);

284 RtlCreateTimer(TimerQueue, &Timer, NtContinue, v44, 2080, 8, WT_EXECUTEINTIMERTHREAD);

285 RtlCreateTimer(TimerQueue, &Timer, NtContinue, v49, 3608, 6, WT_EXECUTEINTIMERTHREAD);

206 RtlCreateTimer(TimerQueue, &Timer, NtContinue, vSO, 408, ©, WT_EXECUTEINTIMERTHREAD);

2087 RtlCreateTimer(TimerQueue, &Timer, NtContinue, v46, 560, ©, WT_EXECUTEINTIMERTHREAD);

208 RtlCreateTimer(TimerQueue, &Timer, NtContinue, v51, 66@, @, WT_EXECUTEINTIMERTHREAD);

209 RtlCreateTimer(TimerQueue, &Timer, NtContinue, RopMemDec, 7@, @, WT_EXECUTEINTIMERTHREAD);

218 RtlCreateTimer(TimerQueue, &Timer, NtContinue, VirtualProtect, 8@, @, WT_EXECUTEINTIMERTHREAD);
211 RtlCreateTimer(TimerQueue, &Timer, NtContinue, RopSetEvt, 908, ®, WT_EXECUTEINTIMERTHREAD);

212 }

213 else

214 {

215 Rt1RegisterWait(&phNewWaitObject, _EventHandle, NtContinue, v11, 1@, 12);

216 RtlRegisterWait(&phNewWaitObject, EventHandle, NtContinue, v44, 2080, 12);
217 RtlRegisterWait(&phNewWaitObject, EventHandle, NtContinue, v49, 300, 12);
218 RtlRegisterWait(&phNewwWaitObject, EventHandle, NtContinue, v58, 480, 12);
219 RtlRegisterWait (&ph

220 RtlRegisterWait(&ph

F
l_
E
aitObject, EventHandle, NtContinue, v46, 5@, 12);
aitObject, EventHandle, NtContinue, v51, €00, 12);

I'_

E

E

221 RtlRegisterWait(&phNewWaitObject, EventHandle, NtContinue, RopMemDec, 7€@, 12);

222 RtlRegisterWait (&phNewWaitObject, EventHandle, WtContinue, VirtualProtect, 866, 12);
223 RtlRegisterWait (&phNewWaitObject, EventHandle, NtContinue, RopSetEvt, 966, 12);
224 }

225 WaitForSingleObject(EventHandle, INFINITE);

226| sub_61FA9F38(al);

227 }

While this technique is not publicly documented, it has been available in Nighthawk for some
time, coincidentally with the same values used for many of the constants. Further
coincidences arise with other undocumented/unpublished features arising in the Brute Ratel
v1.1 release.

So far, we have only discussed the sleeping techniques available in the x64 implementation
of Brute Ratel. Analysis of the x86 implementation shows that the obfuscate and sleep
strategies are fixed to the aforementioned APC Foliage based implementation (noting the
breakpoints never hit):

9 ModLoad: 73abéeee 73acfeee E:\windows\s;

(358.20d@): Break instruction exception - | General Statistics Performance Threads Token Modules Memory Envionment Handes GPU Comment
DBGHELP: downstreamstore*https://msdl.micf

DBGHELP: downstreamstore*https://msdl.micr TID CPU Cydesdelta Startaddress Priority
eax=02acbh000 ebx-00000000 ecx=77addfse ed: WE4 nitdl. dll TpCalbackIndependent +0x 140 Normad
eip=77aa4d30 esp=0539fa24 ebp=-@539fase io 4996 nitdl. dll'RtDispatchAPC +0x80 Normal
€s=8823 s5s5-802b ds-882b es-8@20 fs-883 6220 ntdl. diiTpCalbackindependent +0x 140 Normal
ntdil|Dbgereakpoint: 883 ntdl, dii TpCalbackindependent +0x 140 Normal
77aadd3e cc . int 3 9368 ntdl. dl TpCalbackindependent +0x 140 Normal
ggﬂi bp ntdll!RtlCreateTimer “ln rip; 1n 9784 rundii32.exe +0x61a0 Normal
B E 10160 ntdll. dll TpCalbackindependent +0x 140 Normal
| 1 10672 ntdl.dll TpCalbackindependent+0x 140 Normal

= 10960 ntdl. dll'R tDispatchAPC +0x80 Normal
Debuggee is running...
BUSY™

34/43

To date there are no public or open source x86 implementations of obfuscate and sleep
strategies that use timers, limiting the available opportunities to easily integrate such code
without custom development.

In Memory Detections

One of the updates in the v1.1 release implies that the .rdata section is now also obfuscated,
in order to hide strings such as “[+] AMSI Patched” which were exposed in the memory of the
sleeping badger. However, even cursory memory analysis shows there remains many
exposed strings within the memory of the sleeping badger. As a result, this means there are
many opportunities to pluck out Brute Ratel processes on an endpoint, even while the
badger is sleeping. For example, consider the Brute Ratel C2 data which is stored in a JSON
format, simply searching for one of its unique parameters in memory such as “chkin” will
allow us to spot a badger:

B " Results - notepad.exe (9476)

0x1f99216ed30
0x1f9922f334c

"), "dt": {"chkin™:"
", dt":{"chkin™:"

9 results,
Address Length Result
0x1f99216dfd0 76 {"cds™: {"auth"™: 'b-4\ ,"dt": {"chkin":""}}
0x1f99216e1b0 76 {"cds™: {"auth"™: "b-4\ ,dt™: {"chkin":"}}
0x1f99216e210 76 {"cds™: {"auth™: "4\ , dt™:{"chkin™:"}}
0x1f99216e390 76 {eds™: {"auth™: "b-4\ , dt' i {"chkin™:""}}
0x1f99216e450 76 {cds™: {"auth™: "b-4\ , dt®{"chkin™:""}}
0x1f39216e4b0 76 {cds™: {"auth™: "b-4\ , dt":{"chkin™:"}}
0x 1992162690 76 {eds™: {"auth™: "b-4\ . dt":{"chkin™:""}}
36
36

Or simply searching for the badger identifier (e.g. b-) will find them scattered all over both the
heap and the stack. As a bonus, this can act as simple mechanism to spot the thread that
Brute Ratel is operating from, for example:

e Pn\-'am SR e e meam| | Address Length Result

Erpie s i oo]
Here we can see the presence of the “b-4\” on the stack of thread 4344. We can confirm that

is indeed the thread for Brute Ratel from the Ul:

With this in mind, we’re able to build a simple but effective Yara rule to pluck sleeping Brute
Ratel processes from memory:

35/43

rule brc4_badger_strings

{
meta:
author = "@domchell"
description = "Identifies strings from Brute Ratel vi1.1"
strings:
$a = "\"chkin\":"
condition:
$a
}

Executing the Yara rule, we can spot the sleeping badger:

Edit Format JSiev Help

rule brcd_badger_strings

{
meta:
author = "@domchell™
description = "Identifies strings from Brute Ratel v1.1"
strings: g
$a = "\"chkin\":" B Command Prompt
condition:
$a
}

The detections documented in v1.0 for post-exploitation actions such as suspicious copy on
write operations remain relevant and still offer an effective means of detection for BRC4 post-
exploitation.

Thread Stack Spoofing

In the v1.0 release of Brute Ratel, as we noted the start address of the thread is hardcoded
to ntdll'TpReleaseCleanupGroupMembers+0x550. Version 1.1 proclaims to offer “full thread
stack masquerading”. Analysis of the stack spoofing for Brute Ratel reveals a simplistic
implementation of rewriting the threads call stack. This process occurs just prior to the
badger going to sleep, using the aforementioned timer technique. In an attempt to make the
thread appear more legitimate, a new thread stack is created with hardcoded addresses for
the first two frames. The addresses hardcoded are at offsets Oxa and 0x12 from
RtlUserThreadStart and BaseThreadInitThunk respectively:

36/43

T % F Fl R ot S LT i

26 BRIC4_memcpy (v51, , 1232i64);

< =]

28 = NtWaitForWorkViaWorkerFactory;

29 ->ContextFlags = CONTEXT_FULL;

30 ->Rip = -

31 = read_ret_addr();

32 = -

35 ->Rsp = 5

34 = 5

35 = v52->Rsp;

36 ->Rsp = - 40960;

37 i | - 40960) = RtlAcquireSRWLockExclusive + 288;
38 4 | ->Rsp + 8) = BaseThreadInitThunk + 18;
39 4 | ->Rsp + 56) = RtlUserThreadStart + 190;
40 = *VirtualProtect_1;

41 = SystemFunction@32;

42 [19] -= 8i64;

43 [31] = -

14 | — 3

15 [16] = ;

We were able to identify any other threads using these hardcoded start addresses, as such it
becomes trivial to identify any Brute Ratel threads on a system. To detect these threads, we
updated BeaconHunter accordingly to identify threads with the first two frames at
RtlUserThreadStart+Oxa and BaseThreadInitThunk+0x12:

Command Prompt - BeaconHunter.exe winhttp.dll 3476 -mthp

!] WARNING: Unmapped memory with suspicious page permissions: @x7FF7BE57©

*] Analysing 7 Threads

*] Parsing Thread
-- Thread B

Frame ©

--- Frame 1

stack, potential delay in execut

- Thre
Frame ©

37/43

Updated rDLL Extraction

Shortly after our analysis at x33fcon, Brute Ratel announced an update to the method in
which the artifacts hide the reflective DLL. Analysis of these artifacts revealed that this is
achieved using RC4 to encrypt the reflective DLL with a random key; the PE header is then
stomped. The 8 byte RC4 key is appended to the encrypted reflective DLL, followed by 400

bytes of base64 configuration file.

We developed the following tool targeting Brute Ratel v1.1 to extract the reflective DLL from
DLL and EXE artifacts:

38/43

//

// only works with BRC4 1.1 binaries.
//

#include <algorithm
#include <windows.h>
#include <cstdio>
#include <string>
#include <iostream>
#include <fstream>
#include <sstream>
#include <vector>
#include <iomanip>

typedef struct _RC4_CTX {
BYTE X, VY,
BYTE s[256];

} RC4_CTX, *PRC4_CTX;

std::vector<BYTE>
ReadData(std: :string path) {
std::ifstream instream(path, std::ios::in | std::ios::binary);
std::vector<BYTE> input((std::istreambuf_iterator<char>(instream)),
std::istreambuf_iterator<char>());
return input;

bool

WriteData(std::string path, std::vector<BYTE> data) {
std::ofstream outstream(path, std::ios::out | std::ios::binary);
std::copy(data.begin(), data.end(), std::ostreambuf_iterator<char>(outstream));
return outstream.good();

BYTE
start_sig[]={
#if defined(_WIN64)
0x55, 0x50, 0x53, 0x51, 0x52, 0x56, 0x57, 0x41, 0x50, 0x41, 0x51, 0x41, 0x52,
0x41, 0x53, 0x41,
0x54, 0x41, 0x55, 0x41, 0x56, 0x41, 0x57, 0x48, 0x89, OXE5, 0x48, 0x83, OxE4,
OXFO, 0x48, 0x31,
OxCO, 0x50
#else
Ox60, Ox89, OXE5, 0x83, OxE4, OxF8, 0x31, OxCO, 0Ox50
#endif

};

BYTE
end_sig[]={
#if defined(_WIN64)
0x41, Ox5F, 0x41, Ox5E, 0x41, 0Ox5D, 0x41, 0Ox5C, 0x41, 0Ox5B, 0x41, Ox5A, 0x41,
0x59, 0x41, 0x58,
Ox5F, Ox5E, Ox5A, 0x59, 0x5B, 0x58, 0x5D, 0xC3

39/43

#else
0x83, 0xC4, 0x10, 0x61, OXC3

#endif

}i

void

RC4_set_key(
PRC4_CTX c,
PVOID key,
UINT keylen)

{
UINT 1i;
UCHAR j;

PUCHAR k=(PUCHAR)key;

for (i=0; i<256; i++) {
c->s[1] = (UCHAR)1i;
}

c->X = 0; c->y = 0,

for (i=0, j=0; 1i<256; i++) {
J = + (c->s[i] + k[1 % keylen]));

UCHAR t = c->s[1i];
c->s[i] = c->s[J];
c->s[j] = t;
}
}
void
RC4_crypt(
PRC4_CTX c,
PUCHAR buf,
UINT len)
{
UCHAR X = c->X, y = c->y, j=0, t;
for (UINT i=0; i<len; i++) {
X = (x +1);
y = (y + c->s[x]);
t = c->s[x];
c->s[x] = c->s[y];
c->s[y] = t;
Jj = (c->s[x] + c->s[y]);
buf[i] A= c->s[j];
}
C->X = X;
C-2y =Yy,
}

std::vector<BYTE>
extract_encrypted_rdl1(PBYTE ptr, DWORD maxlen)

40/43

std::vector<BYTE> outbuf;
printf("Searching %1d bytes.\n", maxlen);

for (DWORD i=0; i<maxlen;) {
if (!memcmp(&ptr[i], end_sig, sizeof(end_sig))) {
printf("Reached end of signature...\n");
break;
}
#1f defined(_WIN64)
if ((ptr[i] & 0x40) == 0x40 && (ptr[i+l] & OxBO) == OxBO)

{

BYTE buf[8];

buf[0] = ptr[i + 9];
buf[1] = ptr[i + 8];
buf[2] = ptr[i + 7];
buf[3] = ptr[i + 6];
buf[4] = ptr[i + 5];
buf[5] = ptr[i + 4];
buf[6] = ptr[i + 3];
buf[7] = ptr[i + 2];

outbuf.insert(outbuf.end(), buf, buf + sizeof(buf));
i += (ptr[i + 10] == 0x41) ? 12 : 11;
} else i++;
#else
if ((ptr[i] & OxBO) == OxBO && (ptr[i+5] & 0x50) == 0x50) {
BYTE buf[4];

buf[0] = ptr[i + 4];
buf[1] = ptr[i + 3];
buf[2] = ptr[i + 2];
buf[3] = ptr[i + 1];

outbuf.insert(outbuf.end(), buf, buf + sizeof(buf));
i+= 6;
} else i++;
#endif
}
std::reverse(outbuf.begin(), outbuf.end());
return outbuf;

int
main(int argc, char *argv[]) {
if (argc != 2) {
printf("usage: decrypt_brc4 <DLL|EXE>\n");
return 0,

}

std::vector<BYTE> inbuf, infile = ReadData(argv[1]);
DWORD len=0, ptr=0;

41/43

if (infile.empty()) {
printf("Nothing to read.\n");
return 0;

}

do {
auto dos = (PIMAGE_DOS_HEADER)infile.data();
auto nt = (PIMAGE_NT_HEADERS)(infile.data() + dos->e_lfanew);
auto s = IMAGE_FIRST_SECTION(nt);

for (DWORD 1=0; i<nt->FileHeader.NumberOfSections; i++) {
char Name[IMAGE_SIZEOF_SHORT_NAME + 1] = {0};
memcpy(Name, s[i].Name, IMAGE_SIZEOF_SHORT_NAME);

if (std::string(Name) == ".data") {
len = s[i].SizeOfRawData;
ptr = s[i].PointerToRawData;

break;
}
}
if (!len) {
printf("Unable to locate .data section.\n");
break;
}

printf("Searching %1d bytes for loader...\n", len);

for (DWORD idx=0; idx<len - sizeof(start_sig); idx++) {
if(!'memcmp(infile.data() + ptr + idx, start_sig, sizeof(start_sig))) {
printf("Found signature : %081X\n", ptr + idx);

inbuf = extract_encrypted_rdll(infile.data() + ptr + idx, len - idx);

break;

if (inbuf.size()) {
printf("size : %zd\n", inbuf.size());
RC4_CTX c;
BYTE key[8+1] = {0};
memcpy((char*)key, inbuf.data() + inbuf.size() - 400 - 8, 8);

//

// Decrypt RDLL. The additional 400 bytes are base64 configuration.
//

RC4_set_key(&c, key, 8);

RC4_crypt(&c, inbuf.data(), inbuf.size() - 400);

//
// Fix DOS header.
//

inbuf[0] 'M';
inbuf[1] '2';
WriteData(std::string(argv[1]) + ".d11l", inbuf);

}
} while (FALSE);
return 0,
}
Conclusion

In summary, we’ve highlighted a number of techniques to detect Brute Ratel both in its
artifacts, in-memory, through threat hunting and across the network. As this framework grows
in popularity with threat actors, it is important to understand the many ways in which it can be
detected. As a side note, we have also illustrated how the framework takes close inspiration
from the many available open source community tools; knowledge of these can assist in
reverse engineering the framework and provide a better understanding of its capabilities (and
by virtue its detection points).

This blog post was written Dominic Chell.

written by

MDSec Research

Ready to engage
with MDSec?

Get in touch
Stay updated with the latest
news from MDSec.

Newsletter Signup Form

43/43

https://twitter.com/domchell
https://www.mdsec.co.uk/contact

