
1/10

July 26, 2022

ML Detection of Risky Command Exploit
splunk.com/en_us/blog/security/ml-detection-of-risky-command-exploit.html

 By Splunk Threat Research Team July 26,

2022

https://www.splunk.com/en_us/blog/security/ml-detection-of-risky-command-exploit.html
https://www.splunk.com/en_us/blog/author/secmrkt-research.html
https://www.splunk.com/en_us/blog/author/secmrkt-research.html

2/10

As described in Splunk Vulnerability Disclosure SVD-2022-0624, there is a list of SPL
(Search Processing Language) commands that are classified as risky. This is because
incorrect use of these risky commands may lead to a security breach or data loss.

As a precautionary measure, the Splunk Search app pops up a dialog, alerting users before
executing these commands whenever these commands are called. However, there are
scenarios where this safeguard measure can be bypassed, leaving a vulnerability to
malicious users to exploit these risky commands to gain higher privilege, to collect security
data or to delete data queried.

Although rules can be defined to find these risky command searches, it is difficult, if not
impossible, to identify the searches that maliciously exploit these vulnerabilities without
incurring large amounts of false positives. It is therefore desirable to develop methods to
detect such risky command misuse or abuse using machine learning (ML) algorithms — in
addition to rule intelligence detections — to further pinpoint a true threat.

One of the targets of malicious exploits of these risky commands is to exfiltrate data.
Expecting an unusually long run time compared with benign searches containing risky
commands, we therefore can assume that the search time anomaly is an indicator of the
exploit of risky command vulnerability from attackers. Based on this assumption, we
developed a machine learning approach to model users’ behavior of search run time with
risky commands and detect such anomalies to alert analysts of possible threats.

This is accomplished by using the time spent executing one of these risky commands as a
proxy for misuse/abuse of interest during an investigation and/or hunting. The detection
builds a model utilizing the MLTK DensityFunction algorithm on Splunk app audit log data.
The model is trained from users' historical reference of running the risky commands, and
then the total search run time of executing these commands in each hour is aggregated as
an indicator of user behavior to perform anomaly detection.

Implementation

We build our detection based on Splunk app audit data, specifically search activities in the
audit data model. The related data fields used in this detection are:

search: the search string
search_type: the type of the search
user: the name of the user who ran the search
total_run_time: the time used to run the search

Where ‘search’, ‘search_type’ and ‘user’ fields are used as filters to narrow the detection
scope to be correlated with risky command vulnerability exploits, and the ‘total_run_time’

https://www.splunk.com/en_us/product-security/announcements/svd-2022-0604.html
https://docs.splunk.com/Documentation/Splunk/latest/Security/SPLsafeguards#Commands_that_trigger_the_warning
https://docs.splunk.com/Documentation/Splunk/9.0.0/Search/WhatsinSplunkSearch
https://docs.splunk.com/Documentation/MLApp/5.3.1/User/Algorithms#:~:text=or%20categorical%20fields.-,DensityFunction,-The%20DensityFunction%20algorithm

3/10

field is used to model user behavior. We process the log by ‘bin’ command to aggregate
them into hourly intervals to suppress noise. This operation can generate another numerical
field ‘count: the number of runs’.

Exploring the data closely, we notice that the trend of these two numerical variables is
heavily correlated to each other as shown in the below figure because both are derived
from the same log events, we thus choose ‘total_run_time’ as a single indicator. In this way,
we can use MLTK DensityFunction as our underlined algorithm since at the current time this
algorithm works only for univariate data.

In our detection, the ‘total_run_time’ of past 7-day data is fed to the MLTK app ‘FIT’
command to train a baseline model of user behavior, along with ‘user’ as a ‘by’ clause to
create per-user models. The model can then be used to monitor new search activities
continuously.

By using ‘APPLY’ command to infer whether ‘total_run_time’ in the last hour of a user is an
anomaly, the model will alert a potential exploit of risky commands. The overall detection
flow is presented in the below diagram. The model identifies the top 0.1% of user search
run time, which signals a potential exploit of these risky commands. Users can adjust this
threshold to values higher or lower than 0.1% as needed to adjust the efficacy of the model
based on the acceptable true positive/false positive rates.

Users can also choose to modify baseline build intervals, currently set at 7 days, depending
on the search activity frequency in their environment. The principle is that the data points
used to build baseline should be large enough so that the baseline model represents users’
normal behavior.

https://docs.splunk.com/Documentation/MLApp/5.3.1/User/Algorithms

4/10

As shown in the above flow chart, our detection:

1. uses unsupervised machine learning algorithms, therefore no labeled data is required
to train the baseline models

2. builds a per-user baseline, therefore misuse is determined based on each user’s
behavior history data

Run time of search activities varies dramatically among users as shown in the below data
exploration sample where the standard deviation is as large as 779. The data distribution,
which determines normal behavior and impacts model performance, is unable to be
predefined before actual user data is collected, we therefore set the ‘dist’ parameter of
DensityFunction in our detection baseline training as ‘auto’ so that the algorithm can learn
the best distributions from each user’s behavior, though it will take much longer model
training time because the process will have to train a model for each distribution and select
the one with the best performance.

Users can modify earliest=-7d@d in the search to other values so that the search can
collect enough data points to build a good baseline model. Users can also modify a list of
risky commands in "Search_Activity.search IN" to better suit users' violation policy and their
usage environment.

5/10

Also, we set ‘lower_threshold’ to a tiny value (0.000001) so that the lower bound of the
anomaly is sufficiently close to zero and no search activity with short runtime will be wrongly
marked as positive.

| fit DensityFunction "run_time" dist=auto lower_threshold=0.000001
upper_threshold=0.001

To test our implemented detection, we manually implanted two anomalies into a
synthesized dataset of two users (one anomaly for each user). As shown in the below
figure, these two anomalies are reported in the inference stage and matched our
expectation.

Applications

The corresponding detection in ESCU is "Splunk Command and Scripting Interpreter Risky
SPL MLTK". To use this detection, Splunk accelerated audit data model must be available.
Detection should be scheduled to run hourly to detect whether a user has run searches
containing risky SPL with abnormally long running time in the past one hour, compared with
his/her past seven days history. This detection depends on the MLTK App that should be
installed before running this detection. The list of apps this detection depends on:

Splunk Machine Learning Toolkit
Splunk Common Information Model

https://github.com/splunk/attack_data/raw/master/datasets/attack_techniques/T1203/search_activity.txt
https://splunkbase.splunk.com/app/2890/

6/10

Python for Scientific Computing

The name of the machine learning model generated by this detection’s baseline training is
"risky_command_abuse" and should be configured to be globally shared (not private) in the
MLTK app as described in the MLTK document unless the same account of training this
model will be used to perform inference using this model for anomaly detection.

For large enterprises, for example where more than 1,000 users will actively run Splunk
searches, training the baseline model might take significant computing resources and might
require a dedicated search head. Default settings of this detection’s underlying
DensityFunction algorithm within MLTK App may need to increase to achieve optimal
performance as described in the section Configuring DensityFunction parameters section in
the manual for MLTK App, especially for these parameters:

max_fit_time: maximum time allowed to run FIT command to train baseline models
max_groups: maximum number of users who run searches with risky commands
min_data_size_to_fit: minimum number of data points to train a baseline

https://docs.splunk.com/Documentation/MLApp/5.3.1/User/Models#Sharing_models_from_other_Splunk_apps
https://docs.splunk.com/Documentation/MLApp/5.3.1/User/Configurefitandapply

7/10

Learn More

If you would like to adopt this detection, you can get the corresponding baseline and
detection YAML file from the Splunk Security Content GitHub repository.

Type Name Technique ID Tactic Description

https://github.com/splunk/security_content

8/10

Baseline Splunk
Command
and
Scripting
Interpreter
Risky SPL
MLTK
Baseline

T1059 Execution This YML is to build
baseline models for
risky command exploit
detection from user’s
past 7 days’ search
activities using total
search run time as user
behavior indicator.

Anomaly Splunk
Command
and
Scripting
Interpreter
Risky SPL
MLTK

This YML is to utilize the
baseline models and
infer whether the search
in the last hour is
possibly an exploit of
risky commands.

More
Related
Detections

Hunting Splunk
Command
and Scripting
Interpreter
Risky
Commands

T1059 Execution This YML file
is to hunt for
ad-hoc
searches
containing
risky
commands
from non-
administrative
users.

Anomaly Splunk
Comma and
Scripting
Interpreter
Delete
Usage

This YML is to identify the use
of the risky command
‘DELETE’ that may be utilized
in Splunk to delete some or all
data being queried.

Anomaly Detect Risky
SPL using
Pretrained
ML Model

This YML is to use a pre-
trained machine learning text
classifier to detect potentially
risky commands.

Feedback

https://github.com/splunk/security_content/blob/develop/baselines/splunk_command_and_scripting_interpreter_risky_spl_mltk_baseline.yml
https://attack.mitre.org/techniques/T1059/
https://github.com/splunk/security_content/blob/develop/detections/application/splunk_command_and_scripting_interpreter_risky_spl_mltk.yml
https://github.com/splunk/security_content/blob/develop/detections/application/splunk_command_and_scripting_interpreter_risky_commands.yml
https://attack.mitre.org/techniques/T1059/
https://github.com/splunk/security_content/blob/develop/detections/application/splunk_command_and_scripting_interpreter_delete_usage.yml
https://github.com/splunk/security_content/blob/develop/detections/application/detect_risky_spl_using_pretrained_ml_model.yml

9/10

Any feedback or requests? Feel free to put in an issue on GitHub and we’ll follow up.
Alternatively, join us on the Slack channel #security-research. Follow these instructions If
you need an invitation to our Splunk user groups on Slack.

Acknowledgments

We would like to thank the following for their contribution to this post and corresponding
detections:

Abhinav Mishra
Eric McGinnis
Glory Avina
Jose Hernandez
Kumar Sharad
Michael Haag
Rod Soto
Xiao Lin

Posted by

Splunk Threat Research Team

The Splunk Threat Research Team is an active part of a customer’s overall defense
strategy by enhancing Splunk security offerings with verified research and security content
such as use cases, detection searches, and playbooks. We help security teams around the
globe strengthen operations by providing tactical guidance and insights to detect,
investigate and respond against the latest threats. The Splunk Threat Research Team

https://splunk-usergroups.slack.com/
https://docs.splunk.com/Documentation/Community/1.0/community/Chat
https://www.splunk.com/en_us/blog/author/secmrkt-research.html

10/10

focuses on understanding how threats, actors, and vulnerabilities work, and the team
replicates attacks which are stored as datasets in the Attack Data repository.

Our goal is to provide security teams with research they can leverage in their day to day
operations and to become the industry standard for SIEM detections. We are a team of
industry-recognized experts who are encouraged to improve the security industry by
sharing our work with the community via conference talks, open-sourcing projects, and
writing white papers or blogs. You will also find us presenting our research at conferences
such as Defcon, Blackhat, RSA, and many more.

Read more Splunk Security Content.

https://github.com/splunk/attack_data/
https://github.com/splunk/security_content

