
1/17

July 20, 2022

Analysis of a trojanized jQuery script: GootLoader
unleashed

blog.nviso.eu/2022/07/20/analysis-of-a-trojanized-jquery-script-gootloader-unleashed/

In this blog post, we will perform a deep analysis into GootLoader, malware which is known
to deliver several types of payloads, such as Kronos trojan, REvil, IcedID, GootKit payloads
and in this case Cobalt Strike.

In our analysis we’ll be using the initial malware sample itself together with some malware
artifacts from the system it was executed on. The malicious JavaScript code is hiding within
a jQuery JavaScript Library and contains about 287kb of data and consists of almost 11.000
lines of code. We’ll do a step-by-step analysis of the malicious JavaScript file.

TLDR techniques we used to analyze this GootLoader script:

1. Stage 1: A legitimate jQuery JavaScript script is used to hide a trojan downloader:
 Several new functions were added to the original jQuery script. Analyzing these

functions would show a blob of obfuscated data and functions to deobfuscate this blob.

https://blog.nviso.eu/2022/07/20/analysis-of-a-trojanized-jquery-script-gootloader-unleashed/

2/17

2. The algorithm used for deobfuscating this blob (trojan downloader):
1. For each character in the obfuscated data, assess whether it is at an even or

uneven position (index starting at 0)
1. If uneven, put it in front of an accumulator string
1. If even, put it at the back of the accumulator string
1. The result is more JavaScript code

3. Attempt to download the (obfuscated) payload from one of three URLs listed in the
resulting JavaScript code.

1. This failed due to the payload not being served anymore and we resorted to
make an educated guess to search for an obfuscated (as defined in the previous
output) “createobject” string on VirusTotal with the “content” filter, which resulted
in a few hits.

4. Stage 2: Decode the obfuscated payload
1. Take 2 digits
1. Convert these 2 decimal digits to an integer
1. Add 30
1. Convert to ASCII
1. Repeat till the end
1. The result is a combination of JavaScript and PowerShell

5. Extract the JavaScript, PowerShell loader, PowerShell persistence and analyze it to
extract the obfuscated .NET loader embedded in the payload

6. Stage 3: Analyze the .NET loader to deobfuscate the Cobalt Strike DLL
7. Stage 4: Extract the config from the Cobalt Strike DLL

Stage 1 – sample_supplier_quality_agreement 33187.js

Filename: sample_supplier_quality_agreement 33187.js
 MD5: dbe5d97fcc40e4117a73ae11d7f783bf

 SHA256: 6a772bd3b54198973ad79bb364d90159c6f361852febe95e7cd45b53a51c00cb
 File Size: 287 KB

To find the trojan downloader inside this JavaScript file, the following grep command was
executed:

grep -P "^[a-zA-Z0-9]+\("

Fig 1. The function “hundred71(3565)” looks out of place here
This grep command will find entry points that are calling a JavaScript function outside any
function definition, thus without indentation (leading whitespace). This is a convention that
many developers follow, but it is not a guarantee to quickly find the entry point. In this case,

3/17

the function call hundred17(3565) looks out of place in a mature JavaScript library like
jQuery.

When tracing the different calls, there’s a lot of obfuscated code, the function “color1” is
observed Another way to figure out what was changed in the script could be to compare it to
the legitimate version[1] of the script and “diff” them to see the difference. The legitimate
script was pulled from the jQuery website itself, based on the version displayed in the
beginning of the malicious script.

Fig 2. The version of the jQuery JavaScript Library displayed here was used to fetch the
original
Before starting a full diff on the entire jQuery file, we first extracted the functions names with
the following grep command:

grep 'function [0-9a-zA-Z]'

This was done for both the legitimate jQuery file and the malicious one and allows us to
quickly see which additional functions were added by the malware creator. Comparing these
two files immediately show some interesting function names and parameters:

4/17

Fig 3.

Many functions were added by the malware author as seen in this screenshot
A diff on both files without only focusing on the function names gave us all the added code
by the malware author.

Color1 is one of the added functions containing most of the data, seemingly obfuscated,
which could indicated this is the most relevant function.

Fig 4. Out of all the added functions, “color1()” contains the most amount of data
The has6 variable is of interest in this function, as it combines all the previously defined
variables into 1:

Further tracing of the functions eventually leads to the main functions that are responsible for
deobfuscating this data: “modern00” and “gun6”

Fig 5. Function modern00, responsible for part of the deobfuscation algorithm

5/17

Fig 6. Function gun6, responsible for the modulo part of the deobfuscation algorithm
The deobfuscation algorithm is straightforward:

For each character in the obfuscated string (starting with the first character), add this
character to an accumulator string (initially empty). If the character is at an uneven position
(index starting from 0), put it in front of the accumulator, otherwise put it at the back. When all
characters have been processed, the accumulator will contain the deobfuscated string.

The script used to implement the algorithm would look similar to the following written in
Python:

Fig 7. Proof of concept Python script to display how the algorithm functions

Fig 8. Running the deobfuscation script displays readable code
CreateObject, observed in the deobfuscated script, is used to create a script execution object
(WScript.Shell) that is then passed the script to execute (first script). This script (highlightd in
white) is also obfuscated with JavaScript obfuscation and the same script obfuscation that
was observed in the first script.

6/17

Deobfuscating that script yields a second JavaScript script. Following, is the second script,
with deobfuscated strings and code, and “pretty-printed”:

Fig 9. Pretty printed deobfuscated code
This script is a downloader script, attempting to initiate a download from 3 domains.

www[.]labbunnies[.]eu
www[.]lenovob2bportal[.]com
www[.]lakelandartassociation[.]org

The HTTPS requests have a random component and can convey a small piece of
information: if the request ends with “4173581”, then the request originates from a Windows
machine that is a domain member (the script determines this by checking for the presence of
environment variable %USERDNSDOMAIN%).

The following is an example of a URL:
 hxxps://www[.]labbunnies[.]eu/test[.]php?cmqqvfpugxfsfhz=71941221366466524173581

If the download fails (i.e., HTTP status code different from 200), the script sleeps for 12
seconds (12345 milliseconds to be precise) before trying the next domain. When the
download succeeds, the next stage is decoded and executed as (another) JavaScript script.
Different methods were attempted to download the payload (with varying URLs), but all
methods were unsuccessful. Most of the time a TCP/TLS connection couldn’t be established
to the server. The times an HTTP reply was received, the body was empty (content-length 0).
Although we couldn’t download the payload from the malicious servers, we were able to
retrieve it from VirusTotal.

Stage 2 – Payload

7/17

We were able to find a payload that we believe, with high confidence, to be the original stage
2. With high confidence, it was determined that this is indeed the payload that was served to
the infected machine, more information on how this was determined can be found in the
following sections. The payload, originally uploaded from Germany, can be found here:
https://www.virustotal.com/gui/file/f8857afd249818613161b3642f22c77712cc29f30a6993ab6
8351af05ae14c0f

MD5: ae8e4c816e004263d4b1211297f8ba67
 SHA-256: f8857afd249818613161b3642f22c77712cc29f30a6993ab68351af05ae14c0f

 File Size: 1012.97 KB

The payload consists of digits. To decode it, take 2 digits, add 30, convert to an ASCII
character, and repeat this till the end of the payload. This deobfuscation algorithm was
deduced from the previous script, in the last step:

Fig 10. Stage 2 acquired from VirusTotal

https://www.virustotal.com/gui/file/f8857afd249818613161b3642f22c77712cc29f30a6993ab68351af05ae14c0f

8/17

Fig 11. Deobfuscation algorithm for stage 2
As an example, we’ll decode the first characters of the strings in detail: 88678402

1. 88 –> 88+30 = 118

Fig 12. ASCII value 118 equals the letter v
1. 67 –> 67 + 30 = 97

9/17

Fig 13. ASCII value 97 equals the letter a
1. 84 –> 84 + 30 = 114

Fig 14. ASCII value 114 equals the letter r
1. 02 –> 02+30 = 32

10/17

Fig 15. ASCII value 32 equals the symbol “space”
This results in: “var “, which indicates the declaration of a variable in JavaScript. This means
we have yet another JavaScript script to analyze.

 To decode the entire string a bit faster we can use a small Python script, which will automate
the process for us:

Fig 16. Proof of concept Python script to display how the algorithm functions
First half of the decoded string:

11/17

Fig 17. Output of the deobfuscation script, showing the first part
Second half of the decoded string:

Fig 18. Output of the deobfuscation script, showing the second part
The same can be done with the following CyberChef recipe, it will take some time, due to the
amount of data, but we saw it as a small challenge to use CyberChef to do the same.

#recipe=Regular_expression('User%20defined','..',true,true,false,false,false,false,'Li

12/17

Fig 19. The CyberChef recipe in action
The decoded payload results in another JavaScript script.

 MD5: a8b63471215d375081ea37053b52dfc4
 SHA256: 12c0067a15a0e73950f68666dafddf8a555480c5a51fd50c6c3947f924ec2fb4

 File size: 507 KB

The JavaScript script contains code to insert an encoded PE file (unmanaged code) and
create a key with as value as encoded assembly
(“HKEY_CURRENT_USER\SOFTWARE\Microsoft\Phone”) and then launches 2 PowerShell
scripts. These 2 PowerShell scripts are fileless, and thus have no filename. For referencing
in this document, the PowerShell scripts are named as follows:

1. powershell_loader: this PowerShell script is a loader to execute the PE file injected into
the registry

2. powershell_persistence: this PowerShell script creates a scheduled task to execute the
loader PowerShell script (powershell_loader) at boot time.

13/17

Fig 20. Deobfuscated & pretty-printed JavaScript script found in the decoded payload
A custom script was utilized to decode this payload as a whole and extract all separate
elements from it (based on the reverse engineering of the script itself). The following is the
output of the custom script:

Fig 21. Output of the custom script parsing all the components from the deobfuscated
All the artifacts extracted with this script match exactly with the artifacts recovered from the
infected machine. These can be verified with the fileless artifacts extracted from Defender
logs, with matching cryptographic hash:

14/17

Stage 2 SHA256 Script:
12c0067a15a0e73950f68666dafddf8a555480c5a51fd50c6c3947f924ec2fb4
Stage 2 SHA256 Persistence PowerShell script (powershell_persistence):
48e94b62cce8a8ce631c831c279dc57ecc53c8436b00e70495d8cc69b6d9d097
Stage 2 SHA256 PowerShell script (powershell_loader) contained in Persistence
PowerShell script:
c8a3ce2362e93c7c7dc13597eb44402a5d9f5757ce36ddabac8a2f38af9b3f4c
Stage 3 SHA256 Assembly:
f1b33735dfd1007ce9174fdb0ba17bd4a36eee45fadcda49c71d7e86e3d4a434
Stage 4 SHA256 DLL:
63bf85c27e048cf7f243177531b9f4b1a3cb679a41a6cc8964d6d195d869093e

Based on this information, it can be concluded, with high confidence, that the payload found
on VirusTotal is identical to the one downloaded by the infected machine: all hashes match
with the artifacts from the infected machine.

In addition to the evidence these matching hashes bring, the stage 2 payload file also ends
with the following string (this is not part of the encoded script):
@83290986999722234173581@. This is the random part of the URL used to request this
payload. Notice that it ends with 4173581, the unique number for domain joined machines
found in the trojanized jQuery script.

Payload retrieval from VirusTotal

Although VirusTotal has reports for several URLs used by this malicious script, none of the
reports contained a link to the actual downloaded content. However, using the following
query: content:”378471678671496876716986″, the download content (payload) was found
on VirusTotal; This string of digits corresponds to the encoding of string “CreateObject”. (see
Fig. 20)

In order to attempt the retrieval of the downloaded content, an educated guess was made
that the downloaded payload would contain calls to function CreateObject, because such
functions calls are also present in the trojanized jQuery script. There are countless files on
VirusTotal that contain the string “CreateObject”, but in this particular case, it is encoded with
an encoding specific to GootLoader. Each letter of the string “CreateObject” is encoded to its
numerical representation (ASCII code), and subtracted with 30. This returns the string
“378471678671496876716986”.

Stage 3 – .NET Loader

MD5 Assembly: d401dc350aff1e3fd4cc483238208b43
 SHA256 Assembly:

f1b33735dfd1007ce9174fdb0ba17bd4a36eee45fadcda49c71d7e86e3d4a434

15/17

File Size: 13.50 KB

This .NET loader is fileless and thus has no filename.

The PowerShell loader script (powershell_loader)

1. extracts the .NET Loader from the registry
2. decodes it
3. dynamically loads & executes it (i.e., it is not written to disk).

The .NET Loader is encoded in hexadecimal and stored inside the registry. It is slightly
obfuscated: character # has to be replaced with 1000.

The .NET loader:

1. extracts the DLL (stage 4) from the registry
2. decodes it
3. dynamically loads & executes it (i.e., it is not written to disk).

The DLL is encoded in hexadecimal, but with an alternative character set. This is translated
to regular hexadecimal via the following table:

Fig 22. “Test” function that decodes the DLL by using the replace
This Test function decodes the DLL and executes it in memory. Note that without the .NET
loader, statistical analysis could reveal the DLL as well. A blog post[2], written by our
colleague Didier Stevens on how to decode a payload by performing statistical analysis can
offer some insights on how this could be done.

Stage 4 – Cobalt Strike DLL

16/17

MD5 DLL: 92a271eb76a0db06c94688940bc4442b
SHA256 DLL: 63bf85c27e048cf7f243177531b9f4b1a3cb679a41a6cc8964d6d195d869093e

This is a typical Cobalt Strike beacon and has the following configuration (extracted with
1768.py)

Fig 23. 1768.py by DidierStevens used to detect and parse the Cobalt Strike beacon
Now that Cobalt Strike is loaded as final part of the infection chain, the attacker has control
over the infected machine and can start his reconnaissance from this machine or make use
of the post-exploitation functionality in Cobalt Strike, e.g. download/upload files, log
keystrokes, take screenshots, …

Conclusion

The analysis of the trojanized jQuery JavaScript confirms the initial analysis of the artifacts
collected from the infected machine and confirms that the trojanized jQuery contains
malicious obfuscated code to download a payload from the Internet. This payload is
designed to filelessly, and with boot-persistence, instantiate a Cobalt Strike beacon.

About the authors

Didier
Stevens

Didier Stevens is a malware expert working for NVISO. Didier is a SANS
Internet Storm Center senior handler and Microsoft MVP, and has developed
numerous popular tools to assist with malware analysis. You can find Didier
on Twitter and LinkedIn.

https://twitter.com/DidierStevens
https://be.linkedin.com/in/didierstevens

17/17

Sasja
Reynaert

Sasja Reynaert is a forensic analyst working for NVISO. Sasja is a GIAC
Certified Incident Handler, Forensics Examiner & Analyst (GCIH, GCFE,
GCFA). You can find Sasja on LinkedIn.

You can follow NVISO Labs on Twitter to stay up to date on all our future research and
publications.

[1]:https://code.jquery.com/jquery-3.6.0.js
 [2]:https://blog.didierstevens.com/2022/06/20/another-exercise-in-encoding-reversing/

https://www.linkedin.com/in/sasjareynaert/
https://twitter.com/NVISO_Labs
https://code.jquery.com/jquery-3.6.0.js
https://blog.didierstevens.com/2022/06/20/another-exercise-in-encoding-reversing/

