
1/7

Matt Morrow July 19, 2022

Sucuri Blog
blog.sucuri.net/2022/07/prestashop-skimmer-concealed-in-one-page-checkout-module.html

PrestaShop is a popular freemium open source e-commerce platform used by hundreds of
thousands of webmasters to sell products and services to website visitors. While
PrestaShop’s CMS market share is only 0.8%, it should still come as no surprise that
attackers have been crafting malware to specifically target environments who use this
software.

In this post, I’ll document how I recently came across an infected PrestaShop website
containing an interesting injection found overriding the site’s existing credit card payment
form — and outline the steps you can take to protect your site from these types of attacks.

Script Injected Into payment.tpl

As I launched my investigation, I noted that the website owner was using the One Page
Checkout module which allows website owners to configure and compile popular ecommerce
features on the purchase page, including functionalities for personalization, shipping and
billing details, and order summaries.

Inspecting the site revealed a script injection located within the module in
modules/onepagecheckoutps/views/templates/front/payment.tpl.

This js/dfsasdf3124sfcad2.js script was found injected on the payment.tpl file and
appeared to load every time a user navigated to the purchase process:

https://blog.sucuri.net/2022/07/prestashop-skimmer-concealed-in-one-page-checkout-module.html
https://w3techs.com/technologies/overview/content_management

2/7

A cursory review of this dfasdf3124sfcad2.js file revealed some obfuscated code, which
immediately piqued my curiosity.

Once decoded, results unveiled a customized fake payment form which was being inserted
into the checkout process to override the legitimate form.

The overlaid form did not appear to contain any suspicious features or typos which might flag
a victim’s attention as they’re navigating the infected site.

3/7

Let’s examine how the injection works.

The checkout page loads the legitimate
modules/onepagecheckoutps/views/js/front/onepagecheckoutps.js file which happens to
contain the following obfuscated injection.

Once decoded, the injection reveals itself to belong to a credit card skimmer.

4/7

As seen above on line 24, the malicious JavaScript skims the data from the payment form,
base64-encodes it, and then sends it to the site’s own /index.php?pop=7.

While the /index.php file is not infected per se, it is the main PrestaShop file responsible for
loading the rest of the CMS scripts on the website — including
controllers/front/IndexController.php and classes/tools.php which happen to contain the
server-side part of the malware.

Let’s take a look at how the attacker processes and exfiltrates the stolen credit card data.

A single line of malicious code found injected in IndexController.php file is responsible for
checking and intercepting requests for payment details before passing them along for
processing. You can see it below on line 40.

This malicious code is used to detect requests containing credit card details by checking the
pop= request parameter. If pop=7, the malware activates the function that processes the
stolen data by calling the Tools::redirectErrorPage() that is defined by the attacker in

5/7

classes/tools.php.

The redirectErrorPage() function first encrypts the data using openssl_public_encrypt
with the attacker’s public key. It then initiates a curl request to exfiltrate the harvested credit
card information to hxxps://fastfixtuning[.]nl/cache/cache.php via POST request.

To make detection and troubleshooting more challenging for the website owner, the malware
sets the following cookie and displays the warning “Selected payment method is currently
unavailable, please try again.” as soon as the payment details have been stolen:

Presta_Shop=433e5179e5aa1923.1653055359.1.1653055379.1653055359

Once set, users with this cookie will no longer see the fake payment form during the
checkout process.

Website Backdoor in config/alias.php

Attackers regularly plant backdoors in compromised environments to maintain access long
after the initial infection has occurred. Backdoors can come in a variety of flavors — and may
use HTTP requests to upload files and web shells or remotely execute code.

During our analysis, we also found the following line of code in the website’s
config/alias.php file.

https://blog.sucuri.net/2022/05/examining-emerging-backdoors.html

6/7

While small and easily confused for normal code, this snippet allows the attacker to upload a
webshell or execute malicious code in a POST request onto the compromised environment.

It’s worth noting that while the eval function itself isn’t malicious, searching for eval(can in
fact help you identify many backdoors on your website; attackers regularly use this method
to inject malicious content or run malicious code on the server. But since backdoors come in
so many shapes and sizes, it’s not likely to find everything.

Attack & Exfiltration Sequence

Our analysis revealed five distinct parts to this skimming attack.

1. Initial injection into the compromised environment.
 The attacker injects malicious obfuscated dfasdf3124sfcad2.js script into the

payment.tpl file.
2. JavaScript creates and overlays form.

 The contents of dfasdf3124sfcad2.js create a fake form which is overlaid on top of the
existing checkout cart.

3. Second JavaScript skims data.
 A skimmer from onepagecheckoutps.js monitors changes in the payment form and

sends the payment details to the server-side part of the malware.
4. Injected code checks for parameter and activates function.

 A single line of malicious code injected into IndexController.php file checks and
intercepts POST requests containing payment details and activates the function
redirectErrorPage().

5. Function exfiltrates data to a third party server.
 The redirectErrorPage() function from tools.php encrypts harvested data then

initiates a curl request to send stolen credit card details to the hacker controlled
hxxps://fastfixtuning[.]nl/cache/cache.php via POST request.

Conclusion & Mitigation Steps

It’s not typical for the same skimmer to be found on thousands of websites. Credit card
skimming attacks are often highly targeted and customized campaigns — and we regularly
find malware hand-crafted for just one (or a small handful) of sites.

Attackers clearly went to great lengths to craft this swiper specifically for this particular
PrestaShop installation. The customized credit card form and handler function to process
stolen data along with obfuscation techniques and naming conventions to evade detection
showcase the steps that attackers will take to steal sensitive information from e-commerce
websites.

7/7

Fortunately, there are a number of initiatives you can take to protect your website, checkout
process, and customers from targeted skimmer attacks like these.

Always keep your website software updated with the latest patches.
 It cannot be stressed enough how important patching your software is. Regardless of

what CMS you use, you should always keep all of your website software up-to-date
with the latest patches and security updates — including modules, plugins, themes,
and core CMS.
Use strong passwords.

 Always use unique, complex passwords for your CMS, database, FTP/SSH, hosting
and cPanel accounts to protect against brute force and dictionary attacks.
Follow the principle of least privilege.

 Ensure that all user accounts are only assigned to their needed roles by following the
principle of least privilege.
Check your file integrity regularly.

 Monitoring for changes on your website is an important component of identifying
indicators of compromise. There are a number of tools you can use to alert you of any
unexpected changes to your website’s files or environment.
Use a web application firewall.

 Leverage a firewall to filter traffic between your server and visitors and virtually patch
known vulnerabilities in the event that you forget to patch an update.

As always, if you think your website has been hacked or may contain a credit card skimmer
and you need a hand cleaning it up, we’re here to help.

https://blog.sucuri.net/2017/04/the-principle-of-least-privilege.html
https://sucuri.net/website-hack-protection/

