
1/10

July 19, 2022

New Variant of QakBot Being Spread by HTML File
Attached to Phishing Emails

fortinet.com/blog/threat-research/new-variant-of-qakbot-spread-by-phishing-emails

Fortinet’s FortiGuard Labs captured a phishing email as part of a phishing campaign
spreading a new variant of QakBot. Also known as QBot, QuackBot, or Pinkslipbot, QakBot
is an information stealer and banking Trojan that has been captured and analyzed by
security researchers since 2007.

I performed a deep analysis on this phishing campaign and the new QakBot variant using the
captured email. In this analysis, you will learn how the attached HTML file leads to
downloading and executing the new QakBot variant, what actions it takes on the victim’s
device, and how it sends the collected data from the victim’s device to its C2 server.

https://www.fortinet.com/blog/threat-research/new-variant-of-qakbot-spread-by-phishing-emails

2/10

Affected platforms: Microsoft Windows
Impacted parties: Microsoft Windows Users

 Impact: Controls victim’s device and collects sensitive information
 Severity level: Critical

Phishing Email and the Attached HTML File

Figure 1.1 shows the phishing email used by hackers to lure the recipient into opening the
attached HTML file (ScannedDocs_1586212494.html). This phishing email has been marked
as SPAM by Fortinet’s FortiMail.

Figure 1.1 – Display of the captured phishing email

The HTML file contains a piece of javascript code that is automatically executed once it is
opened in a web browser by the recipient. It decodes a base64 string held by a local
variable. It then calls a built-in function, navigator.msSaveOrOpenBlob(), to save the base64
decoded data (a ZIP archive) to a local file named “ScannedDocs_1586212494.zip”. Figure
1.2 shows the defined variables with the base64 string and the ZIP file name.

Figure 1.2 – The javascript snippet code inside the HTML file

Figure 1.3 is a screenshot of a Microsoft Edge browser opening the HTML file. As you can
see, the ZIP archive has been automatically saved onto the victim’s device.

Figure 1.3 – The HTML file opened in the Microsoft Edge browser

Downloading and executing QakBot

Next, we’ll look at what’s inside the downloaded ZIP archive. It’s a Windows shortcut file –
“ScannedDocs_1586212494.lnk”. As you may know, a Windows shortcut file can execute
commands by putting them into the Target field. Figure 2.1 shows a screenshot of this
shortcut file and its properties.

Figure 2.1 – The Windows shortcut file and properties

The shortcut is disguised with a Microsoft Write icon to trick the victim into thinking it’s a safe
text file so they will open it. As for its properties, a group of commands in the target field will
be executed by “cmd.exe”. When the victim double clicks the file, the commands get
executed.

According to the commands found in Figure 2.1, it mainly runs “cURL” (Client URL) to
download a file from URL 194[.]36[.]191[.]227/%random%.dat into local file
“%ProgramData%\Flop\Tres.dod”. cURL is a popular Linux tool, but it has also been part of
Windows as a default program since Windows 10.

3/10

The downloaded file (“Tres.dod”) is a DLL file. By my analysis, it is a sort of QakBot’s loader
program. In this case, “regsvr32” is in charge of executing it using the command “regsvr32
%ProgramData%\Flop\Tres.dod”.

Figure 2.2 – A view of the QakBot Loader Module’s Resource section

The QakBot Loader Module (Tres.dod) that runs in “regsvr32.exe” loads a binary block from
its Resource section with the name “AAA”, as shown in Figure 2.2. It proceeds to decrypt the
binary block to get a fileless PE file and a piece of dynamic code that is a kind of self-
deployment function. It is then called by the Loader Module to deploy the fileless PE file,
which is the core module of QakBot, inside the “regsvr32” process. After the core module of
QakBot is deployed, the last task of the self-deployment function is to call its entry point.
Figure 2.3 explains how the self-deployment function calls the entry point of the QakBot core
module.

Figure 2.3 – Self-deployment function about to call the entry point of QakBot

Process Hollowing

Malware usually performs process hollowing to inject malicious code or modules into another
process. It does this to evade being detected.

Depending on the affected machine’s platform (32-bit or 64-bit) and installed anti-virus
software, QakBot will select a system process from a process list as the target process for
performing process hollowing. This list includes OneDriveSetup.exe, explorer.exe,
mobsync.exe, msra.exe, and iexplore.exe for this variant.

In my testing environment, it picked “OneDriveSetup.exe”. QakBot then calls the API
CreateProcessW() to start a new process using the creation flag CREATE_SUSPENDED so
it gets suspended at start. It can then modify its memory data, like carrying the QakBot core
module onto the newly-created “OneDriveSetup.exe” process by calling API
WriteProcessMemory(). Next, it modifies the code at the entry point of the new process to
jump to the injected core module. It eventually calls the API ResumeThread() to resume the
new process, and QakBot is then executed in the target process.

Figure 3.1 shows a process tree with all relevant processes from downloading QakBot
Loader (“curl.exe”) to “OneDriveSetup.exe”.

Figure 3.1 – Overview of the process tree for relevant processes

Anti-analysis technique

Before analyzing QakBot’s core module, let’s go through some of the anti-analysis
techniques that QakBot uses to prevent itself from being easily analyzed.

4/10

Constant strings are encrypted

Constant strings are useful information for researchers to analyze code. QakBot holds
encrypted constant strings, which are only decrypted by a particular function before using.
Figure 4.1 is an example of obtaining a constant string, "Mozilla/5.0 (Windows NT 6.1;
rv:77.0) Gecko/20100101 Firefox/77.0", through the function at 609DD8 by string index
0xA8.

Figure 4.1 – Example of one decrypted constant string by a function

Dynamically obtaining key Windows APIs

Most Windows APIs are obtained during QakBot run-time. It is hard to guess which API is
called until executing the instruction. Below is an instance of calling the API CreateThread(),
where dword_61F818 is a dynamically loaded function table, whose offset +74H is the
function of CreateThread().

xor ecx, ecx
 lea eax, [ebp+var_4]

 push eax
 mov eax, dword_61F818 ; Function table of Kernel32.dll

 push ecx
 push ecx
 push offset thread_fun

 push ecx
 push ecx

mov [ebp+var_4], ecx
 call dword ptr [eax+74h] ; =>; CreateThread

 mov dword_61F83C, eax
 test eax, eax

Detecting Analysis Tools

QakBot has a thread function that checks once per second to see if any analysis tool is
running on the affected machine. To do this, it predefines a process name list of some
analysis tools, which of course, is a decrypted constant string. Once any of them matches
one of the running processes, it will affect QakBot’s workflow (say, never connecting to a C2
server).

Here is the predefined process name list:

frida-winjector-helper-32.exe, frida-winjector-helper-64.exe,
tcpdump.exe,windump.exe, ethereal.exe, wireshark.exe, ettercap.exe;rtsniff.exe,
packetcapture.exe, capturenet.exe, qak_proxy;dumpcap.exe, CFF Explorer.exe,
not_rundll32.exe, ProcessHacker.exe, tcpview.exe, filemon.exe,

5/10

procmon.exe;idaq64.exe, PETools.exe, ImportREC.exe, LordPE.exe, SysInspector.exe,
proc_analyzer.exe, sysAnalyzer.exe, sniff_hit.exe, joeboxcontrol.exe,
joeboxserver.exe, ResourceHacker.exe, x64dbg.exe, Fiddler.exe, sniff_hit.exe,
sysAnalyzer.exe

According to the above process list, I determined that the analysis tools include, but are not
limited to:

Joe Sandbox, TcpDump, WinPcap, Wireshark, Ettercap, PacketCapture, CaptureNet,
CFF Explorer, ProcessHacker, TcpView, FileMon, ProcMon, IDA pro, PETools,
ImportREC, LordPE, SysInspector, SysAnalyzer, ResourceHacker, x64dbg, and
Fiddler.

QakBot’s Core Module Connects to C2 Server

As long as the QakBot core module is resumed in the target process (such as
“OneDriveSetup.exe”), it starts using another entry function other than the one in
regsvr32.exe.

As per QakBot tradition, it uses many threads to perform its tasks. One is to collect
information about the affected device and send it to its C2 server.

The core module has two binary data blocks in its Resource section, named “102” and “103”.
The data of Resource “103” is an RC4 encrypted configuration. After decryption, it is the
string “10=obama189\r\n3=1655107308\r\n”. “obama189” is a QakBot ID of this variant, and
“1655107308” is a Unix Epoch time.

The “102” Resource data is an RC4 encrypted C2 server list.
“\System32\WindowsPowerShel1\v1.0\powershel1.exe” is a constant string that generates
an Rc4 key buffer to decrypt the C2 server data.

Figure 5.1 – Screenshot of partially decrypted “102” Resource

The top section of Figure 5.1 shows it was about to call the API FindResourceW with the
Resource name “102”, while the bottom section is a partial list of the decrypted binary IP and
Port of the C2 server. There are 123 IP and Port pairs inside this variant.

QakBot goes through all listed C2 servers, one by one, until a connection is established. It
then sends the victim registry packet (the first packet) to that C2 server to register the victim.
The plain text of the registry packet is:

 “{\”2\”:\”hrzpxm292261\”,\”8\”:9,\”1\”:18}”

6/10

The keys are string numbers, like “2”, “8”, and “1”. The value of “2” is “hrzpxm292261” (the
victim’s ID) that was generated using hardware information, the value of key “8” specifies the
packet type (it’s 9 for this packet), and “1”’s value is 18, which is the QakBot version.

The packet is RC4 encrypted and then encoded as a string using a base64 algorithm. All the
packets between QakBot and the C2 server are sealed in a JSON structure.

It then sends the data to its C2 server using the HTTP Post method with URL “/t4” and the
base64 encoded registry data as the body and being transported over SSL protocol. Figure
5.2 shows a screenshot of an analysis tool with the sent packet on the left and response data
on the right.

Figure 5.2 – The view of the registry packet in an analysis tool

It takes the reverse path to restore the response data to plain text, which is base64 decoding
and RC4 decryption.

“{\”8\”:5,\”16\”:3257495567,\”39\”:\”vLLO\”,\”38\”:1}” is the plain text for this case, which will
set or update the value of some local variables.

Sending Sensitive Data to the C2 Server

QakBot collects sensitive data from the victim’s device and sends it to its C2 server. Similarly,
the hacker could transfer corresponding sub-modules to the QakBot client to be executed on
the victim’s device.

QakBot leverages Windows APIs, Windows commands, and WMI Query Language (WQL) to
obtain the information. Below are the details.

Window APIs

API Function Description

GetVersionEx() Windows edition information, including build number, such
as “10.0.1.19043.0.0.0100” for my testing system running
Windows 10.

GetComputerNameW() Computer name, like “DESKTOP-P952NC4”.

GetSystemMetrics() Obtain screen size (width and height).

NetGetJoinInformation() Retrieve the AD Domain, like “WORKGROUP”.

7/10

LookupAccountSidW() The User name.

GetSystemInfo() Processor Architecture.

CreateToolhelp32Snapshot(),

Process32FirstW(),
Process32NextW()

Obtain running process information.

GetModuleFileNameW() The full path of QakBot and the full path of the target
process.

CreatProcessW() Execute Windows commands.

WMI Object Query

Query String Description

SELECT * FROM
Win32_OperatingSystem

OS information.

SELECT * FROM AntiVirusProduct Obtain the installed AntiVirus software, like
Microsoft Defender or FortiClient.

SELECT * FROM Win32_Processor CPU processor information.

SELECT * FROM
Win32_ComputerSystem

System environment information, like Model,
Domain, Manufacturer, etc.

SELECT * FROM Win32_Bios Device’s BIOS information.

SELECT * FROM Win32_DiskDrive Hard disk information, like Partitions, Size,
and Model.

SELECT * FROM Win32_PhysicalMemory Physical RAM sticks’ detailed information,
such as capacity, clock speed, and channel.

8/10

SELECT
Caption,Description,Vendor,Version,

InstallDate,InstallSource,PackageName
FROM Win32_Product

Installed software information.

SELECT Caption,Description,DeviceID,

Manufacturer,Name,PNPDeviceID,Service,

Status

FROM Win32_PnPEntity

Properties of Plug and Play devices, like
Keyboard, Mouse, CD-ROM, Network
adapter, and more.

Windows Commands

Commands Description

"ipconfig /all" All TCP/IP network configuration values.

"nslookup -querytype=ALL -
timeout=12 _ldap._tcp.dc._msdcs.%s"

Query SRV records for the domain from the main
DNS server of the victim’s device.

"nltest /domain_trusts /all_trusts" Enumerating domain trusts.

"net share" Shared resources and names.

"route print" Active routes’ tables.

"netstat -nao" Active connections in the victim’s device.

"net localgroup" Local groups information.

"qwinsta" Active sessions on the victim’s device.

"arp -a" Information about ARP entries.

"net view /all" Display all the shares on a remote computer.

9/10

Once QakBot has collected all the information shown in the above tables, it seals the
information inside a packet with packet type “8”:4. Figure 6.1 shows the JSON data of this
packet, which was about to call the RC4 encryption function.

Figure 6.1 – Plain text of packet “8”:4 with sensitive information

Although this QakBot successfully established connections with its C2 server, I have not
received any sub-modules. I’m still monitoring the communication and will update this
analysis if I get something interesting.

Conclusion

According to this analysis, I proved that an attached HTML file is no safer than any other
risky files (like MS Word, MS Excel, PDF, and so on). You have to be extra cautious when
receiving emails with attachments.

I then explained how the HTML file drops a ZIP archive through a piece of auto-execution
JavaScript code. Later, I focused on how a disguised Windows shortcut file downloads the
loader module of QakBot.

You also learned what the loader module does to decrypt and deploy the core module of
QakBot in a picked target process (“OneDriveSetup.exe” for this time).

And finally, we walked through QakBot starting threads to connect to its C2 server using an
IP address and port pair chosen from a C2 server list that had been decrypted from its
Resource “102”, as well as what sensitive data it retrieved from the victim’s device and then
submitted to its C2 server..

Fortinet Protections

Fortinet customers are already protected from this malware through FortiGuard’s Web
Filtering, AntiVirus, FortiMail, FortiClient, and FortiEDR services, as follows:

The phishing email was detected as "SPAM" by the FortiMail service.

The URL to download QakBot and its C2 servers has been rated as "Malicious Websites"
by the FortiGuard Web Filtering service.

The HTML file attached to the phishing email and the downloaded QakBot Loader module
are detected as "JS/Agent.BLOB!tr" and "W32/Qbot.D!tr" and are blocked by the
FortiGuard Antivirus service.

FortiEDR detects the involved file as malicious based on its behavior.

10/10

In addition to these protections, we suggest that organizations have their end users also go
through the FREE NSE training: NSE 1 – Information Security Awareness. It includes a
module on Internet threats designed to help end users learn how to identify and protect
themselves from phishing attacks.

IOCs

URLs:

194[.]36[.]191[.]227/%random%.dat

Click here for the complete C2 server list

Sample SHA-256 Involved in the Campaign:

[Attached HTML file]

FE1043A63E6F0A6FAA762771FF0C82F253E979E6E3F4ADD1C26A7BD0C4B2E14C

[Loader module of QakBot]

9C3D3CD9B0FCB39117692600A7296B68DDDF2995C6D302BC9D9C8B786780BA19

 [ScannedDocs_1586212494.lnk]

 F5B6619E92D7C4698733D9514DF62AFACA99883DFAC8B9EE32A07D087F2800BF

Learn more about Fortinet’s FortiGuard Labs threat research and intelligence organization
and the FortiGuard Security Subscriptions and Services portfolio.

https://training.fortinet.com/?utm_source=blog&utm_campaign=nse-institute
https://training.fortinet.com/local/staticpage/view.php?page=nse_1&utm_source=blog&utm_campaign=nse-1
https://www.fortinet.com/blog/threat-research/c2-server-list
https://www.fortinet.com/fortiguard/labs?utm_source=blog&utm_campaign=fortiguard-labs
https://www.fortinet.com/fortiguard/labs?tab=security-bundles&utm_source=blog&utm_campaign=security-bundles

