Example Analysis of Multi-Component Malware

cyren.com/blog/articles/example-analysis-of-multi-component-malware

Cyren Security Blog

July 13, 2022

The Cyren Security Blog is where Cyren engineers and thought leaders provide insights,

research and analysis on a range of current cybersecurity topics.

by Kervin Alintanahin

Recently, we have received an increase in the number of malicious email samples with
password-protected attachments. The recent waves of attacks with Emotet use a similar
approach. In this blog we describe our analysis of another set of samples that used file

archives (e.g. zip file) secured with passwords.

The authors of this attack inserted the file archive file into an HTML file.

From DHL DELIVERY <dhinoreply@mail.com> ¥
Subject CONFIRMA TU DIRECCION

Visitamos su direccion hace horas, pero no pudimos ubicarlo.

Actualice amablemente |la direccion de entrega para recibir su paquete

ACTUALIZACION DE LA COPIA ADJUNTA

Excelencia DHL Express. Simplemente entregado
® DHL 1995-2022 | Inicic glokal | Condiciones de uso | Seguridad y privacidad

> @ 1 attachment: TR52010378510.html 13.2 KB

€ Reply| | 9 Reply All |

1/14

https://www.cyren.com/blog/articles/example-analysis-of-multi-component-malware
https://www.cyren.com/blog/articles/emotet-resurgence
https://www.cyren.com/wp-content/uploads/2022/07/fileless_fig1a.jpg

From | T 4 Reply || % Reply &ll|w

Subject PAGO POR PEDIDO DEL CLIENTE

Hola,

Encuentre la copia adjunta del pago enviado a su cuenta segun lo informado por nuestro cliente. amablemente confirme el recibc

Gracias.

> [UJ 1 attachment: IMGD45760.html 15.0 KB
Figures 1.1 and 1.2: Emails with initial malware component, an HTML attachment

Once the HTML file is opened, it will drop a file as if that file was downloaded by the user.
The HTML page also displays the password for the dropped file.

== =]
@ IMG0457600xls X +
C @ file///C:/Users/Desktop/IMG045760.html B O
Password is 52266
~ Show all X

f download.zip

Figure 2. the HTML attachment will drop a password-protected archive file named
download.zip

Extracted File

One of the samples we analyzed contained a file named “IMG0457600xIs.exe”. The authors
tried to disguise the executable file as a Microsoft Office file by using XLS as part as its
filename and using a WORD icon. This error by the perpetrators is a red flag for users.

2/14

https://www.cyren.com/wp-content/uploads/2022/07/fileless_fig2.jpg

IMG0457600xls.exe
Application

Figure 3. PE executable with a WORD icon and double extension xIs.exe

A quick static analysis of the Portable Executable file reveals that it is a .NET executable so
we could use dnSpy to analyze its behavior. Reviewing its code, one of its methods contains
a URL to a file named “IMG0457600xIs.png”. The PNG file extension suggests that it might

be an image file but it's not. We downloaded the file so we could reverse engineer the code.

[1 setup)

ServicePointManager. = SecurityProtocolType.

Server. (new BinaryReader (WebRequest. (= : 1] 2 le/1 4576 ").GetResponse().GetResponseStream()).ReadBytes (83580611)) ;|

Figure 4. Excerpt code of the download behavior

Fileless Payloads

To identify what the PNG file truly is, we created a simple tool to reverse its contents. After
reversing the content, the downloaded file is another Windows PE object, a DLL file to be
exact. This file type is commonly known as a reverse EXE. The DLL payload will be loaded
in memory using the AppDomain.CurrentDomain.Load method. It will then search if it has a
member named “Dnypiempvyffgdjjm”. If found, it will invoke this member via the
InvokeMember method that will execute the main code of the payload in memory.

bool flag = Server. (memberInfo. » "Dnypiempvyffgdjjm");
(flag)

{
Figure 5. Code excerpt of the loop searching for the member

3/14

https://github.com/dnSpy/dnSpy/releases
https://www.cyren.com/wp-content/uploads/2022/07/fileless_fig4.jpg
https://www.cyren.com/wp-content/uploads/2022/07/fileless_fig5.jpg

(MemberInfo first)

num = 1;
t num2 = num;
g result;
(:3)
{
h (num2)
i
case 1:
result = (s)Server. (first).InvokeMember(first. , BindingFlags.
num2 = @;
(<Module>{5a48657e-22af-463f-866F-5d3a7dclcIca}.m_749c38dfe3f4449ea83d68abc8d7belb. m_9303424Ff7
<&
num2 = 8;

n result;

Figure 6. EnableServer method which will be called once the member is found

Since we had a copy of the downloaded DLL payload (reverse EXE with PNG extension), we
continued our static analysis on this component before debugging the initial Windows PE
Executable file (IMG0457600xls.exe). Loading it in dnSpy, we could see valuable information
about it. The DLL filename was “Svcewmhdn.dll”. It was also obfuscated using Smart
Assembly. We used the de4dot tool to de-obfuscate and unpack the DLL component to make
it easier to analyze. Once it was de-obfuscated and unpacked, it gave us a clue that part of
the payload was also obfuscated by Fody/Costura.

)ly: AssemblyAlgorithmId(AssemblyHashAlgorithm. i
ly: AssemblyVersion("1.0.8896.2663")]
ly: CompilationRelaxations(8)]
bly: RuntimeCompatibility(o e)]
ly: Debuggable(DebuggableAttribute.DebuggingModes.] | DebuggableAttribute.DebuggingModes.
ly: AssemblyTitle("")]
ly: AssemblyDescription("")]
y: AssemblyConfiguration(™")]
y: AssemblyCompany(”")]
: AssemblyProduct(™")]
ly: AssemblyCopyright(“")]
ly: AssemblyTrademark("")]
y: ComVisible(false)]
bly: TargetFramework(".NETFramework,Version=v4.8", = "_NET Framework 4")]
oly: AssemblyFileVersion("8.1.0.4892")]
ly: PoweredBy("Powered by SmartAssembly 8.1.0.4892“)H

Figure 7. File information of “Svewmhdn.dll”

Resources

Figure 8. Fody/Costura embedded resources

https://www.cyren.com/wp-content/uploads/2022/07/fileless_fig6.jpg
https://github.com/de4dot/de4dot
https://www.cyren.com/wp-content/uploads/2022/07/fileless_fig7.jpg
https://www.cyren.com/wp-content/uploads/2022/07/fileless_fig8.jpg

Malware in action

Layers of Obfuscation

After getting clues with our static analysis, we debugged the malware components. We begin
our analysis from the point when the DLL is loaded into memory. At the start of its execution,
it will decompress two resources before starting the actual malicious behavior. It uses the
AES algorithm to decrypt both resources. It will first decrypt the resource tagged as
“{0235d35d-030c-4d50-b46a-055fbb9ab683}”. This resource contains the strings the
malware uses. Next, it will decrypt “{8569c651-a5ff-4d2e-8dd8-aaa0f6904365}”. It is another
Windows PE component, which will be loaded in memory. If the decryption fails, the DLL will
try to drop a copy of the component and load it into memory via the LoadFile method.

Figure 9. The 2 encrypted resources

5/14

https://www.cyren.com/wp-content/uploads/2022/07/fileless_fig9.jpg

e[] byte_8)

oid* ptr stackallo 161
.Streamé stream .Streame (byte_0);
e[] array = new byte[@];
= Class55. (stream);
in = num >> 24;
if (num - (num2 << 24) == 8223355)

int*)ptr = Class55.) (stream);
array = new byte[*(int*)ptr];
int*) ((byte*)ptr + 4) = @;
- (*(int*) ((byte*)ptr + 4) < *(int*)ptr)

(int) ((byte*)ptr + 8) = Class55. 87(stream);

(int) ((byte*)ptr + 12) = Class55. C (stream);

byte[] array2 = new byte[*(int*)((byte*)ptr + 8)];

stream.Read(array2, @, array2.)i

Class55. (*(int*) ((byte*)ptr + 4), new .Class59(array2), array, *(int*)((byte*)ptr + 12));
(int) ((byte*)ptr + 4) = *(int*)((byte*)ptr + 4) + *(int*)((byte*)ptr + 12);

byte[] byte_ = new byte[]

i
176, 24e, 115, 1ee, 13, 13, 22, 205, 123, 143,
14@, 52, 184, 4, 202, 191

1

byte[] byte_2 = new byte[]

i
208 MO AT 11D O TS 6 MDA VEE| R2TSHNC

37, 61, byte.MaxValue, 178, 148, 185
g (ICryptoTransform cryptoTransform = Class55. (true, byte_, byte 2))

array = Class55. (cryptoTransform. TransformFinalBlock(byte_©, 4, byte_o.

ArgumentOutOfRangeException("version”, num2, "Selected compression algorithm is not supported.");

stream.Close();
stream = nul
return array;

new FormatException("Unknown Header");

c ICryptoTransform 2 (bool bool_@, byte[] byte_©, byte[] byte_1) I

yptoTransform result;
g (AesCryptoServiceProvider aesCryptoServiceProvider = new AesCryptoServiceProvider())

result = (bool_@ ? aesCryptoServiceProvider.CreateDecryptor(byte_@, byte 1) : aesCryptoServiceProvider.CreateEncryptor(byte_©, byte_1));

T
eturn result;

Figures 10.1 and 10.2. Decryption method with the AES key and IV, and
aesCryptoServiceProvider

https://www.cyren.com/wp-content/uploads/2022/07/fileless_fig10a.jpg
https://www.cyren.com/wp-content/uploads/2022/07/fileless_fig10b.jpg

Stream manifestResourceStream = Assembly.GetExecutingAssembly().GetManifestResourceStream(text);
if (manifestResourceStream ! 11)

ath(), text); -> if loading fails, it will drop a copy in the ten

= .Openlirite(text4);
y2, @, array2. 3 11

gel(textd, n o A)s
oel(text3, null, 4);

(textd);

w0

¥

Figure 11. Exerpt code of the decryption of one of the resources

Checking the information if we try to force it to drop the content, it is another executable
component. It contains resources that were compressed using Fody/Costura as seen in our
static analysis in Figure 8. It has several resources to decompress. One of them is the
Protobuf-net module. These resources were also decrypted and then decompressed. Take
note of the resource named “ . .resources” (141363 bytes, Embedded, Public) which has a
child resource “Jhufjcjrbgyyuktdl” as this will be accessed later.

7/14

https://www.cyren.com/wp-content/uploads/2022/07/fileless_fig11.jpg

Stream)1(string \ueeez)
Assembly assembly = \u©©9A\u@©e2.\ueasF\u

i

DeflateStream deflateStream = new DeflateStream(stream, CompressionMode.

.
MemoryStream memoryStream = new MemoryStream();
if (lfalse)
{
global::\ueeez2.\ueeeE. (deflateStream, memoryStream);
i
\uee8F\ueee2.~\uees3\L
n memoryStream;

if (deflateStream != null && !false)
i

\UeesC.~\ueee7\ueee2(deflateStream);
&

if (lfalse && stream == null)
it

i

\uBe8C.~\ueee7\ueee2(stream);

if (;.;- se)
it

s
1
b
X
while (-1 == 8);
return \uee9B\ueeez2.~\uee

Figure 12. Decompression code for Fody/Costura embedded resources

After the layers of obfuscation and related initializations, we will now move at the start of the
malware. The method Dnypiempvyffgdjjm is where the main malware routine is located. At
the start, it will initialize its settings. By looking at Figure 14, we can see the list of the
possible actions it can take. Most of the settings were set to false. And by just analyzing it,
we can assume that this malware only supports 32bit Operating Systems and will inject a
payload in “MSBuild”.

uintPtr = (
oid* ptr;
u;

ptr = uintPtr;
Ixxcigudxj.GetSettings = (global::\u@ees5.\ueeel)global: :\ueee2.\udeeE . \ueeel(global: :\ue@e2.\ueeeE. \ueeel(new byte[]
L

e, o, @, 73, 8e, 66, 1‘77, 29,800 17,
145, 131, 186, 145, 90, 151, 172, 83, 145, 80,
96, 102, 11@, 186, 98, 96, 11@, 235, 233, 232,
40, 197, 92, l1lee, 96, 236, 96, 168, 98, 18,
98, 176, 98, 146, 98, 50, 72, 201, 77, 41,
205, 205, 79, 77, 42, 45, 79, 78, 72, 44,
76, 78, 205, 73, 206, 241, 18, 208, 98, 145,
73, 204, 205, 42, 118, 13, 247, 98, 22, 80,
PRk AR L PREA e A G G B Gy Bl
8, 139, 31

}.Reverse<byte>().ToArray<byte>()));[

Figure 13. Start of the main routine

https://www.cyren.com/wp-content/uploads/2022/07/fileless_fig12.jpg
https://www.cyren.com/wp-content/uploads/2022/07/fileless_fig13.jpg

\u0008.,u0003 \u0008.\u0003
tefl

0x00000023 -
\u0001.\u0005

I

\u0006.\u0002

ﬁv
ﬁ'
ﬁ'
;"
;"
P'
P?
ﬁ?
ﬁv
ﬁv
ﬁv
ﬁv
ﬁv
ﬁ'
ﬁ'
;"
;"
P'
P?
P?
Pv
ﬁv
ﬁv

A

\u0001.\u0003

w0001 \u0006

Figure 14. Settings of the malware

Evasion

Aside from the 23 second delay set to evade sandboxes, it also checks if the username of

the machine is equal to “JohnDoe” or the computer name\\\\hostname is equal to “HAL9TH".

If found true, it will terminate the execution. These strings are related to Windows Defender
emulator.

Figure 15 shows the code for checking the username\\\\computer name. Each string is
obfuscated and will be fetched from the decrypted resource (“{0235d35d-030c-4d50-b46a-
055fbb9ab683}”). It will compute for the offset of the string by XORing the input integer and
then subtracting 0xA6. The first byte of the located offset is the string size followed by the
encoded string. The encoded string is then decoded using B64 algorithm. This approach of
retrieving the string is used throughout the malware.

9/14

https://www.cyren.com/wp-content/uploads/2022/07/fileless_fig14.jpg
https://i.blackhat.com/us-18/Thu-August-9/us-18-Bulazel-Windows-Offender-Reverse-Engineering-Windows-Defenders-Antivirus-Emulator.pdf

 \uB014.~\u00B6(\uee12. \uBBLE()) - texi = hosiname

Figure 5. Excerpt code for the checking of username and computer name/hostname

Final Fileless Payload

Based on the settings, we assumed that it will inject an executable payload in MSBUILD.exe.
So before it can proceed with the injection, it will need to retrieve the necessary API. Figure
18 shows the code that will try to dynamically resolve the API’s. The approach to retrieve the
string is the same as mentioned earlier. The difference is that the APl encoded strings have
an “@” character randomly inserted. It needs to remove the “@” character before proceeding
to use the B64 algorithm to decode it. Take a look at the example in the chart below. First, it
will get the corresponding DLL where it will import the API. In this example, it is “kernel32”.
Then it will retrieve the API string. After decoding the string using the same approach
decoding the DLL string, it will be equal to ” @VGhyZWFKkK”. It will then
remove the “@” char before proceeding to decoding the string using B64 again.The final
output will be equal to the API string “ResumeThread”. It will dynamically resolve a few more
API's. These API’'s will be used in its process injection routine.

index | offset string size | encoded string decoded string Removed "@" decoded string
1| Ox0 0xC a2VybmVsMzl= kernel32 Not applied Not applied
2 | 0x0D 0x18 VWI1WQHpkVzFsQFZHaHIaV0Zr | UmV@zdW1I@VGhyZWFk | UmVzdW1IVGhyZWFk | ResumeThread

Table 16. Data structure of encrypted strings used by the malware

DLL API

10/14

https://www.cyren.com/wp-content/uploads/2022/07/fileless_fig15.jpg
https://www.cyren.com/cdn-cgi/l/email-protection
https://www.cyren.com/wp-content/uploads/2022/07/fileless_tab16.jpg

kernel32.dll ResumeThread

kernel32.dll Wow64SetThreadContext

kernel32.dll SetThreadContext

kernel32.dll GetThreadContext

kernel32.dll VirtualAllocEx

kernel32.dll WriteProcessMemory

ntdll.dll ZwUnmapViewOfSection

kernel32.dll CreateProcessA

kernel32.dll CloseHandle

kernel32.dll ReadProcessMemory

Table 17. List of APIs

kernel32.dll

At this point, it just needs the payload it will inject to MSBuild.exe. It hides the payload in the
resource named “Jhufjcjrbgyyuktd!”. The data is reversed and then unpacked using GZIP.
The file is a copy of a Formbook malware. We detect this file as
W32/Formbook.F.gen!Eldorado.

11/14

https://www.cyren.com/wp-content/uploads/2022/07/fileless_fig18.jpg

Figure 19. Start of the injection code.

The fileless payload Svewmhdn.dll was created using Purecrypter. It is advertised as a file

protector and available for sale. And as seen in the GUI interface, these options were
available in the settings in Figure 14.

12/14

https://www.cyren.com/wp-content/uploads/2022/07/fileless_fig19.jpg

Optional

L Mase

Motifcation

S5ingle Imtance

Anth YM

Ant Submidssion

Execution Delay

Advvanced Runtime

Exchmion Win_Def

Memnory Bombing

Al File Dedete

Change Timestamp

Hardened Hame

Exclusion Region

Crypters Killer

Fake Message Startup

Binder Bamild ehect Stub Scanner

Run Once

Do Hot Run On Startup

FPackage: Lifetime |-] Expie After: 9967 Days |- Aulo refUD ceech will ren aftes 2 Howrs

Figure 20. PureCrypter options GUI

Indicators of Compromise (IOCs)

SHA256
6f10c68357f93bf51a1c92317675a525¢c261da91e14ee496¢c577ca777acc36f3

¢ Description: email attachment
e Filename: IMG045760.html
o Detection: HTML/Dropper.A

9629934a49df20bbe2c5a76b9d1cc2091005dfef0c4c08dae364e6d654713e46

o Description: initial payload
e Filename: IMG0457600xIs.exe
o Detection: W32/MSIL_Kryptik. GSO.gen!Eldorado

dc419e1fb85ece7894a922bb02d96ec812220f731e91b52ab2bc8de44726ce83

o Description: reverse PE fileless payload
e Filename: Svewmhdn.dll
o Detection: W32/MSIL_Kryptik.HJL.gen!Eldorado

13/14

https://www.cyren.com/wp-content/uploads/2022/07/fileless_fig20.jpg

37ed1balaab413fbf59e196f9337f6295a1fbbf1540e76525043725b1e0b012d

o Description: final fileless payload
o Filename: Jhufjcjrbgyyuktdl
o Detection: W32/Formbook.F.gen!Eldorado

Jul 12, 2022 | Malware, Security Research & Analysis

14/14

https://www.cyren.com/blog/articles/category/malware
https://www.cyren.com/blog/articles/category/security-research

