
1/14

July 13, 2022

Example Analysis of Multi-Component Malware
cyren.com/blog/articles/example-analysis-of-multi-component-malware

Cyren Security Blog

The Cyren Security Blog is where Cyren engineers and thought leaders provide insights,
research and analysis on a range of current cybersecurity topics.

by Kervin Alintanahin
Recently, we have received an increase in the number of malicious email samples with
password-protected attachments. The recent waves of attacks with Emotet use a similar
approach. In this blog we describe our analysis of another set of samples that used file
archives (e.g. zip file) secured with passwords.

The authors of this attack inserted the file archive file into an HTML file.

https://www.cyren.com/blog/articles/example-analysis-of-multi-component-malware
https://www.cyren.com/blog/articles/emotet-resurgence
https://www.cyren.com/wp-content/uploads/2022/07/fileless_fig1a.jpg


2/14

Figures 1.1 and 1.2: Emails with initial malware component, an HTML attachment

Once the HTML file is opened, it will drop a file as if that file was downloaded by the user.
The HTML page also displays the password for the dropped file.

Figure 2. the HTML attachment will drop a password-protected archive file named
download.zip

Extracted File

One of the samples we analyzed contained a file named “IMG0457600xls.exe”. The authors
tried to disguise the executable file as a Microsoft Office file by using XLS as part as its
filename and using a WORD icon. This error by the perpetrators is a red flag for users.

https://www.cyren.com/wp-content/uploads/2022/07/fileless_fig2.jpg


3/14

Figure 3. PE executable with a WORD icon and double extension xls.exe

A quick static analysis of the Portable Executable file reveals that it is a .NET executable so
we could use dnSpy to analyze its behavior. Reviewing its code, one of its methods contains
a URL to a file named “IMG0457600xls.png”. The PNG file extension suggests that it might
be an image file but it’s not. We downloaded the file so we could reverse engineer the code.

Figure 4. Excerpt code of the download behavior

Fileless Payloads

To identify what the PNG file truly is, we created a simple tool to reverse its contents. After
reversing the content, the downloaded file is another Windows PE object, a DLL file to be
exact. This file type is commonly known as a reverse EXE. The DLL payload will be loaded
in memory using the AppDomain.CurrentDomain.Load method. It will then search if it has a
member named “Dnypiempvyffgdjjm”. If found, it will invoke this member via the
InvokeMember method that will execute the main code of the payload in memory.

Figure 5. Code excerpt of the loop searching for the member

https://github.com/dnSpy/dnSpy/releases
https://www.cyren.com/wp-content/uploads/2022/07/fileless_fig4.jpg
https://www.cyren.com/wp-content/uploads/2022/07/fileless_fig5.jpg


4/14

Figure 6. EnableServer method which will be called once the member is found

Since we had a copy of the downloaded DLL payload (reverse EXE with PNG extension), we
continued our static analysis on this component before debugging the initial Windows PE
Executable file (IMG0457600xls.exe). Loading it in dnSpy, we could see valuable information
about it. The DLL filename was “Svcwmhdn.dll”. It was also obfuscated using Smart
Assembly. We used the de4dot tool to de-obfuscate and unpack the DLL component to make
it easier to analyze. Once it was de-obfuscated and unpacked, it gave us a clue that part of
the payload was also obfuscated by Fody/Costura.

Figure 7. File information of “Svcwmhdn.dll”

Figure 8. Fody/Costura embedded resources

https://www.cyren.com/wp-content/uploads/2022/07/fileless_fig6.jpg
https://github.com/de4dot/de4dot
https://www.cyren.com/wp-content/uploads/2022/07/fileless_fig7.jpg
https://www.cyren.com/wp-content/uploads/2022/07/fileless_fig8.jpg


5/14

Malware in action

Layers of Obfuscation

After getting clues with our static analysis, we debugged the malware components. We begin
our analysis from the point when the DLL is loaded into memory. At the start of its execution,
it will decompress two resources before starting the actual malicious behavior. It uses the
AES algorithm to decrypt both resources. It will first decrypt the resource tagged as
“{0235d35d-030c-4d50-b46a-055fbb9ab683}”. This resource contains the strings the
malware uses. Next, it will decrypt “{8569c651-a5ff-4d2e-8dd8-aaa0f6904365}”. It is another
Windows PE component, which will be loaded in memory. If the decryption fails, the DLL will
try to drop a copy of the component and load it into memory via the LoadFile method.

Figure 9. The 2 encrypted resources

https://www.cyren.com/wp-content/uploads/2022/07/fileless_fig9.jpg


6/14

Figures 10.1 and 10.2. Decryption method with the AES key and IV, and
aesCryptoServiceProvider 

https://www.cyren.com/wp-content/uploads/2022/07/fileless_fig10a.jpg
https://www.cyren.com/wp-content/uploads/2022/07/fileless_fig10b.jpg


7/14

Figure 11. Excerpt code of the decryption of one of the resources

Checking the information if we try to force it to drop the content, it is another executable
component. It contains resources that were compressed using Fody/Costura as seen in our
static analysis in Figure 8. It has several resources to decompress. One of them is the
Protobuf-net module. These resources were also decrypted and then decompressed. Take
note of the resource named “ _._.resources‎” (141363 bytes, Embedded, Public) which has a
child resource “Jhufjcjrbgyyuktdl” as this will be accessed later.

https://www.cyren.com/wp-content/uploads/2022/07/fileless_fig11.jpg


8/14

Figure 12. Decompression code for Fody/Costura embedded resources

After the layers of obfuscation and related initializations, we will now move at the start of the
malware. The method Dnypiempvyffgdjjm is where the main malware routine is located. At
the start, it will initialize its settings. By looking at Figure 14, we can see the list of the
possible actions it can take. Most of the settings were set to false. And by just analyzing it,
we can assume that this malware only supports 32bit Operating Systems and will inject a
payload in “MSBuild”.

Figure 13. Start of the main routine

https://www.cyren.com/wp-content/uploads/2022/07/fileless_fig12.jpg
https://www.cyren.com/wp-content/uploads/2022/07/fileless_fig13.jpg


9/14

Figure 14. Settings of the malware

Evasion

Aside from the 23 second delay set to evade sandboxes, it also checks if the username of
the machine is equal to “JohnDoe” or the computer name\\\\hostname is equal to “HAL9TH”.
If found true, it will terminate the execution. These strings are related to Windows Defender
emulator.

Figure 15 shows the code for checking the username\\\\computer name. Each string is
obfuscated and will be fetched from the decrypted resource (“{0235d35d-030c-4d50-b46a-
055fbb9ab683}”). It will compute for the offset of the string by XORing the input integer and
then subtracting 0xA6. The first byte of the located offset is the string size followed by the
encoded string. The encoded string is then decoded using B64 algorithm. This approach of
retrieving the string is used throughout the malware.

https://www.cyren.com/wp-content/uploads/2022/07/fileless_fig14.jpg
https://i.blackhat.com/us-18/Thu-August-9/us-18-Bulazel-Windows-Offender-Reverse-Engineering-Windows-Defenders-Antivirus-Emulator.pdf


10/14

Figure 15. Excerpt code for the checking of username and computer name/hostname

Final Fileless Payload

Based on the settings, we assumed that it will inject an executable payload in MSBUILD.exe.
So before it can proceed with the injection, it will need to retrieve the necessary API. Figure
18 shows the code that will try to dynamically resolve the API’s. The approach to retrieve the
string is the same as mentioned earlier. The difference is that the API encoded strings have
an “@” character randomly inserted. It needs to remove the “@” character before proceeding
to use the B64 algorithm to decode it. Take a look at the example in the chart below. First, it
will get the corresponding DLL where it will import the API. In this example, it is “kernel32”.
Then it will retrieve the API string. After decoding the string using the same approach
decoding the DLL string, it will be equal to ” [email protected]@VGhyZWFk”. It will then
remove the “@” char before proceeding to decoding the string using B64 again.The final
output will be equal to the API string “ResumeThread”. It will dynamically resolve a few more
API’s. These API’s will be used in its process injection routine.

Table 16. Data structure of encrypted strings used by the malware

DLL API

https://www.cyren.com/wp-content/uploads/2022/07/fileless_fig15.jpg
https://www.cyren.com/cdn-cgi/l/email-protection
https://www.cyren.com/wp-content/uploads/2022/07/fileless_tab16.jpg


11/14

kernel32.dll ResumeThread

kernel32.dll Wow64SetThreadContext

kernel32.dll SetThreadContext

kernel32.dll GetThreadContext

kernel32.dll VirtualAllocEx

kernel32.dll WriteProcessMemory

ntdll.dll ZwUnmapViewOfSection

kernel32.dll CreateProcessA

kernel32.dll CloseHandle

kernel32.dll ReadProcessMemory

Table 17. List of APIs

Figure 18. The first API to be dynamically resolved is ResumeThread, imported from
kernel32.dll

At this point, it just needs the payload it will inject to MSBuild.exe. It hides the payload in the
resource named “Jhufjcjrbgyyuktdl”. The data is reversed and then unpacked using GZIP.
The file is a copy of a Formbook malware. We detect this file as
W32/Formbook.F.gen!Eldorado.

https://www.cyren.com/wp-content/uploads/2022/07/fileless_fig18.jpg


12/14

Figure 19. Start of the injection code.

The fileless payload Svcwmhdn.dll was created using Purecrypter. It is advertised as a file
protector and available for sale. And as seen in the GUI interface, these options were
available in the settings in Figure 14.

https://www.cyren.com/wp-content/uploads/2022/07/fileless_fig19.jpg


13/14

Figure 20. PureCrypter options GUI

Indicators of Compromise (IOCs)

SHA256

6f10c68357f93bf51a1c92317675a525c261da91e14ee496c577ca777acc36f3

Description: email attachment
Filename: IMG045760.html
Detection: HTML/Dropper.A

9629934a49df20bbe2c5a76b9d1cc2091005dfef0c4c08dae364e6d654713e46

Description: initial payload
Filename: IMG0457600xls.exe
Detection: W32/MSIL_Kryptik.GSO.gen!Eldorado

dc419e1fb85ece7894a922bb02d96ec812220f731e91b52ab2bc8de44726ce83

Description: reverse PE fileless payload
Filename: Svcwmhdn.dll
Detection: W32/MSIL_Kryptik.HJL.gen!Eldorado

https://www.cyren.com/wp-content/uploads/2022/07/fileless_fig20.jpg


14/14

37ed1ba1aab413fbf59e196f9337f6295a1fbbf1540e76525b43725b1e0b012d

Description: final fileless payload
Filename: Jhufjcjrbgyyuktdl
Detection: W32/Formbook.F.gen!Eldorado

Jul 12, 2022 | Malware, Security Research & Analysis

https://www.cyren.com/blog/articles/category/malware
https://www.cyren.com/blog/articles/category/security-research

