
1/15

muzi July 8, 2022

CruLoader: Zero2Auto
malwarebookreports.com/cruloader-zero2auto/

Taking a break from my normal blog posts to complete the practical analysis from the
Zero2Automated course from Vitali Kremez and Daniel Bunce.

Assignment Background

Hi there,

During an ongoing investigation, one of our IR team members managed to locate an
unknown sample on an infected machine belonging to one of our clients. We cannot pass
that sample onto you currently as we are still analyzing it to determine what data was
exfiltrated. However, one of our backend analysts developed a YARA rule based on the
malware packer, and we were able to locate a similar binary that seemed to be an earlier
version of the sample we’re dealing with. Would you be able to take a look at it? We’re all
hands on deck here, dealing with this situation, and so we are unable to take a look at it
ourselves.


We’re not too sure how much the binary has changed, though developing some automation
tools might be a good idea, in case the threat actors behind it start utilizing something like
Cutwail to push their samples.

Stage 1 Exe

Filename: main_bin.exe

MD5: a84e1256111e4e235250a8e3bb11f903

SHA1: 1b76e5a645a0df61bb4569d54bd1183ab451c95e

SHA256: a0ac02a1e6c908b90173e86c3e321f2bab082ed45236503a21eb7d984de10611

Stepping into the main function, several obfuscated strings are moved into registers and a
function call is made immediately afterwards. Next, LoadLibrary and GetProcAddress are
called, indicating that these obfuscated strings are almost certainly obfuscated libraries to
import.

https://malwarebookreports.com/cruloader-zero2auto/


2/15

Figure 1: Obfuscated Library Imports

String Decryption/Decoding

Stepping into the function called right after moving the obfuscated strings, a few things stand
out that indicate the purpose of it:

The long string of characters that appear to be an extended/custom alphabet
The add edx, D instruction (ROT-13 anyone?)

Figure 2: ROT-13 Decryption/Deobfuscation Routine
After returning from the decryption function, kernel32.dll is decoded. Now that the
decryption/decode function has been identified, a string decoder can be written.


String Decrypter/Decoder (and unpacker) can be found on my GitHub.

https://en.wikipedia.org/wiki/ROT13#tr
https://github.com/MuziSec/zero2auto


3/15

2022-05-30 22:06:05,423 - CruLoader Unpacker - CRITICAL [*] Encrypted: I9egh1/n//b3 -
-> Decrypted: VirtualAlloc

2022-05-30 22:06:05,423 - CruLoader Unpacker - CRITICAL [*] Encrypted: 
t5gG8e514pbag5kg --> Decrypted: GetThreadContext

2022-05-30 22:06:05,423 - CruLoader Unpacker - CRITICAL [*] Encrypted: yb3.E5fbhe35 -
-> Decrypted: LockResource

2022-05-30 22:06:05,423 - CruLoader Unpacker - CRITICAL [*] Encrypted: pe51g5Ceb35ffn 
--> Decrypted: CreateProcessA

2022-05-30 22:06:05,423 - CruLoader Unpacker - CRITICAL [*] Encrypted: 
F5gG8e514pbag5kg --> Decrypted: SetThreadContext

2022-05-30 22:06:05,423 - CruLoader Unpacker - CRITICAL [*] Encrypted: yb14E5fbhe35 -
-> Decrypted: LoadResource

2022-05-30 22:06:05,423 - CruLoader Unpacker - CRITICAL [*] Encrypted: 
E514Ceb35ffz5=bel --> Decrypted: ReadProcessMemory

2022-05-30 22:06:05,423 - CruLoader Unpacker - CRITICAL [*] Encrypted: s9a4E5fbhe35n 
--> Decrypted: FindResourceA

2022-05-30 22:06:05,423 - CruLoader Unpacker - CRITICAL [*] Encrypted: 
Je9g5Ceb35ffz5=bel --> Decrypted: WriteProcessMemory

2022-05-30 22:06:05,423 - CruLoader Unpacker - CRITICAL [*] Encrypted: I9egh1/n//b3rk 
--> Decrypted: VirtualAllocEx

2022-05-30 22:06:05,423 - CruLoader Unpacker - CRITICAL [*] Encrypted: F9m5b6E5fbhe35 
--> Decrypted: SizeofResource

2022-05-30 22:06:05,423 - CruLoader Unpacker - CRITICAL [*] Encrypted: .5ea5/QPY4// -
-> Decrypted: kernel32.dll

2022-05-30 22:06:05,424 - CruLoader Unpacker - CRITICAL [*] Encrypted: E5fh=5G8e514 -
-> Decrypted: ResumeThread

Now that the strings are decrypted, some additional functionality becomes apparent: packed
code located in a resource and process injection (process hollowing). The executable being
analyzed looks to be a crypter that will unpack the code contained in the RCDATA resource.

RC4 Decrypt Resource

Loading the executable into PE Studio, the RCDATA resource stands out – it is large in size at
87068 bytes and the 7.98 entropy indicates this is most likely encrypted data. In addition, the
decrypted/deobfuscated strings above lend credibility to this theory, as the following libraries
are used to access the resource:

FindResourceA
LoadResource
SizeOfResource
LockResource



4/15

Figure 3: Resource (RCDATA)
Following in the debugger, the RCDATA resource is loaded, then, starting at position 0x1C (28
decimal), the ciphertext is copied into an allocated buffer.



5/15

Figure 4: Resource Loaded and Copied into Allocated Memory
Next, the ciphertext decrypted using RC4. The key starts at offset 0xC (12) of the resource
and is 16 bytes long.



6/15

Figure 5: RC4 Decryption Routine Unveils Decrypted Executable
After decrypting the executable, it is loaded and executed via process injection (process
hollowing) with the following calls:

CreateProcessA
VirtualAlloc



7/15

GetThreadContext
ReadProcessMemory
VirtualAllocEx
WriteProcessMemory
SetThreadContext
ResumeThread

Once ResumeThread is called, execution is transferred to the new, decrypted executable.

Stage 2 Exe

Filename: cruloader

MD5: f56a2fd3fd94be87f5c79e822734168d

SHA1: 191050c7ae62c5665938f7666519bcd94f784fd5

SHA256: a4997fbff9bf2ebfee03b9373655a45d4ec3b1bcee6a05784fe4e022e471e8e7

Jumping straight into main, the malware first computes the CRC32 of its filename, then
checks it against the CRC32 hash 0xB925C42D, which corresponds to svchost.exe. The
CRC32 algorithm can be easily identified by 0xedb88320, which is the so-called “reversed”
representation of the CRC32 generator polynomial. Luckily for us, 0xB925C42D aka
“svchost.exe” is included in the following list of CRC32 API hashes. Lists of API hashes such
as this are commonly found on GitHub and can be found simply by Googling for the specific
API Hash/constant.

https://github.com/tildedennis/malware/blob/master/phasebot/api_hashes


8/15

Figure 6: Compute CRC32 Hash of Filename
Depending on if the filename is svchost.exe, the code will take one of two branches. Branch
one, where the filename is not svchost.exe will be examined first, followed by branch two.

Branch One: Filename != svchost.exe

If the filename is not svchost.exe, Cruloader begins an anti analysis routine to identify if it is
being analyzed. First, it resolves the API IsDebuggerPresent to detect an attached
debugger. Next, it resolves CreateToolhelp32Snapshot, Process32FirstW, and
Process32NextW in order to compute the CRC32 checksum of every running process to
compare against the following analysis tools:

7C6FFE70 (processhacker.exe)
47742A22 (wireshark.exe)
D2F05B7D (x32dbg.exe)
659B537E (x64dbg.exe)



9/15

Figure 7: Pre-calculated Hashes to Check Running Processes Against

Figure 8: Example Match for x32dbg.exe
If any of the tools listed above are discovered running, the malware exits immediately. After
determining that it is not being analyzed/debugged, the malware next resolves the same
APIs used previously for process injection.



10/15

Figure 9: Resolving APIs for Process Injection
After resolving the APIs, the malware decrypts the string
C:\Windows\System32\svchost.exe, then creates a suspended svchost.exe process.

Figure 10: Decrypt String and Create Suspended Svchost Process
Next, the malware calls VirtualAlloc to allocate memory inside the running process to copy
itself into. It then calls VirtualAllocEx to allocate a RWX region inside the new suspended
process and uses WriteProcessMemory to write the copy of itself into the new process.
Finally, it calls CreateRemoteThread to execute the code injected into svchost.exe.

Branch One: Filename == Svchost.exe



11/15

Now that CruLoader is running under svchost.exe (whether by changing the name or letting
it inject into svchost.exe), the malware will take the other branch. This branch begins by
resolving a few APIs for internet activity.

Figure 11: Resolve wininet APIs
Next, the URL configuration is decrypted with a simple rol and xor.

Figure 12: Decrypt URL Config
After decrypting the Pastebin URL, the malware makes a connection to the URL and
receives a second URL back. It then makes another request to download a PNG. (Note:
User-Agent of CruLoader could be used for detection. This kind of thing used to be more
popular in the early 2010s, but Bumblebee Malware did this just last year.) The PNG is then
written to the following path C:\Users\USER\AppData\Local\Temp\cruloader\output.jpg.

Next, CruLoader decrypts another string redaolurc. It then searches for this payload marker
inside the PNG file.

https://malpedia.caad.fkie.fraunhofer.de/details/win.bumblebee


12/15

Figure 13: Search for Payload Marker ‘redaolurc’ in PNG
Once the payload marker is found, it XOR decrypts with the key 0x61 ‘a’.



13/15

Figure 14: Decrypted Payload
After decrypting the payload, the malware decrypts the string
C:\Windows\System32\svchost.exe and resolves APIs to once again inject the final payload
into svchost.exe.



14/15

Figure 15: Time to Inject into svchost.exe Again
Opening up the newly decrypted payload in Ghidra shows us that we have completed the
challenge.




Figure 16: Challenge Complete

Automation

Earlier I showcased the string decrypter and unpacker for stage one. Let’s finish automating
the config extraction and string decryption for stage two, along with the decryption of the final
payload embedded in the PNG. Code available on GitHub. I got a bit lazy with my coding
here at the end, but it does the job.

https://github.com/MuziSec/zero2auto


15/15

❯ python3 unpack.py -d -f main_bin.exe -o output.bin

2022-07-08 14:10:41,895 - CruLoader Unpacker - CRITICAL [*] Key is: 
b'6b6b64355964504d32345642586d69'

2022-07-08 14:10:41,896 - CruLoader Unpacker - CRITICAL [*] Unpacking payload

2022-07-08 14:10:41,896 - CruLoader Unpacker - CRITICAL [*] Payload written to 
output.bin

2022-07-08 14:10:41,899 - CruLoader Unpacker - CRITICAL [*] Encrypted: pe51g5Ceb35ffn 
--> Decrypted: CreateProcessA

2022-07-08 14:10:41,900 - CruLoader Unpacker - CRITICAL [*] Encrypted: 
F5gG8e514pbag5kg --> Decrypted: SetThreadContext

2022-07-08 14:10:41,900 - CruLoader Unpacker - CRITICAL [*] Encrypted: yb14E5fbhe35 -
-> Decrypted: LoadResource

2022-07-08 14:10:41,900 - CruLoader Unpacker - CRITICAL [*] Encrypted: 
Je9g5Ceb35ffz5=bel --> Decrypted: WriteProcessMemory

2022-07-08 14:10:41,900 - CruLoader Unpacker - CRITICAL [*] Encrypted: .5ea5/QPY4// -
-> Decrypted: kernel32.dll

2022-07-08 14:10:41,900 - CruLoader Unpacker - CRITICAL [*] Encrypted: I9egh1/n//b3rk 
--> Decrypted: VirtualAllocEx

2022-07-08 14:10:41,900 - CruLoader Unpacker - CRITICAL [*] Encrypted: F9m5b6E5fbhe35 
--> Decrypted: SizeofResource

2022-07-08 14:10:41,900 - CruLoader Unpacker - CRITICAL [*] Encrypted: yb3.E5fbhe35 -
-> Decrypted: LockResource

2022-07-08 14:10:41,900 - CruLoader Unpacker - CRITICAL [*] Encrypted: 
E514Ceb35ffz5=bel --> Decrypted: ReadProcessMemory

2022-07-08 14:10:41,900 - CruLoader Unpacker - CRITICAL [*] Encrypted: I9egh1/n//b3 -
-> Decrypted: VirtualAlloc

2022-07-08 14:10:41,900 - CruLoader Unpacker - CRITICAL [*] Encrypted: 
t5gG8e514pbag5kg --> Decrypted: GetThreadContext

2022-07-08 14:10:41,900 - CruLoader Unpacker - CRITICAL [*] Encrypted: s9a4E5fbhe35n 
--> Decrypted: FindResourceA

2022-07-08 14:10:41,900 - CruLoader Unpacker - CRITICAL [*] Encrypted: E5fh=5G8e514 -
-> Decrypted: ResumeThread

❯ python3 extract_config_decrypt_strings.py -f stage2_bin.exe

[*] Config URL(s): ['hxxps://pastebin[.]com/raw/mLem9DGk']

[*] Decrypted strings: ['\\output.jpg', 'redaolurc', 
'C:\\Windows\\System32\\svchost.exe']

❯ python3 extract_payload_from_png.py -f cruloaderpng.png -o final_extracted.bin

2022-07-08 14:04:57,794 - CruLoader Unpacker - CRITICAL [*] Payload written to 
final_extracted.bin


