Hive ransomware gets upgrades in Rust

microsoft.com/security/blog/2022/07/05/hive-ransomware-gets-upgrades-in-rust/

July 5, 2022

Hive ransomware is only about one year old, having been first observed in June 2021, but it has
grown into one of the most prevalent ransomware payloads in the ransomware-as-a-service (RaaS)
ecosystem. With its latest variant carrying several major upgrades, Hive also proves it's one of the
fastest evolving ransomware families, exemplifying the continuously changing ransomware
ecosystem.

The upgrades in the latest variant are effectively an overhaul: the most notable changes include a
full code migration to another programming language and the use of a more complex encryption
method. The impact of these updates is far-reaching, considering that Hive is a RaaS payload that
Microsoft has observed in attacks against organizations in the healthcare and software industries by
large ransomware affiliates like DEV-0237.

Microsoft Threat Intelligence Center (MSTIC) discovered the new variant while analyzing detected
Hive ransomware techniques for dropping .key files. We know that Hive drops its encryption keys
file, which contains encrypted keys used to decrypt encrypted files, and uses a consistent naming
pattern:

[KEY_NAME].key.[VICTIM_IDENTIFIER]
(e.g., BiKtPupMjgyESaene0Ge5d0231uiKqlPFMFUEBNhAYV_.key.ab123)

The said .key files were missing the [VICTIM_IDENTIFIER] part of the file name, prompting deeper
analysis of the Hive ransomware that dropped them. This analysis led to the discovery of the new
Hive variant and its multiple versions, which exhibit slightly different available parameters in the
command line and the executed processes.

Analyzing these patterns in samples of the new variants, we discovered even more samples, all with
a low detection rate and none being correctly identified as Hive. In this blog we will share our in-
depth analysis of the new Hive variant, including its main features and upgrades, with the aim of
equipping analysts and defenders with information to better identify and protect organizations
against malware attacks relying on Hive.

Analysis and key findings

The switch from GoLang to Rust

The main difference between the new Hive variant and old ones is the programming language used.
The old variants were written in Go (also referred to as GoLang), while the new Hive variant is
written in Rust.

1/20

https://www.microsoft.com/security/blog/2022/07/05/hive-ransomware-gets-upgrades-in-rust/
https://www.microsoft.com/security/blog/2022/05/09/ransomware-as-a-service-understanding-the-cybercrime-gig-economy-and-how-to-protect-yourself/
https://www.microsoft.com/security/blog/2022/05/09/ransomware-as-a-service-understanding-the-cybercrime-gig-economy-and-how-to-protect-yourself/#DEV-0237

Hive isn’t the first ransomware written in Rust—BlackCat, another prevalent ransomware, was the
first. By switching the underlying code to Rust, Hive benefits from the following advantages that Rust
has over other programming languages:

« |t offers memory, data type, and thread safety

e |t has deep control over low-level resources

¢ |t has a user-friendly syntax

¢ |t has several mechanisms for concurrency and parallelism, thus enabling fast and safe file
encryption

« It has a good variety of cryptographic libraries

« It's relatively more difficult to reverse-engineer

String encryption

The new Hive variant uses string encryption that can make it more evasive. Strings reside in the
.rdata section and are decrypted during runtime by XORing with constants. The constants that are
used to decrypt the same string sometimes differ across samples, making them an unreliable basis
for detection.

For example, let’s look at the section where part of the string “lerror no flag -u <login>:<password>
provided” is decrypted. In one sample (SHA-256:
f4a39820dbff47fa1b68f83f575bc98ed33858b02341c5c0464a49bede6¢c76d3), the constants are
Ox9F2E3F1F and 0x95C9:

ib f4a39820dbff47falb68f83f575bc98ed3385¢

xor ecx,dword ptr ds:[rax+E386]
mov dword ptr ss:[irsp+4C8J,ecx
movzx eax ,word ptr ds:[rax+E38A]

mov word ptr ss:[Brsp+4CCl, ax
lea rax,qword ptr ss:[rsp+4A0]
mov gword ptr ss:[irsp+1800, rax [rsp+180]:"lerror: no flag -u <login>:<password> provided"
mov qword ptr ss:[rsp+188],2E 2E: .

Figure 1 — String decryption using constants 0x9F2E3F1F and 0x95C9

In another sample (SHA-256:

6e5d49f604730ef4c05cfe3f64a7790242e7 1b4ecf1dc5109d32e811acfOb053), the constants are
Ox3ECF7CC4 and 0x198F:

....... R

ib 6e5d49F604730ef4c05cfe3f64a7790242e71t
|mov ecx,3ECF7CC4 |

xor ecx,dword ptr ds:[rax+1872]
mov dword ptr ss:|[[rsp+508],ecx
movzx eax,word ptr ds:[rax+1B/6]
xor eax,l198F

mov word ptr ss:[Brsp+50Ch,ax

lea rax,qword ptr ss:[Ersp+4£0]
mov qword ptr ss:Ersp+1D0J, rax [rsp+1D0]:"lerror: no flag -u <login>: <password> provided"
mov qword ptr ss:frsp+1D8J, 2E 2E:".°T

Figure 2 — String decryption using constants OXx3ECF7CC4 and 0x198F

Some samples do share constants when decrypting the same string. For example, let’s look where
the parameter string “da” is decrypted. In one sample (SHA-256:
88b1d8a85bf9101bc336b01b9af4345ed91d3ec761554d167fe59f73af73f037), the constants are

0x71B4 and 2:

2/20

mov !yte ptr ss:firsp+72],d] Figure 3 — String decryption using

mov word ptr ss:frsp+70],cx

cmp rax,3

jne 88b1ld8a85bf9101bc336b01b9af4345ed91d:
constants 0x71B4 and 2

In another sample (SHA-256:
33744c420884adf582c46a4b74cbd9c145f2e15a036bb1e557e89d6fd428e724), the constants are
the same:

mov !yte ptr ss:frsp+720Q,dl

mov word ptr ss:frsp+700,cx
cmp rax,3
jne 33744c420884adf582c46adb74cbd9cld5T2e

sample also using constants 0x71B4 and 2

Figure 4 — String decryption in a different

Command-line parameters

In old Hive variants, the username and the password used to access the Hive ransom payment
website are embedded in the samples. In the new variant, these credentials must be supplied in the
command line under the “u” parameter, which means that they can’t be obtained by analysts from
the sample itself.

C:\>hive.exe
lerror: no flag -u <login>:<password> provided

Figure 5 — Without a

C:\>,

username and a password, the sample won'’t continue its execution

Like most modern ransomware, Hive introduces command-line parameters, which allow attackers
flexibility when running the payload by adding or removing functionality. For example, an attacker
can choose to encrypt files on remote shares or local files only or select the minimum file size for
encryption. In the new Hive variant, we found the following parameters across different samples:

Parameter Functionality

-no-local Don’t encrypt local files

-no- Don’t encrypt files on mounted network shares
mounted

-no- Don’t discover network shares

discovery

-local-only Encrypt only local files

-network- Encrypt only files on network shares
only

3/20

-explicit- Encrypt specific folder(s). For example, “explicit-only c:\mydocs c:\myphotos’
only

-min-size Minimum file size, in bytes, to encrypt. For example, “min-size 102400’ will encrypt
files with size equal or greater than 100kb

-da [Usage is being analyzed.]
-f [Usage is being analyzed.]
-force [Usage is being analyzed.]
-wmi [Usage is being analyzed.]

Overall, it appears different versions have different parameters that are constantly updated. Unlike in

previous variants where there was a ‘help’ menu, in the new variant, the attacker must know the
parameters beforehand. Since all strings are encrypted, it makes finding the parameters challenging
for security researchers.

Stopped services and processes

Like most sophisticated malware, Hive stops services and processes associated with security
solutions and other tools that might get in the way of its attack chain. Hive tries to impersonate the
process tokens of trustedinstaller.exe and winlogon.exe so it can stop Microsoft Defender Antivirus,
among other services.

Hive stops the following services:

windefend, msmpsvc, kavsvc, antivirservice, zhudongfungyu, vmm, vmwp, sql, sap, oracle,
mepocs, veeam, backup, vss, msexchange, mysql, sophos, pdfservice, backupexec, gxblr, gxvss,
gxclmgrs, gxvcd, gxcimgr, gxmmm, gxvsshwprov, gxfwd, sap, gbcfmonitorservice, qbidpservice,
acronisagent, veeam, mvarmor, acrsch2svc

It also stops the following processes:

dbsnmp, dbeng50, bedbh, excel, encsvc, visios, firefox, isqlplussvc, mspub, mydesktopqos,
notepad, ocautoupds, ocomm, ocssd, onenote, outlook, sgbcoreservice, sql, steam,
tbirdconfig, thunderbird, winword, wordpad, xfssvccon, vxmon, benetns, bengien, pvlsvr,
raw_agent_svc, cagservice, sap, gbidpservice, gbcfmonitorservice, teamviewer_service,
teamviewer, tv_w32, tv_x64, cvd, saphostexec, sapstartsrv, avscc, dellsystemdetect,
enterpriseclient, veeam, thebat, cvfwd, cvods, vsnapvss, msaccess, vaultsvc, beserver,
appinfo, gbdmgrn, avagent, spooler, powerpnt, cvmountd, synctime, oracle, wscsvc, winmgmt,
Sql

Launched processes

As part of its ransomware activity, Hive typically runs processes that delete backups and prevent
recovery. There are differences between versions, and some samples may not execute all these
processes, but one sample that starts the most processes is SHA-256:
481dc99903aa270d286f559b17194b1a25deca8ab4a5ec4f13a066637900221e:

» “vssadmin.exe delete shadows /all /quiet”

4/20

o “wmic.exe shadowcopy delete”

o “wbadmin.exe delete systemstatebackup”

o “wbadmin.exe delete catalog -quiet”

» “bcdedit.exe /set {default} recoveryenabled No”

o “bcdedit.exe /set {default} bootstatuspolicy ignoreallfailures”
» “wbadmin.exe delete systemstatebackup -keepVersions:3”

Ransom note

Hive’s ransom note has also changed, with the new version referencing the .key files with their new

file name convention and adding a sentence about virtual machines (VMs).

The older variants had an embedded username and password (marked as hidden). In the new
variant, the username and password are taken from the command line parameter -u and are labeled

test_hive_username and test_hive password.

Old ransom note text:

Your network has been breached and all data were encrypted.

Personal data, financial reports and important documents are ready to disclose.

To decrypt all the data and to prevent exfiltrated files to be disclosed at

http://hive[REDACTED].onion/
you will need to purchase our decryption software.

Please contact our sales department at:
http://hive[REDACTED].onion/

Login: [REDACTED]
Password: [REDACTED]

To get an access to .onion websites download and install Tor Browser at:

https://www.torproject.org/ (Tor Browser is not related to us)

Follow the guidelines below to avoid losing your data:

- Do not modify, rename or delete *.key.abcl2 files. Your data will be
undecryptable.
- Do not modify or rename encrypted files. You will lose them.

- Do not report to the Police, FBI, etc. They don't care about your business.
They simply won't allow you to pay. As a result you will lose everything.

- Do not hire a recovery company. They can't decrypt without the key.
They also don't care about your business. They believe that they are

good negotiators, but it is not. They usually fail. So speak for yourself.
- Do not reject to purchase. Exfiltrated files will be publicly disclosed.

New ransom note text:

5/20

Your network has been breached and all data were encrypted.
Personal data, financial reports and important documents are ready to disclose.

To decrypt all the data and to prevent exfiltrated files to be disclosed at
http://hive[REDACTED].onion/
you will need to purchase our decryption software.

Please contact our sales department at:
http://hive[REDACTED].onion/

Login: test_hive_username
Password: test_hive_password

To get an access to .onion websites download and install Tor Browser at:
https://www.torproject.org/ (Tor Browser is not related to us)

Follow the guidelines below to avoid losing your data:

- Do not delete or reinstall VMs. There will be nothing to decrypt.
- Do not modify, rename or delete *.key files. Your data will be
undecryptable.
- Do not modify or rename encrypted files. You will lose them.
- Do not report to the Police, FBI, etc. They don't care about your business.
They simply won't allow you to pay. As a result you will lose everything.
- Do not hire a recovery company. They can't decrypt without the key.
They also don't care about your business. They believe that they are
good negotiators, but it is not. They usually fail. So speak for yourself.
- Do not reject to purchase. Exfiltrated files will be publicly disclosed.

Encryption

The most interesting change in the Hive variant is its cryptography mechanism. The new variant was
first uploaded to VirusTotal on February 21, 2022, just a few days after a group of researchers from
Kookmin University in South Korea published the paper “A Method for Decrypting Data Infected with
Hive Ransomware” on February 17, 2022. After a certain period of development, the new variant
first appeared in Microsoft threat data on February 22.

The new variant uses a different set of algorithms: Elliptic Curve Diffie-Hellmann (ECDH)
with Curve25519 and XChaCha20-Poly1305 (authenticated encryption with ChaCha20 symmetric
cipher).

A unique encryption approach

The new Hive variant uses a unique approach to file encryption. Instead of embedding an encrypted
key in each file that it encrypts, it generates two sets of keys in memory, uses them to encrypt files,
and then encrypts and writes the sets to the root of the drive it encrypts, both with .key extension.

To indicate which keys set was used to encrypt a file, the name of the .key file containing the
corresponding encryption keys is added to the name of the encrypted file on disk, followed by an
underscore and then a Base64 string (also adding underscore and hyphen to the character set).

6/20

https://arxiv.org/abs/2202.08477
https://en.wikipedia.org/wiki/Curve25519
https://en.wikipedia.org/wiki/ChaCha20-Poly1305

Once it's Base64-decoded, the string contains two offsets, with each offset pointing to a different
location in the corresponding .key file. This way, the attacker can decrypt the file using these offsets.

For example, after running Hive, we got the following files dropped to the C:\ drive:

e C:\3bcVwj6j.key
e C:\I0Zn68cb.key

In this example, a file named myphoto.jpg would be renamed to C:\myphoto.jpg.I0Zn68cb _ -
B82BhlaGhl8. As we discuss in the following sections, the new variant’s keys set generation is
entirely different from old variants. However, its actual file encryption is very similar.

Keys set generation

A buffer of size OXCFFFOO bytes is allocated. Using two custom functions to generate random bytes
(labeled “random_num_gen” and “random_num_gen_2” for demonstration purposes) the buffer is
filled. The first 0XA00000 bytes of this buffer are filled with random bytes and the remaining
O0x2FFFO00 bytes are simply copied from the first 0Ox2FFFO0 random bytes that were copied earlier to
the buffer.

The content of each buffer is a keys set (a collection of symmetric keys). Since two buffers are
allocated, there are two keys sets. In the encryption process, the malware randomly selects different
keys (byte sequences) for each file from one of the keys set and uses them to encrypt the file by
XORing the byte sequence of the keys with the file’s content.

7/20

rsp+648h+var_6e0], rsi
word ptr [rsp+648h+var_5F8], ecx
X, @CFFFeeh

[rsp+648h+Src], rax
[rsp+648h+Src+8], rdx

gword ptr [rsp+648h+var_4C8], @
edx, ©AB8808h

rcx, [rsp+648h+Src]

rbx, qword ptr [rsp+648h+var_4C8]

rOY B
v DX

[rsp+648h+Src]

-

; CODE XREF: sub_4eA834+1C38lj

; CODE XREF: sub_48A834+1C127]
@CFFFeeh
[rsp+648h+5Src)

quword ptr [rsp+648h+var_4C8]
2FFEFFh

OFFFFFFFFFFDB@166hN
9FFFFFh
[rsp+648h+var_498]

[rsp+648h+Src]
rcx, [rsi+@Aeeeeeh]
r8d, 2FFFeeh

e

rax
1

rsp+68h+var_48],
o A0

al~1 & i \TF=

[=] W

f5:+68h+uari38],
rsp+68h+var_30],
Figure 6 — Original keys set generation X, [rsp+68h+var
[rsp+68h+var_48]
[rsp+68h+var 38]
[rsp+68h+var_28],
short

L

[rsp+68h+var 18]
58h

3 M

4
0 O w W
H: H:T X
-

3

— Inside get_random_byte
A custom 64-byte hash is prepared for each keys set. This hash will be used later.

; CODE XREF: sub_40A834+1DF1!j
mov rcx, [rsp+rax*8+648h+var_498]
mov qword ptr [rsp+rax*8+648h+Luid.LowPart], rcx
lea rcx, [rax+1]
mov i "
cmp
jnz
movups xmme, xmmword ptr [P:“+548h+5‘c]
movaps xmmword ptr [rsp+648h+lpMem], me
mov rax, gqword ptr [:_?+648h+1ar_4C8]
mov gword ptr [rsp+648h+var 2B8], rax
mov ecx 4Eh
xor y .
call
movaps xmm@, xmmword ptr [rsp+648h+Luid.LowPart]
movaps xmml, [rsp+648h+var_568]
movaps xmm2, [rsp+648h+var 558]
movaps xmm3, [rsp+648h+var 548]
movups xmmword ptr [rax+3eh],
movups xmmword ptr [rax+20h],
movups xmmword ptr [ra +1ah]
movups xmmword ptr [rax], xmme
Figure 8 — Preparing the custom hash of the keys set

After the hash is computed and several other strings are decrypted, the encryption process takes the
following steps:

1. Generate victim_private key using the same functions introduced above.

vy

mov
call

mov

mov ebp, edx
movaps [rsp+648h+var_

movaps xmmword ptr [rsp s

movaps xmmword ptr [rsp+648h+Size]

movaps xmmword ptr [rsp+648h+var_4 _

xor esl, esi Figure 9 — Generating

M E

generate _victim private key:
mD ‘lu'r - — R

mov
call

mov byte ptr [rsp+rsi+648h+var_

inc rsi

cmp rsi, 20h

jnz short generate victim private key

victim_private_key
1. Generate victim_public_key using ECDH with Curve25519. The input is victim_private _key
and the basepoint is 9 followed by 31 zeros (embedded in the sample).

10/20

k)
I

a) 55|

movaps xmm@, xmmword ptr [rsp+648h+var_
movaps xmml, xmmword ptr [-::+648h+J1_e]
movaps [rsp+648h+var_5B8], xmml

movaps xmmword ptr [rsp+648h+TokenHandle],
movaps [rsp+648h+var_2B8], xmml

movaps xmmword ptr [rsp+648h+lpMem],

movaps xmmword ptr [rsp+648h+var_49:]

Figure 10 —

movaps xmmword ptr [rsp+648h+Size],
mov ey P1E
lea

mov

call

movaps xmmword ptr [”ff+548h+uan_
mov +648h+ ize]. o

xor

Generating victim_public_key
1. Generate a 24-byte nonce for the XChaCha algorithm, later in Poly1305-XChaCha20.

bl s

generate_nonce_for_chacha:
mov y
mov

call

mov byte ptr [rsp+rsi+648h+var_498],
inc rsi

cmp rsi, 18h

jnz short generate_nonce_ for _chacha

Generating a 24-byte nonce
1. Generate shared_secret using ECDH with Curve25519. The input is victim_private _key and
hive_public_key. Then, the shared secret (as a key) with hive_public_key (as a nonce) is
used to derive the derived key using ChaChaZ20.

11/20

ax, [rsp+648h+Size]
mov qword ptr [rsp+648h+var
movaps xmm@, xmmword ptr [i

Figure 12
movaps [rsp+648h+var] igu

lea rdi, [rsp+648h+lpMem]

mov rcx, rdi

lea rdx, [rsp+648h+Src

lea r8, [rsp+648h+To

call

Generating shared_secret

1. Encrypt the keys set using Poly1305-XChaCha20. The values used for the encryption are the

keys set, derived_key, nonce, and the embedded associated data (AD). This function encrypts
the keys set and adds a 16-byte authentication tag at the end of the buffer of the encrypted
keys. It's unclear if the authentication tag is ever checked.

[rsp+648h+var_378

associated_data

Figure 13 — Encrypting the keys set

Now that the keys set is finally encrypted, the nonce, victim_public_key, the now-encrypted keys set,
and the authentication tag are copied to a new buffer, one after another. This buffer (which we label
encrypted_structure_1) is treated as a new keys set, which is again encrypted using the same
method described above but with a second hive _public_key. This time, the function outputs new
nonce, victim_private_key, and others. Only the associated data is the same.

Finally, the new buffer, which contains the second_nonce, second_victim_public_key, and the
encryptedencrypted_structure_1, is written to the root of the drive it's encrypting (for example, C:\).
The create_extension function generates a Base64 string based on the first six bytes of the custom
hash that was created earlier. This Base64 string serves as the file name, and the extension of the
file is simply “key”.

12/20

gqword ptr [rsp+648h+dwCreationDisposition], 6

Figure 15 — Using the

Base64 string as the file name
The diagram below illustrates the encryption scheme described above:

Keys set
encryption flow

v
@ q fas nance; l i
t Victim private key 1 ey loiolo
| . 010101
| | lololo

l Ve Derived key Nonce 1

l $50¢
fas key) - lolololololo

Victim public key 1 Shared secret 1 X olololololol
lolololololo

- .

Victim
public key 1

ypted key — i1~
5
structure
@ alol alol C olol olol
. lolo 1010 " lolo 1ol0
Nonce 1 nce

First ' Second
authentication tag authentication tag

|_encoped stucture 1| e S
Figure 16 — The keys set encryption scheme of the new Hive variant
As seen in the diagram above, “Keys sets encryption flow” is executed twice. In the first round it is
executed with the original keys set as an input. In the second round it is executed with the
“encrypted structure 1” as an input. In its second execution, all other input values are different
except the AD (associated data) and the Basepoint 9.

Hence, the following values are new in the second execution: victim_private key, victim_public_key,
hive_public_key, nonce, shared_secret and derived_key.

File encryption

After both keys files are written to the disk, the multi-threaded file encryption starts. Before
encrypting each file, the malware checks its name and extension against a list of strings. If there is a
match, then the file will not be encrypted. For example, a file with .exe extension will not be

13/20

encrypted if .exe is in the list of strings. It should be noted that this list is encrypted and decrypted
during runtime.

The same file encryption method seen in old variants is used in the new one: two random numbers
are generated and used as offsets to the keys set. Each offset is four bytes:

, qword ptr [rsp+248h+pListOfExplicitEntries.grfA

=]

)p+30h]

dword ptr [rsp+248h+hFile], ril4d
rbx, [rbp+2eh]

+248h+pListOfExplicitEntrie

; CODE XREF: sub
[rbp+38h]
[rbp+48h]

rsp+rdi+248h+pListOfE

XREF:

Figure 17 — Generating the offsets

For the encryption, the file’s content is XORed with bytes from the keys set, according to the offsets.
The file bytes are XORed twice—once according to the first offset and a second time according to
the second offset. Files are encrypted in blocks of 0x100000 bytes, with the maximum number of
blocks at 100. There is an interval between the encrypted blocks as defined by block_space. After
the encryption is finished in memory, the encrypted data is written to the disk, overwriting the original
file.

14/20

if (file_size >= ©xleeeel)
{ .
v132 = 1ee164;
if (file_size < @xCAPe@88)
v132 = file_size >> 21;
num_of_blocks = 2164;
if (file_size >= ©x400000)
num_of_blocks = v132;

block_space = (file_size - (num_of_blocks << 28)) / (num_of_blocks - 1);

Figure 18 — Calculation of number of blocks

second_offset - @x2F

v142 = v146

19 — Actual encryption of the file bytes

[rsp+248h+plListOfExp])
byte ptr [rsp+248h+var_138],
[rsp+248h+var_130], rsi
, qword ptr [rsp+248h+plL1stOfExplicitEn
9, S555AABBBB555ABNh
8, BAAAE3BF68522C6@Fh
short
sp+248h+var_160
o+248h+var_
+rcx]
p+248h+var

leeeaeeh

short
4

OFFFFFFFFFFDE@3eeh

2

3

15h
@FFFFFFFFFFD@@18eh

]

3

1, [rax+rdi]
L, [+rdi]
+ J.:

[r1:
» [rdi+l]

short

,» leeeelh

Reading a file, encrypting it, and writing it back to the disk
Looking at when create_extension is called once file encryption has started, we recognized a similar
structure in the previous variant:

[rsp+248h+pL1istOfExplicitEntries

<, 26h

~9+0Ch],
[rsp+248h+var_1E8]
[rsp+248h+var 120]

[rcx], rax
qword ptr [rsp+248h+nSubAuthority3],
qword ptr [rsp+248h+nSubAuthority?

Creating the extension for the file
Let us look at the value (72 D7 A7 A3 F5 5B FF EF 21 6B 11 7C 2A 18 CD 00) in the address of r9
register just before create_extension is called on a file called EDBtmp.log

Hex ASCII

72 D7 A7 A3|F5 5B FF EF| 21 6B 11 7C|2A 18 cD 00| rx8fo[yilk.|*.I.
Recall that in the older variants, OxFF was used as a delimiter to separate the key file name from the
offset values. We can also see it here. Converting the first six bytes (72 D7 A7 A3 F5 5B) to Base64

yields the following:

16/20

cteno/Vb

And if we step over create_extension, the result is similar—we get cteno Vb as the .key file name
(note: Since Hive uses a different Base64 character set, “/” was replaced with “_”):

6C 6F 67 2E| 63 74 65 6E|6F 5F 56 62| 5F 2D 38 68| log.cteno_vb_-8h
6l 78 46 38|/ 4B 68 6A 4E| 69 00 6E 00| 5C 00 44 00| axF8KhjNi.n.\.D.

Microsoft will continue to monitor the Hive operators’ activity and implement protections for our
customers. The current detections, advanced detections, and indicators of compromise (IOCs) in
place across our security products are detailed below.

Recommended customer actions

The techniques used by the new Hive variant can be mitigated by adopting the security
considerations provided below:

Use the included IOCs to investigate whether they exist in your environment and assess for
potential intrusion.

Our recent blog_on the ransomware-as-a-service economy has an exhaustive guide on how to
protect yourself from ransomware threats that dive deep into each of the following areas. We
encourage readers to refer to that blog for a comprehensive guide on:

Building credential hygiene
Auditing credential exposure
Prioritizing deployment of Active Directory updates
Cloud hardening
o Implement the Azure Security Benchmark and general best practices for securing_identity
infrastructure.
o Ensure cloud admins/tenant admins are treated with the same level of security and
credential hygiene as Domain Admins.
o Address gaps in authentication coverage.
Enforce MFA on all accounts, remove users excluded from MFA, and strictly require MFA from
all devices, in all locations, at all times.
Enable passwordless authentication methods (for example, Windows Hello, FIDO keys, or
Microsoft Authenticator) for accounts that support passwordless. For accounts that still require
passwords, use authenticator apps like Microsoft Authenticator for MFA.
Disable legacy authentication.

For Microsoft 365 Defender customers, the following checklist eliminates security blind spots:

Turn on cloud-delivered protection in Microsoft Defender Antivirus to cover rapidly evolving
attacker tools and techniques, block new and unknown malware variants, and enhance attack
surface reduction rules and tamper protection.

Turn on tamper protection features to prevent attackers from stopping security services.

17/20

https://www.microsoft.com/security/blog/2022/05/09/ransomware-as-a-service-understanding-the-cybercrime-gig-economy-and-how-to-protect-yourself/
https://docs.microsoft.com/security/benchmark/azure/
https://docs.microsoft.com/azure/security/fundamentals/identity-management-best-practices
https://docs.microsoft.com/azure/active-directory/roles/best-practices
https://docs.microsoft.com/azure/active-directory/authentication/how-to-authentication-find-coverage-gaps
https://docs.microsoft.com/azure/active-directory/identity-protection/howto-identity-protection-configure-mfa-policy
https://docs.microsoft.com/microsoft-365/security/defender-endpoint/configure-block-at-first-sight-microsoft-defender-antivirus?view=o365-worldwide
https://docs.microsoft.com/microsoft-365/security/defender-endpoint/prevent-changes-to-security-settings-with-tamper-protection?view=o365-worldwide

o Run EDR in block mode so that Microsoft Defender for Endpoint can block malicious artifacts,
even when a non-Microsoft antivirus doesn’t detect the threat or when Microsoft Defender
Antivirus is running in passive mode. EDR in block mode also blocks indicators identified
proactively by Microsoft Threat Intelligence teams.

» Enable network protection to prevent applications or users from accessing malicious domains
and other malicious content on the internet.

» Enable investigation and remediation in full automated mode to allow Microsoft Defender for
Endpoint to take immediate action on alerts to resolve breaches.

e Use device discovery to increase visibility into the network by finding unmanaged devices and
onboarding them to Microsoft Defender for Endpoint.

o Protect user identities and credentials using Microsoft Defender for Identity, a cloud-based
security solution that leverages on-premises Active Directory signals to monitor and analyze
user behavior to identify suspicious user activities, configuration issues, and active attacks.

Indicators of compromise (IOCs)

The below list provides a partial list of the IOCs observed during our investigation and included in
this blog. We encourage our customers to investigate these indicators in their environments and
implement detections and protections to identify past related activity and prevent future attacks
against their systems.

Indicator Type Description

f4a39820dbff47fa1b68f83f575bc98ed33858b02341c5c0464a49be4ebc76d3 SHA- Hive Rust

256 variant
payload
88b1d8a85bf9101bc336b01b9af4345ed91d3ec761554d167fe59f73af73f037 SHA- Hive Rust
256 variant
payload
065208b037a2691eb75a14f97bdbd9914122655d42f6249d2cca419a1ed4ba6f1 SHA- Hive Rust
256 variant
payload
33744c420884adf582c46a4b74cbd9c145f2e15a036bb1e557e89d6fd428e724 SHA- Hive Rust
256 variant
payload
afab34235b7f170150f180c7afb9e3b4e504a84559bbd03ab71e64e3b6541149 SHA- Hive Rust
256 variant
payload
36759cab7043cd7561ac6c3968832b30c9a442eff4d536e901d4f70aef4d32d SHA- Hive Rust
256 variant
payload
481dc99903aa270d286f559b17194b1a25deca8ab4a5ec4f13a066637900221e SHA- Hive Rust
256 variant
payload

18/20

https://docs.microsoft.com/microsoft-365/security/defender-endpoint/edr-in-block-mode?view=o365-worldwide
https://docs.microsoft.com/microsoft-365/security/defender-endpoint/enable-network-protection?view=o365-worldwide
https://docs.microsoft.com/microsoft-365/security/defender-endpoint/automated-investigations?view=o365-worldwide
https://docs.microsoft.com/microsoft-365/security/defender-endpoint/device-discovery?view=o365-worldwide
https://docs.microsoft.com/defender-for-identity/what-is

6e5d49f604730ef4c05cfe3f64a7790242e71b4ecf1dc5109d32e811acfOb053 SHA- Hive Rust

256 variant
payload
32ff0e5d87ec16544b6ff936d6fd58023925c3bdabaf962c492f6b078cb01914 SHA- Hive Rust
256 variant
payload

NOTE: These indicators shouldn’t be considered exhaustive for this observed activity.

Detections

Microsoft 365 Defender

Microsoft Defender Antivirus

Microsoft Defender Antivirus provides detection for this threat under the following family names with
build version 1.367.405.0 or later.

e Ransom:Win64/Hive
e Ransom:Win32/Hive

Microsoft Defender for Endpoint detection

Microsoft Defender for Endpoint customers may see any or a combination of the following alerts as
an indication of possible attack. These alerts are not necessarily an indication of a Hive compromise,
but should be investigated:

» Ransomware behavior detected in the file system

o File backups were deleted

Possible ransomware infection modifying multiple files
Possible ransomware activity

o Ransomware-linked emerging threat activity group detected

Advanced hunting queries

Microsoft Sentinel

To locate possible Hive ransomware activity mentioned in this blog post, Microsoft Sentinel
customers can use the queries detailed below:

Identify Hive ransomware I0Cs
This query identifies a match across various data feeds for IOCs related to Hive ransomware.

https://github.com/Azure/Azure-
Sentinel/blob/master/Detections/MultipleDataSources/HiveRansomwareJuly2022.yam|

Identify backup deletion

19/20

https://github.com/Azure/Azure-Sentinel/blob/master/Detections/MultipleDataSources/HiveRansomwareJuly2022.yaml

This hunting query helps detect a ransomware’s attempt to delete backup files.

https://github.com/Azure/Azure-
Sentinel/blob/master/Hunting%20Queries/MultipleDataSources/BackupDeletion.yaml

Identify Microsoft Defender Antivirus detection of Hive ransomware

This query looks for Microsoft Defender Antivirus detections related to the Hive ransomware and
joins the alert with other data sources to surface additional information such as device, IP, signed-in
users, etc.

https://github.com/Azure/Azure-
Sentinel/blob/master/Detections/SecurityAlert/HiveRansomwareAVHits.yaml

20/20

https://github.com/Azure/Azure-Sentinel/blob/master/Hunting%20Queries/MultipleDataSources/BackupDeletion.yaml
https://github.com/Azure/Azure-Sentinel/blob/master/Detections/SecurityAlert/HiveRansomwareAVHits.yaml

