
1/24

29 June 2022

Raccoon Stealer v2 – Part 2: In-depth analysis
blog.sekoia.io/raccoon-stealer-v2-part-2-in-depth-analysis/

Introduction

Raccoon is an information-stealing malware the likes of cryptocurrency wallet stealers such as
AgentTesla, Formbook, Redline, and Vidar. In March 2022, Raccoon Team announced their temporary
retirement due to missing team members related to the conflict between Ukraine and Russia that
started in February 2022 on different forums (i.e. xss[.]is). They also mentioned they are working on a
new version of the malware.

This blog post is a technical analysis of the new Raccoon Stealer 2.0 stand-alone version. Authors
have announced that the malware is also available in a DLL format or could be embedded in other
PE.

Link to the analyzed sample :
https://bazaar.abuse.ch/sample/022432f770bf0e7c5260100fcde2ec7c49f68716751fd7d8b9e113bf061
67e03/

This article follows up the first publication on Raccoon Stealer v2 to analyse in depth the malware
functionalities and capabilities.

https://blog.sekoia.io/raccoon-stealer-v2-part-2-in-depth-analysis/
https://bazaar.abuse.ch/sample/022432f770bf0e7c5260100fcde2ec7c49f68716751fd7d8b9e113bf06167e03/
https://blog.sekoia.io/raccoon-stealer-v2-part-1-the-return-of-the-dead/

2/24

Technical overview

Raccoon Stealer v2 is written in C/C++ and ASM, the standalone version is approximately 56 KB,
malware obfuscates its configuration and strings. It also performs dynamic linking. Communication
with its Command and Control servers occurs over HTTP; no encryption or data obfuscation is used to
exchange with the attacker’s server.

Raccoon v2 targets various crypto wallets, retrieves cookies and saves credit card numbers from
browsers (Edge, Firefox and Chrome).

Run-time dynamic Linking

The first task performed by the malware is to link libraries functions, initially the PE initiates handles to
`Shell32.dll`, `WinInt.dll`, `Crypt32.dll`, `Ole32.dll`, `User32.dll`, `Advapi32.dll` and Kernel32.dll.
Contrary to other malwares of the same family, Raccoon doesn’t hide the loading of `LoadLibrary` and
`GetProcAddress` [T1055.001], moreover imported functions from the various libraries are stored in
clear text.

Figure 1. Part of the decompiled function which executes the run-time dynamic linking

Obfuscation techniques

Once the functions are imported, Raccoon deobfuscates [T1140] a list of strings used to set up
Command and Control communication, and exfiltration operations. This obfuscation technique is often
implemented in other malware. The obfuscated strings are RC4-encrypted [T1027] strings stored in
base64. The sample used two different RC4 keys, one for decrypting strings used later in the program
and a second one to decrypt the list of C2.

https://blog.sekoia.io/mars-a-red-hot-information-stealer/

3/24

Figure 2. Example of the multiple calls to the first deobfuscation function

Figure 3. Decompiled version of the RC4 algorithm used in Raccoon v2

4/24

logins.json

\autofill.txt

\cookies.txt

\passwords.txt

--
/

Content-Type: application/x-www-form-urlencoded; charset=utf-8

Content-Type: multipart/form-data; boundary=

Content-Type: text/plain;

User Data

wallets

wlts_

ldr_

Figure 4. Extract of deobfuscated data

As mentioned in the beginning of this section, Raccoon Stealer used a different key to decrypt its
Command and Control URLs; the deobfuscated values are stored in an array. This array can take up
to 5 values, which we assess as a capacity of the malware to have a backup Command and Control
instance to ensure resilience.

Figure 5. Deobfuscation of the Command and Control with the new RC4 key

The deobfuscated C2 in the sample we analyzed is: http://51.195.166[.]184/

5/24

Figure 6. CyberChef recipe to deobfuscate the C2 URLs

Mutex

After the run-time dynamic linking and string deobfuscation, the stealer checks the existence of a
Mutex. In the sample we analyzed, its value is 8724643052 . If the mutex already exists, the process
exits, otherwise, the malware creates it and the malware further proceeds.

Figure 7. Mutex operation in Raccoon Stealer v2

It is worth noting that the mutex test is the only technique we observed in the sample that would
prevent malware execution.

Host checking

The malware then checks the privileges of the running process and returns zero in case the S-I-D
(Security IDentifier) is S-1-5-18 which stands for NT Authority\System . However this function
also returns zero if the process can neither get the token information nor convert its SID into a string
type.

6/24

Figure 8. Code checking current permissions

If the process permission is not NT Authority\System , or the process cannot get its token
information, the malware does not perform the next function that loops over the running processes
[T1057]. Again, the result of this function is not critical to the rest of the execution; the returned value
is immediately erased by the next instruction. (cf.: `mov eax, some value`).

Figure 9. Malware listing running process of the infected host

Nb: This non-usage of the return value likely indicates that Raccoon Stealer v2 is still under
development.

Initial C2 communication

7/24

After what can be considered the initiation phase, the malware begins to set up its first connection to
the Command and Control server [T1041].

First, it gets the MachineGuid by reading the Registry [T1012] to identify the infected host:
HKLM:\SOFTWARE\Microsoft\Cryptography\MachineGuid

Figure 10. Fingerprinting of the MachineGuid via the Registry

Then it reads the username from Adavapi32 library.

Figure 11. Code used to get the username

Eventually, the data are concatenated with the following structure:

machineId=<MachineGuid>|<UserName>&configId=<RC4 key>

Figure 12. Host fingerprinting and Command and Control server communication

8/24

The formatted data is sent to the C2 over HTTP in a POST request at the root of the server. It is
interesting to note that the loop requests the list of previously deobfuscated C2; the malware requests
every C2 in its list; the first to respond with data is assigned as the official C2 for the next
communication.

The C2 replies with a significant configuration in plain text, which contains the following information:

Downloading DLLs URLs;
Requested functionalities:

Take a screenshot (cf.: `scrnsht_`);
Cache investigation of the Telegram desktop application (cf.: `tlgrm_`);
Next stage setup and execution (cf.: `ldr_1`);

Browser extensions to search for (cf.: `ews_`);
Cryptographic Wallets of interest (cf.: `wlts_`);
A token used to define the HTTP C2 endpoint for further communication.

Figure 13. Extract of the configuration sent by the C2 server to infected host

All of the described configurations are not always set up; for example, screenshot capture or next
stage loader are often missing, they might not be present by default.

DLLs setup

As presented in the previous section, the malware retrieves information about the URLs hosting the
following DLLs to be downloaded [T1105]:

nss3.dll
nssdbm3.dll
msvcp140.dll
vcruntime140.dll
mozglue.dll
freebl3.dll
softokn3.dll
sqlite3.dll

These are legitimate third-party DLLs allowing malware to collect data on the infected host.

9/24

Figure 14. PCAP extract of the DLLs downloading

Figure 15. Decompiled code downloading the libraries

After parsing the list of DLLs, the malware contacts another Command and Control server to
download them. The DLLs are then dropped on the infected host.

Note: At this stage, libraries are not loaded into memory.

Host fingerprinting

Raccoon fingerprints the infected host and the following information are collected [T1082]:

User CID
TimeZone [T1614]
OS version
Host architecture
CPU information
RAM capacity
Information about display devices
List installed applications [T1518]

10/24

Figure 16. Advanced host fingerprinting

All information is gathered in a file named `System Info.txt` which is sent to the C2 server in a POST
request with the content type `application/x-object`. This time, the C2 URL changes, the token
extracted from the configuration (the one received in the first HTTP response) is used as the new
HTTP endpoint.

11/24

Figure 17. Sended packet to the C2 containing fingerprint information

Configuration big picture

As introduced in the section `C2 communication initiation`, the sample obtains a configuration with a
particular structure. Each line of the configuration, which is text-based, defines a type and how to
collect information on the host. `wlts_` and `ews_` are prefixes used in the configuration, `wlts_`
stands for wallets and `ews_` for browser web extension, as shown below by two configuration
examples:

ews_auromina:cnmamaachppnkjgnildpdmkaakejnhae;AuroWallet;Local Extension

Settings

wlts_xmr:Monero;5;Monero\\wallets;*.keys;

Configuration for browser extensions is defined by three values separated by semicolon: the browser
extension directory name, the name and the type of extension, the extension type can be `Local
Extension Settings` or `IndexedDB`.

12/24

Configuration for wallets is a bit more complex. Here the values are separated by a semicolon: the
first value is the wallet name, the second value is an integer, the next values are files and/or
directories pattern to search.

Stealing functions summary

The execution flow for the next functions is as follows (each step is detailed in the next sections of this
article):

1. Use sqlite3.dll to retrieve credit card information, cookies and saved passwords by browser
(autofill) [T1539] [T1555.003];

2. Use mozglue3.dll to get logins.json, cookies, and histories from Firefox [T1539] ;
3. Parse the received configuration to search for particular crypto wallets (cf.: `wlts_` and `ews_`)

[T1005];
4. Search file named `wallet.dat` [T1005];
5. Grab files according to the pattern set in the configuration; [optional] [T1119]
6. Investigate into the Telegram Desktop cache; [optional]
7. Capture a screenshot of the infected host desktop; [optional] [T1113]
8. Load and execute the next stage. [optional] [T1106]

13/24

Figure 18. Part of the main function doing the data theft, screenshot capture and next stage loading

Data extraction with sqlite3.dll

The first function in charge of stealing data on the infected host loops over files to search for `User
Data` (Edge and Chrome browsers) and `pera` file names.

Figure 19. Extract of the code executing the SQL queries

14/24

Once a file is found, the malware triggers the execution of a list of functions that executes sqlite
queries, then their results are parsed and formatted to be sent to the C2 server.

The next two screenshots are examples of SQL queries to get [T1539] [T1555.003]:

1. cookies
2. credit cards information (holder’s name, number, expiration date)

Figure 20. Example of SQL used to retrieved cookies

Figure 21. Example of SQL query used to retrieve credit card numbers from Google chrome file

Finally, the function will parse the retrieved configuration (eg: `ews_`) and search for the browser
extensions directory (generally located under AppData\Local\Google\User
Data\Default\Extensions for Google Chrome) .

When data is collected from different sources, the malware formats these data before sending them to
the C2 server.

Interesting observation: for each function that uses the sqlite3.dll exported functions, the malware re-
assigns imports (cf.: `GetProcAddress`). A similar behavior is observed for the other downloaded
DLLs.

15/24

Figure 22. Reference to sqlite3 prepare_v2 function loading

Data extraction with nss3.dll

The process is the same with nss3.dll, the malware is looking for particular files matching known
patterns related to the web browser.

This time, it targets cookies, logins.json files and the browser history [T1539] [T1555.003].

Figure 23. Other function responsible to retrieved web browser data

Wlts_ extraction

A list of wallets to search on the infected host is sent by the C2, these wallets are prefixed by `wlts_`.
The method is simple: it loops over the configuration when the first six bytes match `wlts_`, then
Raccoon Stealer parses the leftover of the configuration line to search for particular file patterns. In
case a pattern match, the file is copied and sent to the C2 server [T1005].

Figure 24. Extract of the configuration sent by the C2 used for the wallet investigation

16/24

Figure 25. Workflow of the function used to search file, copy it content and format it for the C2

1. Loop over files and directories until a pattern matches
2. Create a copy of the file
3. Format exfiltrated data before sending them to the C2

17/24

Again, if a wallet is found, a POST HTTP request with a copy of the wallet written in-body is sent to
the C2; otherwise no request is made.

Wallet.dat

In this function, Raccoon Stealer iterates the different directories to search for files named
wallet.dat (ref: bitcoin wallet). No particular operation is performed against this file [T1005]

[T1083].

Figure 26. Extract of the code used to search wallet.dat file

File grabber

In the configuration, the malware may receive the following line:

grbr_:%USERPROFILE%\Desktop|.*txt`|*recycle*,*windows*|20|1|1|1|files

The above configuration indicates to the malware to look for all text files (.txt) in the desktop folder
[T1083] [T1119]. No particular operation is performed on the filename or its content. In case a file
matches the given pattern, a copy is sent to the C2.

Telegram cache investigation

The last stealing function used by Raccoon Stealer consists of investigating the Telegram Desktop
cache data located under the `Telegram Desktop\tdata` directory.

18/24

The related configuration line is:

tlgrm_Telegram:Telegram Desktop\tdata|*|*emoji*,*user_data*,*tdummy*,*dumps*

The `tdata` directory of the Telegram Desktop application is used to store the application cache where
valuable data is stored, for instance session cookies.

Screenshot capture

Another capability of the Raccoon Stealer is to take a screenshot and send it to the C2 server [T1113].
The figure below shows the process initiating the Device Context on the desktop window handler,
followed by the capture of an area and its conversion into a bitmap.

Figure 27. Decompiled code used to create the screenshot capture

The screenshot operation is optional in Raccoon workflow. The condition to execute this function is to
receive in the configuration the `scrnsht_` line (cf.: `scrnsht_Screenshot.jpeg|1`), where
`Screenshot.jpeg` capture name will be prefixed by `—` before being exfiltrated to the C2 server again
with content type `application/x-object`.

19/24

Figure 28. HTTP packet containing the screenshot sent to the C2

Next stage loader

Finally, the malware ends up processing the configuration sent in the first HTTP response, by parsing
its last line:

ldr_1:http://94.158.244.119/U4N9B5X5F5K2A0L4L4T5/84897964387342609301.bin|%TEMP%\|exe

This instruction pertains to the loader configuration, whose structure is `ldr_X:URL|execution
directory|PE type`. This configuration is in charge of loading and executing the next stage [T1106]
[T1407]. The payload choice is up to the actor who purchased Raccoon. In this analysis, the dropped
and executed payload is a basic Trojan.

`X` is an integer whose value indicates which type of loading should be used:

`3` indicates to execute the payload directly (no investigation done on this case due to the lack
of sample matching this scenario);
`2` is not implemented;
`1` means the payload is located on a remote host and needs to be downloaded before being
executed.

20/24

Figure 29. Loading of the next payload from a remote file and its execution with ShellExecuteW
function

Nb: We assess that the last argument (PE type) in the configuration line likely allows Raccoon Stealer
to load other binaries than executable, such as a shellcode or a DLL, that can be embedded in the
Raccoon Stealer binary.

Command and Control communications summary

After loading and executing the next stage, Raccoon Stealer’s job is done. To sum up, see the
network capture of the analyzed sample below, that shows a typical exchange between the Command
and Control server and the infected host:

Figure 30. Summary of the network communication between the infected host and the C2 with
Wireshark

1. Register the new infected host and retrieve the stealer configuration;
2. Download DLLs;
3. Send System Info.txt with host fingerprint information;
4. Send stolen data (wallet(s), password(s), etc…);
5. Send ---Screenshot.jpeg file;
6. Download the next stage of the infection.

YARA rule

21/24

As described in the obfuscation techniques section, the new version of Raccoon Stealer hides its
strings and configuration using a very common technique (base64 encoded with RC4). The following
YARA rule matches the implemented RC4 decryption algorithm, and at least 20 occurrences, of the
string deobfuscation routine.

rule infostealer_win_raccoon_v2_rc4 {

 meta:

 malware = "Raccoon"

 description = "Finds samples of the Raccoon Stealer V2 based on the RC4 decryption
algorithm and the deobfuscation routine"

 author = "SEKOIA.IO"

 creation_date = "2022-06-16"

 modification_date = "2022-06-16"

 strings:

 $rc4_opcode = {99 f7 7d fc 8b 45 10 0f be 04 02 03 c1 03 f0 81 e6 ?? ?? ?? ?? 79 08 4e
81 ce ?? ?? ?? ?? 46}

 $deobfuscation = {8d 4d ?? 51 50 8b ce e8 ?? ?? 00 00 8d 55 ?? a3 ?? ?? ?? ?? b9 ?? ??
?? ?? e8 ?? ?? ff ff 57}

 condition:

 $rc4_opcode and #deobfuscation > 20 and filesize < 70KB

}

Configuration extractor

The python extraction script solely works for stand-alone PE of Raccoon Stealer v2 and it is available
on the SEKOIA.IO Community Github.

Targeted Browser extensions and wallets

Targeted wallets

Bitcoin
Exodus
Atomic
JaxxLiberty
Binance
Coinomi
Electrum
Electrum-LTC
ElectrumCash
Guarda
BlockstreamGreen
Ledger
Daedalus
MyMonero
Monero
Wasabi

https://github.com/SEKOIA-IO/Community/blob/main/scripts/raccoon_stealer_v2_c2_extrator.py

22/24

Targeted browser web extensions

MetaMask
TronLink
BinanceChain
Ronin
 MetaX
XDEFI
WavesKeeper
Solflare
Rabby
CyanoWallet
Coinbase
AuroWallet
KHC
TezBox
Coin98
Temple
ICONex
Sollet
CloverWallet
PolymeshWallet
NeoLine
Keplr
TerraStation
Liquality
SaturnWallet
GuildWallet
Phantom
TronLink
Brave
MEW_CX
TON
Goby

MITRE ATT&CK TTPs

Tactic Technique Description

Defense
Evasion

T1140 –
Deobfuscate/Decode
Files or Information

Raccoon Stealer 2.0 decodes strings and the C2 configuration
in the malware using RC4 and base64.

Defense
Evasion

T1027 – Obfuscated
Files or Information

Raccoon Stealer 2.0 uses RC4-encrypted strings.

23/24

Credential
Access

T1539 – Steal Web
Session Cookie

Raccoon Stealer 2.0 harvests cookies from popular browsers.

Credential
Access

T1555.003 –
Credentials from
Password Stores:
Credentials from
Web Browsers

Raccoon Stealer 2.0 collects passwords from popular browsers.

Discovery T1083 – File and
Directory Discovery

Raccoon Stealer 2.0 lists files and directories to grab files
through all disks.

Discovery T1057 – Process
Discovery

Raccoon Stealer 2.0 lists the current running processes on the
system.

Discovery T1012 – Query
Registry

Raccoon Stealer 2.0 queries the Windows Registry key at
HKLM\SOFTWARE\Microsoft\Cryptography\MachineGuid to
retrieve the MachineGuid value.

Discovery T1518 – Software
Discovery

Raccoon Stealer 2.0 lists all installed software for the infected
machine, by querying the Windows Registry key at
HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\uninstall

Discovery T1082 – System
Information
Discovery

Raccoon Stealer 2.0 collects OS version, host architecture,
CPU information, RAM capacity and display device information.

Discovery T1614 – System
Time Discovery

Raccoon Stealer 2.0 collects the time zone information from the
system.

Collection T1119 – Automated
Collection

Raccoon Stealer 2.0 scans the disks and automatically collects
files.

Collection T1005 – Data from
Local System

Raccoon Stealer 2.0 collects credentials of cryptocurrency
wallets from the local system.

Collection T1113 – Screen
Capture

Raccoon Stealer 2.0 captures a screenshot of the victim’s
desktop.

Command
and
Control

T1071.001 –
Application Layer
Protocol: Web
Protocols

Raccoon Stealer 2.0 uses HTTP for C2 communications.

Command
and
Control

T1041 – Exfiltration
Over C2 Channel

Raccoon Stealer 2.0 exfiltrates data over the C2 channel.

Command
and
Control

T1105 – Ingress Tool
Transfer

Raccoon Stealer 2.0 downloads legitimate third-party DLLs for
data collection onto compromised hosts.

Execution T1106 – Native API Raccoon Stealer 2.0 has the ability to launch files using
ShellExecuteW.

24/24

Defense
Evasion

T1055.001 –
Process
Injection: Dynamic-
link Library Injection

Raccoon Stealer 2.0 has the ability to load DLLs via
LoadLibraryW and GetProcAddress.

Defense
Evasion

T1407 – Download
New Code at
Runtime

Raccoon Stealer 2.0 downloads its next stage from a remote
host.

Thank you for reading this article. You can also read our article on:

