
1/11

Mark Lim, Riley Porter June 24, 2022

There Is More Than One Way to Sleep: Dive Deep Into the
Implementations of API Hammering by Various Malware
Families

unit42.paloaltonetworks.com/api-hammering-malware-families/

people reacted
6

5 min. read

By Mark Lim and Riley Porter

June 24, 2022 at 6:00 AM

Category: Malware, Threat Prevention

Tags: API Hammering, BazarLoader, Cortex XDR, malware, Sandbox evasion, threat
prevention, WildFire, Zloader

This post is also available in: 日本語 (Japanese)

Executive Summary

https://unit42.paloaltonetworks.com/api-hammering-malware-families/
https://unit42.paloaltonetworks.com/author/mark-lim/
https://unit42.paloaltonetworks.com/author/riley-porter/
https://unit42.paloaltonetworks.com/category/malware-2/
https://unit42.paloaltonetworks.com/category/threat-prevention-2/
https://unit42.paloaltonetworks.com/tag/api-hammering/
https://unit42.paloaltonetworks.com/tag/bazarloader/
https://unit42.paloaltonetworks.com/tag/cortex-xdr/
https://unit42.paloaltonetworks.com/tag/malware/
https://unit42.paloaltonetworks.com/tag/sandbox-evasion/
https://unit42.paloaltonetworks.com/tag/threat-prevention/
https://unit42.paloaltonetworks.com/tag/wildfire/
https://unit42.paloaltonetworks.com/tag/zloader/
https://unit42.paloaltonetworks.jp/api-hammering-malware-families/


2/11

Unit 42 has discovered Zloader and BazarLoader samples that had interesting
implementations of a sandbox evasion technique. This blog post will go into details of the
unique implementations of API Hammering in these types of malware. API Hammering
involves the use of a massive number of calls to Windows APIs as a form of extended sleep
to evade detection in sandbox environments.

Sandboxing is a popular technique used to detect if a sample is malicious. A sandbox
analyzes the behaviors of the binary as it executes inside a controlled environment.
Sandboxes have to deal with many challenges while analyzing a large number of binaries
with limited computing resources. Malware sometimes abuses these challenges by
“sleeping” in the sandbox before carrying out malicious procedures to hide its real intentions.

Palo Alto Networks customers receive protections from malware families using evasion
techniques through Cortex XDR or the Next-Generation Firewall with WildFire and Threat
Prevention security subscriptions.

Related Unit 42 Topics Malware, evasion

Table of Contents

Common Ways for Malware to Sleep
 What Is API Hammering?

 API Hammering in BazarLoader
 API Hammering in Zloader

 Conclusion: WildFire vs API Hammering
 Indicators of Compromise

Common Ways for Malware to Sleep

The most common way for malware to sleep is to simply call the Windows API function
Sleep. A sneakier way that we often see is the Ping Sleep technique where the malware
constantly sends ICMP network packets to an IP address (ping) in a loop. To send and
receive such useless ping messages takes a certain amount of time, thus the malware
indirectly sleeps. However, all these methods are easily detected by many sandboxes.

What Is API Hammering?

API Hammering has been a known sandbox bypass technique that is sometimes used by
malware authors to evade sandboxes. We’ve recently observed Zloader – a dropper for
multiple types of malware – and the backdoor BazarLoader using new and unique
implementations of API Hammering to remain stealthy.

https://www.paloaltonetworks.com/cortex/cortex-xdr
https://www.paloaltonetworks.com/products/secure-the-network/wildfire
http://paloaltonetworks.com/products/secure-the-network/subscriptions/threat-prevention
https://unit42.paloaltonetworks.com/category/malware-2/
https://unit42.paloaltonetworks.com/tag/evasion/
https://www.joesecurity.org/blog/498839998833561473
https://malpedia.caad.fkie.fraunhofer.de/details/win.zloader
https://malpedia.caad.fkie.fraunhofer.de/details/win.bazarbackdoor


3/11

API Hammering consists of a large number of garbage Windows API function calls. The
execution time of these calls delays the execution of the real malicious routines of the
malware. This allows the malware to indirectly sleep during the sandbox analysis process.

API Hammering in BazarLoader

An older variant of BazarLoader made use of a fixed number (1550) of printf function calls to
time out malware analysis. While analyzing a newer version of BazarLoader, we found a new
and more complex implementation of API Hammering.

The following decompiled procedure shows how this new variant is implemented in the
BazarLoader sample we analyzed. It makes use of a huge loop with a random count that
repeatedly accesses a list of random registry keys in Windows.

Figure 1. API Hammering loop in BazarLoader.
To generate the random loop count and list of registry keys, the sample reads the first file
from the System32 directory that matches a defined size. This file is then encoded (see
Figure 2) to remove most of its null bytes. The random count is then computed based on the
offset of the first null byte in that file. The list of random registry keys are generated from
fixed length chunks from the encoded file.

https://www.cybereason.com/blog/a-bazar-of-tricks-following-team9s-development-cycles


4/11

Figure 2. Encoding the selected file in BazarLoader.
With a different Windows version (Windows 7, 8, etc.) and a different set of applied updates,
there is also a different set of files in the System32 directory. This results in a varying loop
count and list registry keys used by BazarLoader when executed in different machines.

The API Hammering function is located in the packer of the BazarLoader sample (see Figure
3). It delays the payload unpacking process to evade detection of the aforementioned.
Without completing the unpacking process, the BazarLoader sample would appear to be just
accessing random registry keys, a behavior that can be also seen in many legitimate types of
software.



5/11

Figure 3. API Hammering delaying unpacking process in BazarLoader.

API Hammering in Zloader

While the BazarLoader sample relied on a loop to carry out API Hammering, Zloader uses a
different approach. It does not require a huge loop, but instead consists of 4 large functions
which contain nested calls to multiple other smaller functions (see Figure 4).



6/11

Figure 4. One of the large functions responsible for API Hammering in ZLoader.
Inside each of these small procedures are four API function calls related to file I/O. The
functions are GetFileAttributesW, ReadFile, CreateFileW and WriteFile (see Figure 5).



7/11

Figure 5. One of the small functions responsible for API Hammering in ZLoader.
By using a debugger, we could figure out the number of calls made to four file I/O functions
(see Figure 6). The large and smaller functions together generate more than a million
function calls in total, without the use of a single large loop as seen in BazarLoader.



8/11

Figure 6. Debugger log for APIs responsible for API

Hammering in ZLoader.
The following table shows the API function call counts made during our analysis process:

I/O API function Total Call Count

ReadFile 278,850

WriteFile 280,921

GetFileAttributesW 113,389

CreateFileW 559,771

Table 1. API function call counts.

The execution time of the four large functions delays the injection of the Zloader payload.
Without complete execution of these functions, the sample would appear to be a benign
sample just carrying out file I/O operations.

The following disassembled code shows the four API hammering procedures followed by the
injection procedures:



9/11

Figure 6. API Hammering before payload injection in ZLoader.

Conclusion: WildFire vs API Hammering



10/11

Results from analyzing various implementations of API Hammering enabled the detection of
malware samples using API Hammering for sandbox evasion in WildFire. WildFire detects
the use of API Hammering by BazarLoader, Zloader, and other malware families.

The following excerpt from the WildFire report of our BazarLoader sample shows the
detected entry for API Hammering.

Figure 7. WildFire detected

API Hammering along with other behaviors in a Bazarloader sample.
Palo Alto Networks customers receive further protections against other malware families
using similar sandbox evasion techniques through Cortex XDR or our Next-Generation
Firewall with WildFire and Threat Prevention security subscriptions.

Indicators of Compromise

BazarLoader Sample
 ce5ee2fd8aa4acda24baf6221b5de66220172da0eb312705936adc5b164cc052

Zloader Sample
 44ede6e1b9be1c013f13d82645f7a9cff7d92b267778f19b46aa5c1f7fa3c10b

Get updates from 
 Palo Alto

 Networks!

Sign up to receive the latest news, cyber threat intelligence and research from us

https://www.paloaltonetworks.com/products/secure-the-network/wildfire


11/11

By submitting this form, you agree to our Terms of Use and acknowledge our Privacy
Statement.

https://www.paloaltonetworks.com/legal-notices/terms-of-use
https://www.paloaltonetworks.com/legal-notices/privacy

