
1/16

June 23, 2022

Threat Update: Industroyer2
splunk.com/en_us/blog/security/threat-update-industroyer2.html

 By Splunk Threat Research Team June 23, 2022

The Splunk Threat Research Team (STRT) continues to monitor new relevant payloads to the ongoing
conflict in Eastern Europe. One of these new payloads was found by the Ukranian CERT named
“Industroyer2.” The name of this new payload references the original "Industroyer" malicious payload
used against the country of Ukraine's power grid in 2016 and allegedly was able to affect a fifth of the
power capacity of the city of Kyiv.

https://www.splunk.com/en_us/blog/security/threat-update-industroyer2.html
https://www.splunk.com/en_us/blog/author/secmrkt-research.html
https://www.splunk.com/en_us/blog/author/secmrkt-research.html
https://cert.gov.ua/article/39518
https://collaborate.mitre.org/attackics/index.php/Software/S0001
https://en.wikipedia.org/wiki/Industroyer

2/16

According to the recent Ukraine CERT and ESET report, Industroyer2 resembles the former Industroyer
in functionality and is also targeting the electric grid containing commands targeting high-voltage
electrical substations. It was reported that Industroyer2 was also used along with CaddyWiper, another
payload recently addressed by the Splunk Threat Research Team. This payload — in combination with
previous featured destructive payloads — targets CPEs. These customer premise devices such as
modems, cable modems, and internet gateways are devices that provide connectivity to the great
majority of commercial and residential customers, and speak to the attacker’s intention of overwhelming
or degrading the victim's infrastructure.

The following is an analysis of relevant detection opportunities of this payload and observed TTPs
during the deployment of this payload.

Parameter Check

The first part of its code is checking parameters that can execute some of its features related to timing
and logging. Below is the code screenshot of this checking with its 2 parameters.

The first parameter is “-t” which will trigger a waiting timer relative to the current minute of the system
time. For example, if your system time is 14:19:22 PM and you use this parameter with a value of 25 as
the third parameter, it means it will wait 5 mins before it executes its code like the screenshot below.

https://cert.gov.ua/article/39518
https://www.welivesecurity.com/2022/04/12/industroyer2-industroyer-reloaded/
https://www.splunk.com/en_us/blog/security/threat-update-caddywiper.html
https://www.splunk.com/en_us/blog/security/strt-ta03-cpe-destructive-software.html

3/16

While the “-o” parameter is a feature to redirect its console logs to a debug log file you inputted as the
3rd parameter.

Console Logs

Upon executing this malware, it outputs some console logs with a customized code structure that tells
something about what features it executes. Some of it will be discussed further in the next
subheadings. Below is an example of the console logs during its execution.

Terminate Process and Rename Process File Path

This function enumerates all running processes in the targeted host and looks for the process named
“PServiceControl.exe” and also the process name stated in its config data. It will also look for the file
path of that process in a specific folder that is in the config file and rename it with “.MZ” file extension.

The code screenshot below shows the process termination and renaming of process file path. We can
see in the code snippet the code “RNM” plus the last error code after the call MoveFileA() function that
will be displayed in its console logs after executing this part of the code. You can see that in the console
log screenshot earlier.

4/16

HardCoded Configuration Data

This malware contains hardcoded configuration files that will be parsed with the help of
CommandLineToArgvW() function and put in a structure that will be used later in its code. Below is the
screenshot of the parsing function.

The config data contains values and checks that this payload uses through its execution. We saw four
main components of its three configuration data settings that are hardcoded to its data section like the
screenshot below: The first component is the IP address of devices where it tries to communicate via

5/16

IEC-104 protocol, the next one is the port number (2404), third is the process name
(PService_PPD.exe) it tries to kill aside from “PServicecontrol.exe” and a file path (D:\OIK\DevCounter)
where it locates the process file path it tries to kill to rename it with .MZ file extension.

Detections

Below are the detections related to the Industroyer2 malware and other components found during the
attack that was mentioned in the ESET blog and CERT-UA blog.

Linux Adding Crontab Using List Parameter

This analytic identifies a suspicious cron jobs modification using crontab list parameters. This command
line parameter can be abused by malware like Industroyer2, adversaries, and red teamers to add a
crontab entry to their malicious code to execute to the schedule they want.

| tstats `security_content_summariesonly` count min(_time) as firstTime max(_time) as lastTime
from datamodel=Endpoint.Processes

 where Processes.process_name = "crontab" Processes.process= "* -l*"

 by Processes.parent_process_name Processes.process_name Processes.process
Processes.process_id Processes.parent_process_id Processes.dest Processes.user

 | `drop_dm_object_name(Processes)`

 | `security_content_ctime(firstTime)`

https://www.welivesecurity.com/2022/04/12/industroyer2-industroyer-reloaded/
https://cert.gov.ua/article/39518

6/16

 | `security_content_ctime(lastTime)`

Linux Deleting Critical Directory Using RM Command

This analytic identifies a suspicious deletion of a critical folder in Linux machine using rm command.
This technique was seen in Industroyer2 campaign to wipe or destroy energy facilities of a targeted
sector.

| tstats `security_content_summariesonly` count min(_time) as firstTime max(_time) as lastTime
from datamodel=Endpoint.Processes

 where Processes.process_name =rm AND Processes.process= "* -rf *" AND Processes.process IN
("*/boot/*", "*/var/log/*", "*/etc/*", "*/dev/*")

 by Processes.parent_process_name Processes.process_name Processes.process
Processes.process_id Processes.parent_process_id Processes.process_guid Processes.dest
Processes.user

 | `drop_dm_object_name(Processes)`

 | `security_content_ctime(firstTime)` | `security_content_ctime(lastTime)`

Linux Disable Services

This analytic identifies events that attempt to disable a service. This is typically identified in parallel with
other instances of service enumeration of attempts to stop a service and then delete it.

7/16

| tstats `security_content_summariesonly` count min(_time) as firstTime max(_time) as lastTime
from datamodel=Endpoint.Processes

 where Processes.process_name IN ("systemctl", "service", "svcadm") Processes.process = "*
disable*"

 by Processes.parent_process_name Processes.process_name Processes.process
Processes.process_id Processes.parent_process_id Processes.process_guid Processes.dest
Processes.user

 | `drop_dm_object_name(Processes)`

 | `security_content_ctime(firstTime)` | `security_content_ctime(lastTime)`

Linux Shred Overwrite Command

This analytic identifies a shred process to overwrite files in a linux machine. Shred Linux application is
designed to overwrite a file to hide its contents or make the deleted file unrecoverable.

| tstats `security_content_summariesonly` count min(_time) as firstTime max(_time) as lastTime
from datamodel=Endpoint.Processes

 where Processes.process_name =shred AND Processes.process IN ("*-n*", "*-u*", "*-z*", "*-s*")

 by Processes.parent_process_name Processes.process_name Processes.process
Processes.process_id Processes.parent_process_id Processes.process_guid Processes.dest
Processes.user

 | `drop_dm_object_name(Processes)`

 | `security_content_ctime(firstTime)` | `security_content_ctime(lastTime)`

8/16

Linux Stop Services

This analytic identifies events that attempt to stop or clear a service.

This is typically identified in parallel with other instances of service enumeration of attempts to stop a
service and then delete it.

| tstats `security_content_summariesonly` count min(_time) as firstTime max(_time) as lastTime
from datamodel=Endpoint.Processes

 where Processes.process_name IN ("systemctl", "service", "svcadm") Processes.process
="*stop*"

 by Processes.parent_process_name Processes.process_name Processes.process
Processes.process_id Processes.parent_process_id

 Processes.process_guid Processes.dest Processes.user

 | `drop_dm_object_name(Processes)` | `security_content_ctime(firstTime)`

 | `security_content_ctime(lastTime)`

Linux High Frequency Of File Deletion In Boot Folder

9/16

This analytic identifies a high frequency of file deletion relative to process name and process id /boot/
folder.

| tstats `security_content_summariesonly` values(Filesystem.file_name) as deletedFileNames
values(Filesystem.file_path) as deletedFilePath dc(Filesystem.file_path) as numOfDelFilePath
count min(_time) as firstTime max(_time) as lastTime

 FROM datamodel=Endpoint.Filesystem

 where Filesystem.action=deleted Filesystem.file_path = "/boot/*"

 by _time span=1h Filesystem.dest Filesystem.process_guid Filesystem.action

 | `drop_dm_object_name(Filesystem)`

 |rename process_guid as proc_guid

 |join proc_guid, _time [

 | tstats `security_content_summariesonly` count FROM datamodel=Endpoint.Processes where
Processes.parent_process_name != unknown

 NOT (Processes.parent_process_name IN ("/usr/bin/dpkg", "*usr/bin/python*", "*/usr/bin/apt-
*", "/bin/rm", "*splunkd", "/usr/bin/mandb"))

 by _time span=1h Processes.process_id Processes.process_name Processes.process Processes.dest
Processes.parent_process_name Processes.parent_process Processes.process_path
Processes.process_guid

 | `drop_dm_object_name(Processes)`

 |rename process_guid as proc_guid

 | fields _time dest user parent_process_name parent_process process_name process_path process
proc_guid registry_path registry_value_name registry_value_data registry_key_name action]

 | table process_name process proc_guid action _time deletedFileNames deletedFilePath
numOfDelFilePath parent_process_name parent_process process_path dest user

 | where numOfDelFilePath >= 200

10/16

Windows Processes Killed By Industroyer2 Malware

This analytic identifies known processes killed by Industroyer2 malware.

This technique was seen in the Industroyer2 malware attack that tries to kill several processes of
windows host machines related to the energy facility network.

`sysmon` EventCode=5 process_name IN ("PServiceControl.exe", "PService_PPD.exe")

 | stats min(_time) as firstTime max(_time) as lastTime count by process_name process
process_path process_guid process_id EventCode dest user_id

 | `security_content_ctime(firstTime)`| `security_content_ctime(lastTime)`

Windows Hidden Schedule Task Settings

The following query utilizes Windows Security EventCode 4698. A scheduled task was created to
identify suspicious tasks registered on Windows either via schtasks.exe OR TaskService with hidden
settings that are unique entry of malware like Industroyer2 or attack that uses lolbin to download other
files or payload to the infected machine.

`wineventlog_security` EventCode=4698

 | xmlkv Message

 | search Hidden = true

 | stats count min(_time) as firstTime max(_time) as lastTime by Task_Name, Command, Author,
Hidden, dest

 | `security_content_ctime(firstTime)` | `security_content_ctime(lastTime)`

11/16

Windows Linked Policies In ADSI Discovery

This analytic utilizes PowerShell Script Block Logging (EventCode=4104) to identify the
`[Adsisearcher]` type accelerator being used to query Active Directory for domain groups.

`powershell` EventCode=4104 ScriptBlockText = "*[adsisearcher]*" ScriptBlockText =
"*objectcategory=organizationalunit*" ScriptBlockText = "*findAll()*"

 | stats count min(_time) as firstTime max(_time) as lastTime by EventCode ScriptBlockText
Computer user_id

 | `security_content_ctime(firstTime)` | `security_content_ctime(lastTime)`

Windows Root Domain Linked Policies Discovery

12/16

This analytic utilizes PowerShell Script Block Logging (EventCode=4104) to identify the
`[Adsisearcher]` type accelerator being used to query Active Directory for domain groups. Red Teams
and adversaries may leverage `[Adsisearcher]` to enumerate root domain linked policies for situational
awareness and Active Directory Discovery.

`powershell` EventCode=4104 ScriptBlockText = "*[adsisearcher]*" ScriptBlockText =
"*.SearchRooT*" ScriptBlockText = "*([ADSI]”$_”).gplink*"

 | stats count min(_time) as firstTime max(_time) as lastTime by EventCode ScriptBlockText
Computer user_id

 | `security_content_ctime(firstTime)`

 | `security_content_ctime(lastTime)`

Type Name Technique
ID

Tactic Description

TTP

WinEvent
Scheduled Task
Created Within
Public Path
(Updated)

T1053.005 Execution,
Persistence,
Privilege
Escalation

The following query utilizes Windows
Security EventCode 4698. A
scheduled task was created to
identify suspicious tasks registered on
Windows either via schtasks.exe OR
TaskService with a command to be
executed from a user-writable file
path.

Hunting WinEvent
Windows Task
Scheduler Event
Action Started

T1053.005 Execution,
Persistence,
Privilege
Escalation

This hunting analytic assists with
identifying suspicious tasks that have
been registered and run in Windows
using EventID 200 (action run) and
201 (action completed).

https://research.splunk.com/endpoint/winevent_scheduled_task_created_within_public_path/
https://attack.mitre.org/techniques/T1053/005/
https://research.splunk.com/endpoint/winevent_windows_task_scheduler_event_action_started/
https://attack.mitre.org/techniques/T1053/005/

13/16

TTP Schtasks Run
Task On
Demand

T1053 Execution,
Persistence,
Privilege
Escalation

This analytic identifies an on-demand
run of a Windows Schedule Task
through shell or command-line.

TTP Attempted
Credential Dump
From Registry
via Reg exe

T1003 Credential
Access

This analytic identifies the use of
reg.exe attempting to export Windows
registry keys that contain hashed
credentials. Adversaries will utilize
this technique to capture and perform
offline password cracking.

TTP Dump LSASS
via comsvcs DLL

T1003.001 Credential
Access

This analytic identifies the usage of
comsvcs.dll for dumping the lsass
process.

TTP Executable File
Written in
Administrative
SMB Share

T1021.002 Lateral
Movement

This analytic identifies executable
files (.exe or .dll) being written to
Windows administrative SMB shares
(Admin$, IPC$, C$).

TTP Suspicious
Process File
Path

T1543 Persistence,
Privilege
Escalation

This analytic identifies a suspicious
process running in a file path where a
process is not commonly seen and is
most commonly used by malicious
software.

TTP Executables Or
Script Creation
In Suspicious
Path

T1036 Defense
Evasion

This analytic identifies suspicious
executables or scripts (known file
extensions) in a list of suspicious file
paths in Windows.

TTP Impacket Lateral
Movement
Commandline
Parameters

T1021
 T1021.002

 T1021.003
 T1047

 T1543.003

Lateral
Movement

 Execution
 Persistence,

Privilege
Escalation

This analytic identifies the presence
of suspicious command line
parameters typically present when
using Impacket tools.

Anomaly Linux System
Network
Discovery

T1016 Discovery This analytic identifies possible
enumeration of local network
configuration. This technique is
commonly used as part of recon of
adversaries or threat actors to know
some network information for its next
or further attack.

https://research.splunk.com/endpoint/schtasks_run_task_on_demand/
https://attack.mitre.org/techniques/T1053/
https://research.splunk.com/endpoint/attempted_credential_dump_from_registry_via_reg_exe/
https://attack.mitre.org/techniques/T1003/
https://research.splunk.com/endpoint/dump_lsass_via_comsvcs_dll/
https://attack.mitre.org/techniques/T1003/001/
https://research.splunk.com/endpoint/executable_file_written_in_administrative_smb_share/
https://attack.mitre.org/techniques/T1021/002/
https://research.splunk.com/endpoint/suspicious_process_file_path/
https://attack.mitre.org/techniques/T1543/
https://research.splunk.com/endpoint/executables_or_script_creation_in_suspicious_path/
https://research.splunk.com/endpoint/impacket_lateral_movement_commandline_parameters/
https://attack.mitre.org/techniques/T1021/
https://attack.mitre.org/techniques/T1021/002/
https://attack.mitre.org/techniques/T1021/003/
https://attack.mitre.org/techniques/T1047/
https://attack.mitre.org/techniques/T1543/003/
https://research.splunk.com/endpoint/linux_system_network_discovery/

14/16

TTP Recon Using
WMI Class

T1592 Reconnaissance This analytic identifies suspicious
PowerShell via EventCode 4104,
where WMI is performing an event
query looking for running processes
or running services.

Hunting Linux Adding
Crontab Using
List
Parameter (New)

T1053.003 Execution,
Persistence,
Privilege
Escalation

This analytic identifies a suspicious
cron jobs modification using crontab
list parameters.

TTP Linux Deleting
Critical Directory
Using RM
Command (New)

T1485 Impact This analytic identifies a suspicious
deletion of a critical folder in a Linux
machine using rm command.

TTP Linux Disable
Services (New)

T1489 Impact This analytic identifies events that
attempt to disable a service.

TTP Linux Shred
Overwrite
Command (New)

T1485 Impact This analytic identifies a shred
process to overwrite files in a Linux
machine.

TTP Linux Stop
Services (New)

T1489 Impact
This analytic identifies events that
attempt to stop or clear a service.

Anomaly Windows
Processes Killed
By Industroyer2
Malware

T1489 Impact This analytic identifies known
processes killed by Industroyer2
malware.

TTP Windows Hidden
Schedule Task
Settings (New)

T1053 Execution,
Persistence,
Privilege
Escalation

This query utilizes Windows Security
EventCode 4698.

A scheduled task was created to
identify suspicious tasks registered
on

Windows either via schtasks.exe OR
TaskService with a hidden setting.

Anomaly Windows Linked
Policies In ADSI
Discovery

T1087.002 Discovery This analytic utilizes PowerShell
Script Block Logging
(EventCode=4104) to identify the
`[Adsisearcher]` type accelerator
being used to query Active Directory
for domain groups.

https://splunkresearch.com/endpoint/recon_using_wmi_class/
https://attack.mitre.org/techniques/T1592/
https://research.splunk.com/endpoint/linux_adding_crontab_using_list_parameter/
https://attack.mitre.org/techniques/T1053/003/
https://research.splunk.com/endpoint/linux_deleting_critical_directory_using_rm_command/
https://attack.mitre.org/techniques/T1485/
https://research.splunk.com/endpoint/linux_disable_services/
https://attack.mitre.org/techniques/T1489/
https://research.splunk.com/endpoint/linux_shred_overwrite_command/
https://attack.mitre.org/techniques/T1485/
https://research.splunk.com/endpoint/linux_stop_services/
https://attack.mitre.org/techniques/T1489/
https://research.splunk.com/endpoint/windows_processes_killed_by_industroyer2_malware/
https://attack.mitre.org/techniques/T1489/
https://research.splunk.com/endpoint/windows_hidden_schedule_task_settings/
https://attack.mitre.org/techniques/T1053/
https://research.splunk.com/endpoint/windows_linked_policies_in_adsi_discovery/
https://attack.mitre.org/techniques/T1087/002/

15/16

Anomaly Windows Root
Domain linked
policies
Discovery

T1087.002 Discovery
This analytic utilizes PowerShell
Script Block Logging
(EventCode=4104) to identify the
`[Adsisearcher]` type to enumerate
root domain linked policies for
situational awareness and Active
Directory Discovery.

* To see a detailed explanation on the different types please refer to this wiki.

IOC:

Filename Size Sha256

industroyer2.exe 37.00
KB
(37888
bytes)

d69665f56ddef7ad4e71971f06432e59f1510a7194386e5f0e8926aea7b88e0

Mitigation

Please follow CISA and NSA Joint advisory on securing Operational Technology (OT).

Learn More

You can find the latest content about security analytic stories on GitHub and in Splunkbase. Splunk
Security Essentials also has these detections available via push update. In the upcoming weeks, the
Splunk Threat Research Team will be releasing a more detailed blog post on this analytic story. Stay
tuned!

For a full list of security content, check out the release notes on Splunk Docs.

Feedback

Any feedback or requests? Feel free to put in an issue on GitHub and we’ll follow up. Alternatively, join
us on the Slack channel #security-research. Follow these instructions If you need an invitation to our
Splunk user groups on Slack.

We would like to thank the following for their contributions to this post: Teoderick Contreras, Rod Soto,
Jose Hernandez, Patrick Barreiss, Lou Stella, Mauricio Velazco, Michael Haag, Bhavin Patel, and Eric
McGinnis

https://research.splunk.com/endpoint/windows_root_domain_linked_policies_discovery/
https://attack.mitre.org/techniques/T1087/002/
https://github.com/splunk/security_content/wiki/Detection-Analytic-Types
https://www.cisa.gov/news/2020/07/23/protect-operational-technologies-and-control-systems-against-cyber-attacks
https://github.com/splunk/security-content/releases/tag/v3.12.0
https://splunkbase.splunk.com/app/3449/
https://splunkbase.splunk.com/app/3435/
https://docs.splunk.com/Documentation/ESSOC/3.21.0/RN/Enhancements
https://docs.splunk.com/Documentation/ESSOC
https://splunk-usergroups.slack.com/
https://docs.splunk.com/Documentation/Community/1.0/community/Chat

16/16

Posted by

Splunk Threat Research Team

The Splunk Threat Research Team is an active part of a customer’s overall defense strategy by
enhancing Splunk security offerings with verified research and security content such as use cases,
detection searches, and playbooks. We help security teams around the globe strengthen operations by
providing tactical guidance and insights to detect, investigate and respond against the latest threats.
The Splunk Threat Research Team focuses on understanding how threats, actors, and vulnerabilities
work, and the team replicates attacks which are stored as datasets in the Attack Data repository.

Our goal is to provide security teams with research they can leverage in their day to day operations and
to become the industry standard for SIEM detections. We are a team of industry-recognized experts
who are encouraged to improve the security industry by sharing our work with the community via
conference talks, open-sourcing projects, and writing white papers or blogs. You will also find us
presenting our research at conferences such as Defcon, Blackhat, RSA, and many more.

Read more Splunk Security Content.

https://www.splunk.com/en_us/blog/author/secmrkt-research.html
https://github.com/splunk/attack_data/
https://github.com/splunk/security_content

