
1/4

monoxgas

monoxgas/sRDI: Shellcode implementation of Reflective
DLL Injection. Convert DLLs to position independent
shellcode

github.com/monoxgas/sRDI

sRDI - Shellcode Reflective DLL Injection

sRDI allows for the conversion of DLL files to position independent shellcode. It attempts to
be a fully functional PE loader supporting proper section permissions, TLS callbacks, and
sanity checks. It can be thought of as a shellcode PE loader strapped to a packed DLL.

Functionality is accomplished via two components:

C project which compiles a PE loader implementation (RDI) to shellcode
Conversion code which attaches the DLL, RDI, and user data together with a bootstrap

This project is comprised of the following elements:

ShellcodeRDI: Compiles shellcode for the DLL loader
NativeLoader: Converts DLL to shellcode if neccesarry, then injects into memory
DotNetLoader: C# implementation of NativeLoader
Python\ConvertToShellcode.py: Convert DLL to shellcode in place
Python\EncodeBlobs.py: Encodes compiled sRDI blobs for static embedding
PowerShell\ConvertTo-Shellcode.ps1: Convert DLL to shellcode in place
FunctionTest: Imports sRDI C function for debug testing
TestDLL: Example DLL that includes two exported functions for call on Load and after

The DLL does not need to be compiled with RDI, however the technique is cross
compatiable.

Use Cases / Examples

Before use, I recommend you become familiar with Reflective DLL Injection and it's purpose.

Convert DLL to shellcode using python

https://github.com/monoxgas/sRDI
https://disman.tl/2015/01/30/an-improved-reflective-dll-injection-technique.html

2/4

Load DLL into memory using C# loader

Convert DLL with python script and load with Native EXE

Convert DLL with powershell and load with Invoke-Shellcode

Flags

The PE loader code uses flags argument to control the various options of loading logic:

SRDI_CLEARHEADER [0x1]: The DOS Header and DOS Stub for the target DLL are
completley wiped with null bytes on load (Except for e_lfanew). This might cause
issues with stock windows APIs when supplying the base address as a psuedo
HMODULE.
SRDI_CLEARMEMORY [0x2]: After calling functions in the loaded module (DllMain and any
exports), the DLL data will be cleared from memory. This is dangerous if you expect to
continue executing code out of the module (Threads / GetProcAddressR).
SRDI_OBFUSCATEIMPORTS [0x4]: The order of imports in the module will be randomized
before starting IAT patching. Additionally, the high 16 bits of the flag can be used to
store the number of seconds to pause before processing the next import. For example,
flags | (3 << 16) will pause 3 seconds between every import.
SRDI_PASS_SHELLCODE_BASE [0x8]: As opposed to passing supplied user data to the
exported function, sRDI will instead pass the base address of the currently executing
shellcode block. This can be useful for self-cleanup inside more advanced modules.

Building

from ShellcodeRDI import *

dll = open("TestDLL_x86.dll", 'rb').read()

shellcode = ConvertToShellcode(dll)

DotNetLoader.exe TestDLL_x64.dll

python ConvertToShellcode.py TestDLL_x64.dll

NativeLoader.exe TestDLL_x64.bin

Import-Module .\Invoke-Shellcode.ps1

Import-Module .\ConvertTo-Shellcode.ps1

Invoke-Shellcode -Shellcode (ConvertTo-Shellcode -File TestDLL_x64.dll)

3/4

This project is built using Visual Studio 2019 (v142) and Windows SDK 10. The python script
is written using Python 3.

The Python and Powershell scripts are located at:

Python\ConvertToShellcode.py

PowerShell\ConvertTo-Shellcode.ps1

After building the project, the other binaries will be located at:

bin\NativeLoader.exe

bin\DotNetLoader.exe

bin\TestDLL_<arch>.dll

bin\ShellcodeRDI_<arch>.bin

If you would like to update the static blobs inside any of the tools:

Alternatives

If you find my code disgusting, or just looking for an alternative memory-PE loader project,
check out some of these:

Credits

The basis of this project is derived from "Improved Reflective DLL Injection" from Dan
Staples which itself is derived from the original project by Stephen Fewer.

> python .\lib\Python\EncodeBlobs.py -h

usage: EncodeBlobs.py [-h] solution_dir

sRDI Blob Encoder

positional arguments:

 solution_dir Solution Directory

optional arguments:

 -h, --help show this help message and exit

> python lib\Python\EncodeBlobs.py C:\code\srdi

[+] Updated C:\code\srdi\Native/Loader.cpp

[+] Updated C:\code\srdi\DotNet/Program.cs

[+] Updated C:\code\srdi\Python/ShellcodeRDI.py

[+] Updated C:\code\srdi\PowerShell/ConvertTo-Shellcode.ps1

https://disman.tl/2015/01/30/an-improved-reflective-dll-injection-technique.html
https://github.com/stephenfewer/ReflectiveDLLInjection

4/4

The project framework for compiling C code as shellcode is taken from Mathew Graeber's
reasearch "PIC_BindShell"

http://www.exploit-monday.com/2013/08/writing-optimized-windows-shellcode-in-c.html

